Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Cohort and Endpoint of Interest
2.2. Demographic, Clinical and Laboratory Characteristics as Well as Vascular Calcification Assessment
3. Statistical Analysis
4. Results
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellasi, A.; Ferramosca, E.; Muntner, P.; Ratti, C.; Wildman, R.P.; A Block, G.; Raggi, P. Correlation of simple imaging tests and coronary artery calcium measured by computed tomography in hemodialysis patients. Kidney Int. 2006, 70, 1623–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellasi, A.; Raggi, P. Vascular imaging in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2012, 21, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Bellasi, A.; Raggi, P. Vascular calcification in chronic kidney disease: Usefulness of a marker of vascular damage. J. Nephrol. 2011, 24, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Cozzolino, M.; Plebani, M.; Iervasi, G.; Ketteler, M.; Gallieni, M.; Aghi, A.; Locatelli, F.; Cunningham, J.; Salam, S.; et al. Sevelamer Use, Vitamin K Levels, Vascular Calcifications, and Vertebral Fractures in Hemodialysis Patients: Results from the VIKI Study. J. Bone Miner. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dilsizian, V.; Gewirtz, H.; Marwick, T.H.; Kwong, R.Y.; Raggi, P.; Al-Mallah, M.H.; Herzog, C.A. Cardiac Imaging for Coronary Heart Disease Risk Stratification in Chronic Kidney Disease. JACC Cardiovasc. Imaging 2020. [Google Scholar] [CrossRef] [PubMed]
- Mace, M.L.; Gravesen, E.; Nordholm, A.; Egstrand, S.; Morevati, M.; Nielsen, C.; Kjaer, A.; Behets, G.; D’Haese, P.; Olgaard, K.; et al. Chronic Kidney Disease–Induced Vascular Calcification Impairs Bone Metabolism. J. Bone Miner. Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int. 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Callister, T.Q.; Cooil, B.; Raya, S.P.; Lippolis, N.J.; Russo, D.J.; Raggi, P. Coronary artery disease: Improved reproducibility of calcium scoring with an electron-beam CT volumetric method. Radiol. 1998, 208, 807–814. [Google Scholar] [CrossRef]
- Kauppila, L.I.; Polak, J.F.; Cupples, L.A.; Hannan, M.T.; Kiel, D.P.; Wilson, P.W. New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: A 25-year follow-up study. Atherosclerosis 1997, 132, 245–250. [Google Scholar] [CrossRef]
- Di Iorio, B.; Molony, D.; Bell, C.; Cucciniello, E.; Bellizzi, V.; Russo, D. Sevelamer versus calcium carbonate in incident hemodialysis patients: Results of an open-label 24-month randomized clinical trial. Am. J. Kidney Dis. 2013, 62, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Di Iorio, B.R.; Cucciniello, E.; Bellizzi, V. Vascular calcification and QT interval in incident hemodialysis patients. J. Nephrol. 2009, 22, 694–698. [Google Scholar] [PubMed]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of Coronary Heart Disease Using Risk Factor Categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raggi, P.; Bellasi, A.; Ferramosca, E.; Block, G.A.; Muntner, P. Pulse Wave Velocity Is Inversely Related to Vertebral Bone Density in Hemodialysis Patients. Hypertensionaha 2007, 49, 1278–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, G.A.; Raggi, P.; Bellasi, A.; Kooienga, L.; Spiegel, D. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int. 2007, 71, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Bellasi, A.; Di Lullo, L.; Raggi, P. Cardiovascular calcification: The emerging role of micronutrients. Atherosclerosis 2018, 273, 119–121. [Google Scholar] [CrossRef]
- Raggi, P.; Giachelli, C.; Bellasi, A. Interaction of vascular and bone disease in patients with normal renal function and patients undergoing dialysis. Nat. Clin. Pr. Neurol. 2007, 4, 26–33. [Google Scholar] [CrossRef]
- Nelson, A.J.; Raggi, P.; Wolf, M.; Gold, A.M.; Chertow, G.M.; Roe, M.T. Targeting Vascular Calcification in Chronic Kidney Disease. JACC Basic Transl. Sci. 2020, 5, 398–412. [Google Scholar] [CrossRef]
- Jamal, S.A.; VanderMeer, B.; Raggi, P.; Mendelssohn, D.C.; Chatterley, T.; Dorgan, M.; E Lok, C.; Fitchett, D.; Tsuyuki, R.T. Effect of calcium-based versus non-calcium-based phosphate binders on mortality in patients with chronic kidney disease: An updated systematic review and meta-analysis. Lancet 2013, 382, 1268–1277. [Google Scholar] [CrossRef]
- Di Lullo, L.; Tripepi, G.; Ronco, C.; D’Arrigo, G.; Barbera, V.; Russo, D.; Di Iorio, B.R.; Uguccioni, M.; Paoletti, E.; Ravera, M.; et al. Cardiac valve calcification and use of anticoagulants: Preliminary observation of a potentially modifiable risk factor. Int. J. Cardiol. 2019, 278, 243–249. [Google Scholar] [CrossRef]
- Di Lullo, L.; Tripepi, G.; Ronco, C.; De Pascalis, A.; Barbera, V.; Granata, A.; Bellasi, A. Safety and effectiveness of rivaroxaban and warfarin in moderate-to-advanced CKD: Real world data. J. Nephrol. 2018, 31, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Bellasi, A.; Bushinsky, D.; Bover, J.; Rodriguez, M.; Ketteler, M.; Sinha, S.; Salcedo, C.; Gillotti, K.; Padgett, C.; et al. Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis: Results of a Randomized Phase 2b Study. Circulation 2020, 141, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Raggi, P.; Bellasi, A.; Sinha, S.; Bover, J.; Rodriguez, M.; Ketteler, M.; Bushinsky, D.A.; Garg, R.; Perelló, J.; Gold, A.; et al. Effects of SNF472, a Novel Inhibitor of Hydroxyapatite Crystallization in Patients Receiving Hemodialysis—Subgroup Analyses of the CALIPSO Trial. Kidney Int. Rep. 2020, 5, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
Total (n = 184) | Alive (n = 115) | Expired (n = 69) | ||
---|---|---|---|---|
Variable | Mean (SD) or n (%) | Mean (SD) or n (%) | Mean (SD) or n (%) | p-Value |
Demographic and Clinical Characteristics | ||||
Age (years) | 62.6 (15.8) | 58.5 (15.1) | 69.4 (14.5) | <0.0001 |
Male (%) | 94(51.0%) | 57 (49.5%) | 37(53.6%) | 0.703 |
Body Weight (Kg) | 68.3 (13.1) | 69.2 (13.5) | 66.7 (12.4) | 0.198 |
ASCVD (%) | 27(14.6%) | 14 (12.1%) | 13(18.8%) | 0.307 |
Diabetes (%) | 40 (21.7%) | 22(19.1%) | 18(26.0%) | 0.356 |
Systolic Blood Pressure (mmHg) | 135 (18) | 132 (18) | 139 (17) | 0.012 |
Diastolic Blood Pressure (mmHg) | 75 (9) | 75 (9) | 75 (10) | 0.978 |
Framingham score (unit) | 11.8 (3.5) | 11.1 (3.7) | 13.0 (2.9) | <0.001 |
Measurement of Vascular Calcification & Arterial Stiffness | ||||
CAC Agatston score | 569 (1098) | 226 (579) | 1139 (1468) | <0.0001 |
CAC Agatston score progression | - | - | - | |
CAC Volume score | 229 (334) | 112 (223) | 423 (393) | <0.0001 |
Abdominal Aorta VC (Kauppila score) | 13 (9) | 10 (8) | 18 (7) | <0.0001 |
Pulse Wave Velocity (m/s) | 9.5 (3.7) | 9.2 (3.7) | 10.0 (3.8) | 0.156 |
Laboratory Characteristics | ||||
Albumin (g/dL) | 3.7 (0.4) | 3.7 (0.3) | 3.7 (0.4) | 0.794 |
Creatinine (g/dL) | 7.9 (2.5) | 8.0 (2.4) | 7.6 (2.8) | 0.376 |
Hemoglobin (g/dL) | 11.0 (1.6) | 11.1 (1.7) | 10.9 (1.3) | 0.428 |
Sodium (mE/L) | 139 (3.5) | 139 (3.7) | 139 (2.9) | 0.152 |
Potassium (mEq/L) | 5.1 (0.7) | 5.0 (0.7) | 5.2 (0.7) | 0.175 |
Calcium (mg/dL) | 8.8 (0.9) | 8.9 (0.9) | 8.6 (0.7) | 0.036 |
Phosphate (mg/dL) | 4.5 (1.3) | 4.4 (1.2) | 4.8 (1.4) | 0.055 |
Parathyroid Hormone (pg/mL) | 259 (227) | 236 (180) | 298 (287) | 0.111 |
C-reactive protein (mg/L) | 5.0 (3.3) | 4.9 (3.6) | 5.1 (2.8) | 0.762 |
Concomitant Medications | ||||
Use of ACE-inhibitors (%) | 132 (71.7%) | 78(67.8%) | 54(78.2%) | 0.176 |
Use of ARBs (%) | 148(80.4%) | 87(75.6%) | 61(88.4%) | 0.055 |
Use of betablockers (%) | 115 (62.5%) | 81(70.4%) | 34 (49.2%) | 0.007 |
Use of calcium channel blockers (%) | 56 (30.4%) | 27 (23.4%) | 29 (42.0%) | 0.013 |
Use of cinacalcet (%) | 79 (42.9%) | 44 (38.2%) | 35 (50.7%) | 0.134 |
Use of vitamin D (%) | 111 (60.3%) | 78 (67.8%) | 33(47.8%) | 0.011 |
Use of Sevelamer (%) | 29(15.7%) | 23(20.0%) | 6 (8.7%) | 0.067 |
Use of calcium based binders (%) | 155 (84.2%) | 92(80.0%) | 63 (91.3) | 0.067 |
(A) Abdominal Aorta Calcification (AAC) Evaluated via the Kauppila Score | ||||
Variable | HR | Lower 0.95 | Upper 0.95 | Pr(>|z|) |
Kauppila score (1U increase) | 1.095 | 1.0577 | 1.133 | <0.001 |
Pulse wave velocity (m/s) | 1.061 | 0.9961 | 1.13 | 0.0658 |
Age (years) | 1.019 | 1.0002 | 1.038 | 0.0473 |
Systolic blood pressure (mmHg) | 1.013 | 0.9987 | 1.027 | 0.0747 |
Use of calcium channel blockers (y vs. n) | 1.476 | 0.8923 | 2.44 | 0.1295 |
Model fit Statistics (AIC-adding Kauppila) | 624.31 (final model with Kauppila) | |||
loglink (without Kauppila) | 332.34 | |||
logling (with Kauppila) | 316.34 | |||
Comparison with vs. without Kauppila score | Chisq 31.89 (p < 0.001) | |||
(B) Coronary Artery Calcification (CAC) Evaluated via the Agatston Score | ||||
Variable | HR | Lower 0.95 | Upper 0.95 | Pr(>|z|) |
CAC-Agatstone score (log increase) | 1.6279 | 1.4176 | 1.869 | <0.001 |
Pulse wave velocity (m/s) | 1.1023 | 1.011 | 1.202 | 0.0273 |
Diabetes (y vs. n) | 3.597 | 1.7437 | 7.42 | 0.00053 |
ASCVD (y vs. n) | 0.5582 | 0.2718 | 1.146 | 0.11226 |
Systolic blood pressure (mmHg) | 1.011 | 0.9974 | 1.025 | 0.11198 |
Use of calcium containing phosphate binder (y vs. n) | 2.9523 | 0.9032 | 9.65 | 0.07321 |
Use of calcium channel blockers (y vs. n) | 1.9427 | 1.1263 | 3.351 | 0.01696 |
Model fit statistics (AIC-adding CAC) | 624.31 (final model with CAC) | |||
loglink (without CAC) | 305.16 | |||
logling (with CAC) | 333.41 | |||
Comparison with vs. without CAC score | Chisq 43.697 (p < 0.001) | |||
(C) Coronary Artery Calcification (CAC) Evaluated via the Volume Score | ||||
Variable | HR | Lower 0.95 | Upper 0.95 | Pr(>|z|) |
CAC-Volume score (log increase) | 1.7301 | 1.4469 | 2.069 | <0.001 |
Pulse wave velocity (m/s) | 1.0968 | 1.0082 | 1.193 | 0.03158 |
Age (years) | 1.0167 | 0.9967 | 1.037 | 0.10152 |
Diabetes (y vs. n) | 3.1042 | 1.4553 | 6.622 | 0.00338 |
ASCVD (y vs. n) | 0.5692 | 0.282 | 1.149 | 0.11584 |
Systolic blood pressure (mmHg) | 1.0103 | 0.9966 | 1.024 | 0.13968 |
Use of calcium containing phosphate binder (y vs. n) | 2.6029 | 0.8045 | 8.421 | 0.11029 |
Use of calcium channel blockers (y vs. n) | 1.6822 | 0.9516 | 2.974 | 0.07356 |
Model fit statistics (AIC-adding CAC) | 627.21 (final model with CAC) | |||
loglink (without CAC) | 305.6 | |||
logling (with CAC) | 327.45 | |||
Comparison with vs. without CAC score | Chisq 43.697 (p < 0.001) |
(A) Abdominal Aorta Calcification (AAC) Evaluated via the Kauppila Score | |||
Best Cutoff to Discriminate Expired vs. Alive Patients at Univariate Analyses | |||
14.5 (specificity 67.0%–sensitivity 78.3%) | |||
Metrics of discrimination-C-statistics (95%CI) | |||
without Kauppila | 0.730 (0.655–0.806) | ||
with Kauppila | 0.841 (0.782–0.900) | ||
Difference in C statistics (SD) | 0.110 (0.017); p-value for comparison < 0.001 | ||
Model fit statistics (AIC) | |||
without Kauppila | 222.78 | ||
with Kauppila | 186.81 | ||
Comparison between models (ANOVA) | LR (Chisq) 37.9; d.f. 1 (p < 0.001) | ||
Metrics of calibration (adding Kauppila) | Chi-square | Df | p-value |
Hosmer-Lemeshow goodness of fit | 8.032 | 8 | 0.43 |
Patient reclassification (adding Kauppila) | Coeff | 95%CI | p-value |
IDI (95%CI) | 0.177 | (0.123–0.232) | p < 0.001 |
NRI categorical (95%CI) | 0.246 | (0.130–0.361) | p < 0.001 |
NRI continuous (95%CI) | 0.921 | (0.623–1.220) | p < 0.001 |
(B) Coronary Artery Calcification (CAC) Evaluated via the Agatston Score | |||
Best cutoff to Discriminate Expired vs. Alive Patients at Univariate Analyses | |||
257.5 (specificity 80.9%–sensitivity 73.9%) | |||
Metrics of discrimination-C-statistics (95%CI) | |||
without CAC | 0.742 (0.669–0.8157) | ||
with CAC | 0.901 (0.854–0.947) | ||
Difference in C statistics (SD) | 0.158 (0.026); p-value for comparison p < 0.001 | ||
Model fit statistics (AIC) | |||
without CAC | 225.53 | ||
with CAC | 160.18 | ||
Comparison between models (ANOVA) | LR (Chisq) 67.3; d.f. 1 (p < 0.001) | ||
Metrics of calibration (adding CAC) | Chi-square | Df | p-value |
Hosmer-Lemeshow goodness of fit | 21.116 | 8 | 0.006 |
Patient reclassification (adding CAC) | Coeff | 95%CI | p-value |
IDI (95%CI) | 0.311 | (0.241–0.381) | p < 0.001 |
NRI categorical (95%CI) | 0.301 | (0.173–0.430) | p < 0.001 |
NRI continuous (95%CI) | 1.275 | (0.976–1.573) | p < 0.001 |
(C) Coronary Artery Calcification (CAC) Evaluated via the Volume Score | |||
Best Cutoff to Discriminate Expired vs. Alive Patients at Univariate Analyses | |||
66.5 (specificity 70.4%–sensitivity 81.2%) | |||
Metrics of discrimination-C-statistics (95%CI) | |||
without CAC | 0.776 (0.707–0.845) | ||
with CAC | 0.896 (0.848–0.943) | ||
Difference in C statistics (SD) | 0.120 (0.021); p-value for comparison < 0.001 | ||
Model fit statistics (AIC) | |||
without CAC | 214.03 | ||
with CAC | 162.83 | ||
Comparison between models (ANOVA) | LR (Chisq) 53.1; d.f. 1 (p < 0.001) | ||
Metrics of Calibration (adding CAC) | Chi-square | Df | p-value |
Hosmer-Lemeshow goodness of fit | 11.897 | 8 | 0.1558 |
Patient reclassification (adding CAC) | Coeff | 95%CI | p-value |
IDI (95%CI) | 0.241 | (0.177–0.305) | p < 0.001 |
NRI categorical (95%CI) | 0.301 | (0.173–0.429) | p < 0.001 |
NRI continuous (95%CI) | 1.072 | (0.774–1.370) | p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellasi, A.; Di Lullo, L.; Russo, D.; Ciarcia, R.; Magnocavallo, M.; Lavalle, C.; Ratti, C.; Fusaro, M.; Cozzolino, M.; Di Iorio, B.R. Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients. J. Clin. Med. 2021, 10, 376. https://doi.org/10.3390/jcm10030376
Bellasi A, Di Lullo L, Russo D, Ciarcia R, Magnocavallo M, Lavalle C, Ratti C, Fusaro M, Cozzolino M, Di Iorio BR. Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients. Journal of Clinical Medicine. 2021; 10(3):376. https://doi.org/10.3390/jcm10030376
Chicago/Turabian StyleBellasi, Antonio, Luca Di Lullo, Domenico Russo, Roberto Ciarcia, Michele Magnocavallo, Carlo Lavalle, Carlo Ratti, Maria Fusaro, Mario Cozzolino, and Biagio Raffaele Di Iorio. 2021. "Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients" Journal of Clinical Medicine 10, no. 3: 376. https://doi.org/10.3390/jcm10030376
APA StyleBellasi, A., Di Lullo, L., Russo, D., Ciarcia, R., Magnocavallo, M., Lavalle, C., Ratti, C., Fusaro, M., Cozzolino, M., & Di Iorio, B. R. (2021). Predictive Value of Measures of Vascular Calcification Burden and Progression for Risk of Death in Incident to Dialysis Patients. Journal of Clinical Medicine, 10(3), 376. https://doi.org/10.3390/jcm10030376