Carotid Beta Stiffness Association with Thyroid Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochemical and Hormone Assays
2.2. Arterial Structure and Function
2.3. Definition of Cardiovascular Risk Factors
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biondi, B. Mechanisms in endocrinology: Heart failure and thyroid dysfunction. Eur. J. Endocrinol. 2012, 167, 609–618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delitala, A.P.; Steri, M.; Pilia, M.G.; Dei, M.; Lai, S.; Delitala, G.; Schlessinger, D.; Cucca, F. Menopause modulates the association between thyrotropin levels and lipid parameters: The SardiNIA study. Maturitas 2016, 92, 30–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meisinger, C.; Ittermann, T.; Tiller, D.; Agger, C.; Nauck, M.; Schipf, S.; Wallaschofski, H.; Jorgensen, T.; Linneberg, A.; Thiery, J.; et al. Sex-specific associations between thyrotropin and serum lipid profiles. Thyroid 2014, 24, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Cappola, A.R.; Cooper, D.S. Subclinical Hypothyroidism: A Review. JAMA 2019, 322, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Wartofsky, L. Treatment with thyroid hormone. Endocr. Rev. 2014, 35, 433–512. [Google Scholar] [CrossRef]
- Skelton, C.L. The heart and hyperthyroidism. N. Engl. J. Med. 1982, 307, 1206–1208. [Google Scholar] [CrossRef]
- Delitala, A.P. Subclinical Hyperthyroidism and the Cardiovascular Disease. Horm. Metab. Res. 2017, 49, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, A.; Rovella, V.; Alunni Fegatelli, D.; Tesauro, M.; Gabriele, M.; Di Daniele, N. An operational definition of SHATS (Systemic Hemodynamic Atherosclerotic Syndrome): Role of arterial stiffness and blood pressure variability in elderly hypertensive subjects. Int. J. Cardiol. 2018, 263, 132–137. [Google Scholar] [CrossRef]
- Pettersson-Pablo, P.; Cao, Y.; Breimer, L.H.; Nilsson, T.K.; Hurtig-Wennlof, A. Pulse wave velocity, augmentation index, and carotid intima-media thickness are each associated with different inflammatory protein signatures in young healthy adults: The lifestyle, biomarkers and atherosclerosis study. Atherosclerosis 2020, 313, 150–155. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction: An individual participant meta-analysis of prospective observational data from 17,635 subjects. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Gomez-Marcos, M.A.; Gonzalez-Elena, L.J.; Recio-Rodriguez, J.I.; Rodriguez-Sanchez, E.; Magallon-Botaya, R.; Munoz-Moreno, M.F.; Patino-Alonso, M.C.; Garcia-Ortiz, L. Cardiovascular risk assessment in hypertensive patients with tests recommended by the European Guidelines on Hypertension. Eur. J. Prev. Cardiol. 2012, 19, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Milan, A.; Zocaro, G.; Leone, D.; Tosello, F.; Buraioli, I.; Schiavone, D.; Veglio, F. Current assessment of pulse wave velocity: Comprehensive review of validation studies. J. Hypertens. 2019, 37, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Franco, O.H.; Majiid, A.; Jolita, B.; Sergey, B.; Cheng, H.M.; Chen, C.H.; Choi, S.W.; Francesco, C.; De Buyzere, M.L.; et al. The relationship between the metabolic syndrome and arterial wall thickness: A mosaic still to be interpreted. Atherosclerosis 2016, 255, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Chen, C.H.; Yin, F.C.; Chih-Tai, T.; Spurgeon, H.A.; Lakatta, E.G. Functional correlates of central arterial geometric phenotypes. Hypertension 2001, 38, 1471–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Balado, J.; Maisterra, O.; Delgado, P. Non-invasive markers of vascular disease: An opportunity for early diagnosis of cognitive impairment. Atherosclerosis 2020, 312, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.Y.; Chambless, L.; Sharrett, A.R.; Virani, S.S.; Liu, X.; Tang, Z.; Boerwinkle, E.; Ballantyne, C.M.; Nambi, V. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2012, 43, 103–108. [Google Scholar] [CrossRef]
- van Sloten, T.T.; Schram, M.T.; van den Hurk, K.; Dekker, J.M.; Nijpels, G.; Henry, R.M.; Stehouwer, C.D. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: The Hoorn study. J. Am. Coll. Cardiol. 2014, 63, 1739–1747. [Google Scholar] [CrossRef] [Green Version]
- Zanoli, L.; Empana, J.P.; Perier, M.C.; Alivon, M.; Ketthab, H.; Castellino, P.; Laude, D.; Thomas, F.; Pannier, B.; Laurent, S.; et al. Increased carotid stiffness and remodelling at early stages of chronic kidney disease. J. Hypertens. 2019, 37, 1176–1182. [Google Scholar] [CrossRef]
- Lacolley, P.; Regnault, V.; Segers, P.; Laurent, S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol. Rev. 2017, 97, 1555–1617. [Google Scholar] [CrossRef]
- Scuteri, A.; Stuehlinger, M.C.; Cooke, J.P.; Wright, J.G.; Lakatta, E.G.; Anderson, D.E.; Fleg, J.L. Nitric oxide inhibition as a mechanism for blood pressure increase during salt loading in normotensive postmenopausal women. J. Hypertens. 2003, 21, 1339–1346. [Google Scholar] [CrossRef]
- Farasat, S.M.; Morrell, C.H.; Scuteri, A.; Ting, C.T.; Yin, F.C.; Spurgeon, H.A.; Chen, C.H.; Lakatta, E.G.; Najjar, S.S. Pulse pressure is inversely related to aortic root diameter implications for the pathogenesis of systolic hypertension. Hypertension 2008, 51, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutouyrie, P.; Bussy, C.; Lacolley, P.; Girerd, X.; Laloux, B.; Laurent, S. Association between local pulse pressure, mean blood pressure, and large-artery remodeling. Circulation 1999, 100, 1387–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagre, A.G.; Lekakis, J.P.; Papaioannou, T.G.; Papamichael, C.M.; Koutras, D.A.; Stamatelopoulos, S.F.; Alevizaki, M. Arterial stiffness is increased in subjects with hypothyroidism. Int. J. Cardiol. 2005, 103, 1–6. [Google Scholar] [CrossRef] [PubMed]
- del Busto-Mesa, A.; Cabrera-Rego, J.O.; Carrero-Fernandez, L.; Hernandez-Roca, C.V.; Gonzalez-Valdes, J.L.; de la Rosa-Pazos, J.E. Changes in arterial stiffness, carotid intima-media thickness, and epicardial fat after L-thyroxine replacement therapy in hypothyroidism. Endocrinol. Nutr. 2015, 62, 270–276. [Google Scholar] [CrossRef]
- Delitala, A.P.; Orru, M.; Filigheddu, F.; Pilia, M.G.; Delitala, G.; Ganau, A.; Saba, P.S.; Decandia, F.; Scuteri, A.; Marongiu, M.; et al. Serum free thyroxine levels are positively associated with arterial stiffness in the SardiNIA study. Clin. Endocrinol. 2015, 82, 592–597. [Google Scholar] [CrossRef]
- Delitala, A.P.; Steri, M.; Fiorillo, E.; Marongiu, M.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Adipocytokine correlations with thyroid function and autoimmunity in euthyroid sardinians. Cytokine 2018, 111, 189–193. [Google Scholar] [CrossRef]
- Delitala, A.P.; Scuteri, A.; Fiorillo, E.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Role of Adipokines in the Association between Thyroid Hormone and Components of the Metabolic Syndrome. J. Clin. Med. 2019, 8, 764. [Google Scholar] [CrossRef] [Green Version]
- Delitala, A.P.; Terracciano, A.; Fiorillo, E.; Orru, V.; Schlessinger, D.; Cucca, F. Depressive symptoms, thyroid hormone and autoimmunity in a population-based cohort from Sardinia. J. Affect. Disord. 2016, 191, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Scuteri, A.; Najjar, S.S.; Orru, M.; Usala, G.; Piras, M.G.; Ferrucci, L.; Cao, A.; Schlessinger, D.; Uda, M.; Lakatta, E.G. The central arterial burden of the metabolic syndrome is similar in men and women: The SardiNIA Study. Eur. Heart J. 2010, 31, 602–613. [Google Scholar] [CrossRef]
- American Diabetes, A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [Green Version]
- Delitala, A.P.; Scuteri, A.; Maioli, M.; Mangatia, P.; Vilardi, L.; Erre, G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva Med. 2019, 110, 530–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruickshank, K.; Riste, L.; Anderson, S.G.; Wright, J.S.; Dunn, G.; Gosling, R.G. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: An integrated index of vascular function? Circulation 2002, 106, 2085–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; Safar, M.E.; London, G.M. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999, 99, 2434–2439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Sloten, T.T.; Sedaghat, S.; Laurent, S.; London, G.M.; Pannier, B.; Ikram, M.A.; Kavousi, M.; Mattace-Raso, F.; Franco, O.H.; Boutouyrie, P.; et al. Carotid stiffness is associated with incident stroke: A systematic review and individual participant data meta-analysis. J. Am. Coll. Cardiol. 2015, 66, 2116–2125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selwaness, M.; van den Bouwhuijsen, Q.; Mattace-Raso, F.U.; Verwoert, G.C.; Hofman, A.; Franco, O.H.; Witteman, J.C.; van der Lugt, A.; Vernooij, M.W.; Wentzel, J.J. Arterial stiffness is associated with carotid intraplaque hemorrhage in the general population: The Rotterdam study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 927–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delitala, A.P.; Filigheddu, F.; Orru, M.; AlGhatrif, M.; Steri, M.; Pilia, M.G.; Scuteri, A.; Lobina, M.; Piras, M.G.; Delitala, G.; et al. No evidence of association between subclinical thyroid disorders and common carotid intima medial thickness or atherosclerotic plaque. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 1104–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volzke, H.; Robinson, D.M.; Schminke, U.; Ludemann, J.; Rettig, R.; Felix, S.B.; Kessler, C.; John, U.; Meng, W. Thyroid function and carotid wall thickness. J. Clin. Endocrinol. Metab. 2004, 89, 2145–2149. [Google Scholar] [CrossRef] [Green Version]
- Tatar, E.; Kircelli, F.; Asci, G.; Carrero, J.J.; Gungor, O.; Demirci, M.S.; Ozbek, S.S.; Ceylan, N.; Ozkahya, M.; Toz, H.; et al. Associations of triiodothyronine levels with carotid atherosclerosis and arterial stiffness in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 2240–2246. [Google Scholar] [CrossRef]
- Tatar, E.; Sezis Demirci, M.; Kircelli, F.; Gungor, O.; Yaprak, M.; Asci, G.; Basci, A.; Ozkahya, M.; Ok, E. The association between thyroid hormones and arterial stiffness in peritoneal dialysis patients. Int. Urol. Nephrol. 2012, 44, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, T.; Inaba, M.; Shirakawa, K.; Hiura, Y.; Tahara, H.; Kumeda, Y.; Ishikawa, T.; Ishimura, E.; Nishizawa, Y. Increased levels of C-reactive protein in hypothyroid patients and its correlation with arterial stiffness in the common carotid artery. Biomed. Pharmacother. 2007, 61, 167–172. [Google Scholar] [CrossRef]
- Nagasaki, T.; Inaba, M.; Kumeda, Y.; Ueda, M.; Hiura, Y.; Tahara, H.; Ishimura, E.; Onoda, N.; Ishikawa, T.; Nishizawa, Y. Decrease of arterial stiffness at common carotid artery in hypothyroid patients by normalization of thyroid function. Biomed. Pharmacother. 2005, 59, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Czarkowski, M.; Hilgertner, L.; Powalowski, T.; Radomski, D. The stiffness of the common carotid artery in patients with Graves’ disease. Int. Angiol. 2002, 21, 152–157. [Google Scholar] [PubMed]
- Fox, K.; Borer, J.S.; Camm, A.J.; Danchin, N.; Ferrari, R.; Lopez Sendon, J.L.; Steg, P.G.; Tardif, J.C.; Tavazzi, L.; Tendera, M.; et al. Resting heart rate in cardiovascular disease. J. Am. Coll. Cardiol. 2007, 50, 823–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, S.P.; Blankstein, R.; Al-Mallah, M.H.; Lima, J.A.; Bluemke, D.A.; Hundley, W.G.; Polak, J.F.; Blumenthal, R.S.; Nasir, K.; Blaha, M.J. Association of resting heart rate with carotid and aortic arterial stiffness: Multi-ethnic study of atherosclerosis. Hypertension 2013, 62, 477–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojamaa, K.; Klemperer, J.D.; Klein, I. Acute effects of thyroid hormone on vascular smooth muscle. Thyroid 1996, 6, 505–512. [Google Scholar] [CrossRef]
- Valcavi, R.; Menozzi, C.; Roti, E.; Zini, M.; Lolli, G.; Roti, S.; Guiducci, U.; Portioli, I. Sinus node function in hyperthyroid patients. J. Clin. Endocrinol. Metab. 1992, 75, 239–242. [Google Scholar]
Overt Hyperthyroidism | Subclinical Hyperthyroidism | Euthyroidism | Total | |
---|---|---|---|---|
n | 24 | 136 | 4686 | 4846 |
Age, yrs | 44.8 (31.3–64.4) | 57.7 (45.8–67.3) * | 43.2 (32.2–57.5) | 43.5 (32.5–58.0) |
BMI, Kg/m2 | 26.7 (22.6–29.9) | 26.6 (23.8–29.1) * | 25.1 (22.3–28.2) | 25.2 (22.3–28.3) |
Glycemia, mg/dL | 85 (79–94) | 90 (82–101) * | 86 (79–94) | 86 (79–94) |
Total cholesterol, mg/dL | 202 (168–232) | 212 (186–244) | 211 (184–239) | 211 (184–239) |
LDL, mg/dL | 119 (102–142) | 130 (111–155) | 128 (105–151) | 128 (106–151) |
HDL, mg/dL | 61 (52–73) | 65 (56–74) # | 63 (54–73) | 63 (54–73) |
Triglycerides, mg/dL | 68 (51–96) | 63 (48–88) # | 74 (52–108) | 73 (52–107) |
SBP | 125 (112–140) | 130 (119–145) * | 123 (113–137) | 123 (113–137) |
DBP | 70 (67–80) ## | 80 (73–86) * | 77 (70–85) | 77 (70–85) |
PP | 51 (43–62) ## | 50 (41–61) * | 47 (40–55) | 47 (40–55) |
Heart rate | 76 (71–87) ** | 67 (60–76) | 66 (59–74) | 66 (59–74) |
TSH, mUI/mL | 0.11 (0.01–0.04) ** | 0.24 (0.11–0.33) * | 1.56 (1.04–2.17) | 1.52 (1.00–2.15) |
FT4, ng/mL | 2.04 (1.90–2.35) ** | 1.33 (1.18–1.46) | 1.28 (1.17–1.41) | 1.29 (1.17–1.41) |
Female, n (%) | 16 (66.7%) | 85 (62.5%) | 2580 (55.1%) | 2681 (55.3%) |
Smoker, n (%) | 8 (33.3%) | 16 (11.8%) # | 986 (21.4%) | 1010 (20.8%) |
CV event, n (%) | 0 (0.0%) | 3 (2.2%) | 71 (1.5%) | 74 (1.5%) |
Diabetes, n (%) | 2 (8.3%) | 15 (11.0%) * | 211 (4.5%) | 228 (4.7%) |
Dyslipidemia, n (%) | 2 (8.3%) | 32 (22.1%) | 971 (20.7%) | 1005 (20.7%) |
Hypertension, n (%) | 8 (33.3%) | 58 (42.7%) * | 1396 (29.8%) | 1462 (30.2%) |
Overt Hyperthyroidism | Subclinical Hyperthyroidism | Euthyroidism | Total | |
---|---|---|---|---|
CCA stiffness | 6.87 (4.78–9.10) | 6.88 (5.54–8.96) * | 5.78 (4.58–7.66) | 5.81 (4.60–7.70) |
CCA strain, % | 8.51 (7.55–13.0) | 7.94 (6.00–10.4) * | 8.93 (6.82–11.3) | 8.89 (6.78–11.3) |
CCA CSA | 21.5 (18.8–24.6) | 22.0 (18.6–27.4) * | 19.6 (16.9–23.7) | 19.6 (17.0–23.8) |
CCA W/L | 0.215 (0.175–0.244) | 0.215 (0.196–0.240) * | 0.200 (0.177–0.223) | 0.200 (0.178–0.224) |
CCA stress | 19.9 (15.5–21.9) | 20.8 (17.8–24.8) * | 18.3 (15.8–21.6) | 18.4 (15.8–21.7) |
Beta Stiffness * | Strain * | W/L * | CSA * | Stress * | ||
---|---|---|---|---|---|---|
Model a | ||||||
FT4 | β | 0.026 | −0.025 | 0.010 | 0.010 | 0.013 |
p value | 0.041 | 0.048 | 0.472 | 0.319 | 0.303 | |
Model b | ||||||
FT4 | β | 0.186 | −0.109 | 0.060 | 0.018 | 0.072 |
p value | 0.006 | 0.103 | 0.438 | 0.748 | 0.305 | |
Heart rate | β | 0.389 | −0.342 | −0.001 | −0.143 | 0.031 |
p value | <0.001 | <0.001 | 0.992 | 0.812 | 0.679 | |
FT4-by-heart rate | β | 0.271 | 0.160 | −0.070 | −0.001 | 0.086 |
p value | 0.007 | 0.113 | 0.550 | 0.913 | 0.415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delitala, A.P.; Scuteri, A.; Fiorillo, E.; Orrù, V.; Lakatta, E.G.; Schlessinger, D.; Cucca, F. Carotid Beta Stiffness Association with Thyroid Function. J. Clin. Med. 2021, 10, 420. https://doi.org/10.3390/jcm10030420
Delitala AP, Scuteri A, Fiorillo E, Orrù V, Lakatta EG, Schlessinger D, Cucca F. Carotid Beta Stiffness Association with Thyroid Function. Journal of Clinical Medicine. 2021; 10(3):420. https://doi.org/10.3390/jcm10030420
Chicago/Turabian StyleDelitala, Alessandro P., Angelo Scuteri, Edoardo Fiorillo, Valeria Orrù, Edward G. Lakatta, David Schlessinger, and Francesco Cucca. 2021. "Carotid Beta Stiffness Association with Thyroid Function" Journal of Clinical Medicine 10, no. 3: 420. https://doi.org/10.3390/jcm10030420
APA StyleDelitala, A. P., Scuteri, A., Fiorillo, E., Orrù, V., Lakatta, E. G., Schlessinger, D., & Cucca, F. (2021). Carotid Beta Stiffness Association with Thyroid Function. Journal of Clinical Medicine, 10(3), 420. https://doi.org/10.3390/jcm10030420