Opioids and Sickle Cell Disease: From Opium to the Opioid Epidemic
Abstract
:1. Introduction
2. Historic Milestones: From Opium to Opioids
2.1. Mythology
2.2. Global Use of Opium
2.3. The Opium Wars
2.4. Pharmacologic Discoveries and the Opioid Epidemic
3. Classification of Opioids
4. Pharmacodynamics of Opioids
4.1. Mechanism of Action of Opioids
4.2. Side Effects of Opioids
5. Pharmacokinetics of Opioids
5.1. Metabolism of Opioids
5.2. Drug–Drug Interactions
5.3. The Opioid Epidemic and the Use of Opioids in SCD
6. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. Sickle Cell Disease. N. Engl. J. Med. 2017, 377, 302–305. [Google Scholar] [CrossRef]
- Hassell, K. Population Estimates of Sickle Cell Disease in the U.S. Am. J. Prev. Med. 2010, 38, S512–S521. [Google Scholar] [CrossRef] [PubMed]
- Ballas, S.K. THE EVOLVING PHARMACOTHERAPEUTIC LANDSCAPE FOR THE TREATMENT OF SICKLE CELL DISEASE. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020010. [Google Scholar] [CrossRef]
- Ferrante, M.F. Opioids. In Postoperative pain management; Ferrante, F.M., Vedeboncouer, T.R., Eds.; Churchill Livingstone: New York, NY, USA, 1993; pp. 145–209. [Google Scholar]
- Reisine, T.; Pasternak, G. Opioid analgesics and antagonists. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 9th ed.; Hardman, J.G., Limbird, L.E., Molinoff, P.B., Ruddon, R.W., Gilman, A.G., Eds.; McGraw Hill: New York, NY, USA, 1996; pp. 521–555. [Google Scholar]
- Ballas, S.K. Opioids and Sickle Cell Disease. In Interdisciplinaridade Na Saúde: Doença Falciforme; Ivo, M.L., Kikichi, B.A., de Padua Melo, E.S., Felix de Freitas, S.L., Eds.; Editoria UFMS: Campo Grande-MS, Brazil, 2016; pp. 51–128. [Google Scholar]
- Nicolaou, K.; Montagnon, T. Chapter 10: Morphine. In Molecules That Changed the World; Wiley-VCH: Weinheim, Germany, 2008; pp. 67–78. [Google Scholar]
- Halpern, J.H.; Blistein, D. Opium: How an Ancient Flower Shaped and Poisoned Our World; Hachette Books: New York, NY, USA, 2019. [Google Scholar]
- Drug Facts and Comparisons. Available online: https://pdf.wecabrio.com/drug-facts-and-comparisons-2012.pdf (accessed on 1 June 2012).
- Foley, K.M. The practical use of narcotic analgesics. Med. Clin. N. Am. 1982, 66, 1091–1104. [Google Scholar] [CrossRef]
- Foley, K.M. The treatment of cancer pain. N. Engl. J. Med. 1985, 313, 84–95. [Google Scholar] [CrossRef]
- Inturrisi, C.E.; Lipman, A.G. Opioid analgesics. In Bonica’s Management of Pain, 4th ed.; Fishman, S.M., Ballantyne, J.C., Rathmell, J.P., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2010; pp. 1172–1187. [Google Scholar]
- Jaffe, J.H.; Martin, W.R. Opioid analgesics and antagonists. In Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 8th ed.; Goodman, L.S., Gilman, A., Rall, T.W., Nies, A.S., Taylor, B., Eds.; Pergamon Press: New York, NY, USA, 1990; pp. 485–521. [Google Scholar]
- Koyyalagunta, D.; Waldman, S.D. Opioid analgesics, 2nd edition. In Pain Management; Walldman, S.D., Ed.; Elsevier Saunders: Philadelphia, PA, USA, 2011; pp. 890–912. [Google Scholar]
- Schug, S.A.; Gandham, N. Opioids: Clinical use. In Wall and Melzack’s Textbook of Pain, 5th ed.; Mcmahon, S.B., Koltzenburg, M., Eds.; Elsevier Churchill Livingstone: Philadelphia, PA, USA, 2006; pp. 443–457. [Google Scholar]
- Wall, P.D.; Melzack, R. Textbook of Pain, 3rd ed.; Churchill Livingstone: New York, NY, USA, 1994. [Google Scholar]
- Ballas, S.K. Sickle Cell Pain, 2nd ed.; International Association for the Study of Pain: Washington, DC, USA, 2014. [Google Scholar]
- Cepeda, M.S.; Coplan, P.M.; Kopper, N.W.; Maziere, J.Y.; Wedin, G.P.; Wallace, L.E. ER/LA Opioid Analgesics REMS: Overview of Ongoing Assessments of Its Progress and Its Impact on Health Outcomes. Pain Med. 2017, 18, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, D.K.; Garrison, J.C. Pharmacodynamics: Molecular mechanisms of drug action. In Goodman & Gilman’s the Pharmacological Basis of Therapeutics, 12th ed.; Brunton, L., Chabner, B., Knollman, B., Eds.; McGraw Hill Health: New York, NY, USA, 2011; pp. 41–72. [Google Scholar]
- Waldhoer, M.; Bartlett, S.E.; Whistler, J.L. Opioid receptors. Annu. Rev. Biochem. 2004, 73, 953–990. [Google Scholar] [CrossRef] [Green Version]
- Pert, C.B.; Snyder, S.H. Opiate receptor: Demonstration in nervous tissue. Science 1973, 179, 1011–1014. [Google Scholar] [CrossRef]
- Cox, B.M. Recent developments in the study of opioid receptors. Mol. Pharmacol. 2013, 83, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the delta-opioid receptor bound to naltrindole. Nature 2012, 485, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 2012, 485, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.A.; Liu, W.; Chun, E.; Katritch, V.; Wu, H.; Vardy, E.; Huang, X.P.; Trapella, C.; Guerrini, R.; Calo, G.; et al. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 2012, 485, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wacker, D.; Mileni, M.; Katritch, V.; Han, G.W.; Vardy, E.; Liu, W.; Thompson, A.A.; Huang, X.P.; Carroll, F.I.; et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 2012, 485, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Leysen, J.E.; Gommeren, W.; Niemegeers, C.J. Sufentanil, a superior ligand for mu-opiate receptors: Binding properties and regional distribution in rat brain and spinal cord. Eur. J. Pharmacol. 1983, 87, 209–225. [Google Scholar] [CrossRef]
- Kosterlitz, W.H. Opiate actions in guinea pig ileum and mouse vas deferens. Neurosci. Res. Bull. 1975, 13, 68–70. [Google Scholar]
- Martin, W.R.; Eades, C.G.; Thompson, J.A.; Huppler, R.E.; Gilbert, P.E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 1976, 197, 517–532. [Google Scholar]
- Herz, A.; Teschemacher, H.J. Activities and sites of antinociceptive action of morphine-like analgesics and kinetics of distribution following intravenous intracerebral and intraventricular application. Adv. Drug. Res. 1971, 6, 79. [Google Scholar]
- Simon, E.J.; Hiller, J.M. The opiate receptors. Annu. Rev. Pharmacol. Toxicol. 1978, 18, 371–394. [Google Scholar] [CrossRef]
- Snyder, S.H. Opiate receptors in the brain. N. Engl. J. Med. 1977, 296, 266–271. [Google Scholar] [CrossRef]
- Servick, K. Survivors’ burden. Science 2020, 368, 359. [Google Scholar] [CrossRef]
- Yaksh, T.L.; Wallace, M.S. Opioid, analgesia, and pain management. In Goodman and Gilman’s the Pharmacological Basis of Therapeutics; Brunton, L., Chabner, B., Knollman, B., Eds.; McGraw Hill: New York, NY, USA, 2011; pp. 481–525. [Google Scholar]
- Ballas, S.K. How I Treat Acute and Persistent Sickle Cell Pain. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020064. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.W. Hypogonadism in men consuming sustained-action oral opioids. J. Pain 2002, 3, 377–384. [Google Scholar] [CrossRef] [PubMed]
- El-Hazmi, M.A.; Bahakim, H.M.; al-Fawaz, I. Endocrine functions in sickle cell anaemia patients. J. Trop. Pediat. 1992, 38, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Fraser, L.A.; Morrison, D.; Morley-Forster, P.; Paul, T.L.; Tokmakejian, S.; Larry Nicholson, R.; Bureau, Y.; Friedman, T.C.; Van Uum, S.H. Oral opioids for chronic non-cancer pain: Higher prevalence of hypogonadism in men than in women. Exp. Clin. Endocrinol. Diabetes 2009, 117, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Katz, N.; Mazer, N.A. The impact of opioids on the endocrine system. Clin. J. Pain 2009, 25, 170–175. [Google Scholar] [CrossRef]
- Ballas, S.K.; Lobo, C.L.d.C.; Cavalcanti, W.E. Dental Complications of Sickle Cell Disease. J. Interdiscipl. Med. Dent. Sci. 2014, 2, 6. [Google Scholar] [CrossRef]
- Lo, P.C.; Tsai, Y.T.; Lin, S.K.; Lai, J.N. Risk of asthma exacerbation associated with nonsteroidal anti-inflammatory drugs in childhood asthma: A nationwide population-based cohort study in Taiwan. Medicine (Baltimore) 2016, 95, e5109. [Google Scholar] [CrossRef]
- Kowalski, M.L.; Makowska, J.S. Seven steps to the diagnosis of NSAIDs hypersensitivity: How to apply a new classification in real practice? Allergy Asthma Immunol. Res. 2015, 7, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Eisele, J.H.; Grigsby, E.J.; Dea, G. Clonazepam treatment of myoclonic contractions associated with high-dose opioids: Case report. Pain 1992, 49, 231–232. [Google Scholar] [CrossRef]
- Burma, N.E.; Kwok, C.H.; Trang, T. Therapies and mechanisms of opioid withdrawal. Pain Manag. 2017, 7, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Kenna, G.A.; Nielsen, D.M.; Mello, P.; Schiesl, A.; Swift, R.M. Pharmacotherapy of dual substance abuse and dependence. CNS Drugs 2007, 21, 213–237. [Google Scholar] [CrossRef] [PubMed]
- NIDA. FDA Approves First Medication to Reduce Opioid Withdrawal Symptoms. Available online: https://www.drugabuse.gov/news-events/news-releases/2018/05/fda-approves-first-medication-to-reduce-opioid-withdrawal-symptoms (accessed on 14 January 2021).
- Gish, E.C.; Miller, J.L.; Honey, B.L.; Johnson, P.N. Lofexidine, an {alpha}2-receptor agonist for opioid detoxification. Ann. Pharmacother. 2010, 44, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Gorodetzky, C.W.; Walsh, S.L.; Martin, P.R.; Saxon, A.J.; Gullo, K.L.; Biswas, K. A phase III, randomized, multi-center, double blind, placebo controlled study of safety and efficacy of lofexidine for relief of symptoms in individuals undergoing inpatient opioid withdrawal. Drug Alcohol. Depend. 2017, 176, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Law, F.D.; Diaper, A.M.; Melichar, J.K.; Coulton, S.; Nutt, D.J.; Myles, J.S. Buprenorphine/naloxone versus methadone and lofexidine in community stabilisation and detoxification: A randomised controlled trial of low dose short-term opiate-dependent individuals. J. Psychopharmacol. 2017, 31, 1046–1055. [Google Scholar] [CrossRef]
- Koppert, W.; Schmelz, M. The impact of opioid-induced hyperalgesia for postoperative pain. Best Pract. Res. Clin. Anaesthesiol. 2007, 21, 65–83. [Google Scholar] [CrossRef]
- Martyn, J.A.J.; Mao, J.; Bittner, E.A. Opioid Tolerance in Critical Illness. N. Engl. J. Med. 2019, 380, 365–378. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Mischel, R.A.; Bhave, S.; Komla, E.; Cho, A.; Huang, C.; Dewey, W.L.; Akbarali, H.I. The effect of gut microbiome on tolerance to morphine mediated antinociception in mice. Sci. Rep. 2017, 7, 42658. [Google Scholar] [CrossRef] [Green Version]
- Akbarali, H.I.; Dewey, W.L. The gut-brain interaction in opioid tolerance. Curr. Opin. Pharmacol. 2017, 37, 126–130. [Google Scholar] [CrossRef]
- Mischel, R.A.; Dewey, W.L.; Akbarali, H.I. Tolerance to Morphine-Induced Inhibition of TTX-R Sodium Channels in Dorsal Root Ganglia Neurons Is Modulated by Gut-Derived Mediators. iScience 2018, 2, 193–209. [Google Scholar] [CrossRef] [Green Version]
- CNS Forum. Available online: www.CNSForum.com (accessed on 1 January 2002).
- De Vos, J.W.; Ufkes, J.G.; Kaplan, C.D.; Tursch, M.; Krause, J.K.; van Wilgenburg, H.; Woodcock, B.G.; Staib, A.H. L-Methadone and D,L-methadone in methadone maintenance treatment: A comparison of therapeutic effectiveness and plasma concentrations. Eur. Addict. Res. 1998, 4, 134–141. [Google Scholar] [CrossRef]
- Wedekind, D.; Jacobs, S.; Karg, I.; Luedecke, C.; Schneider, U.; Cimander, K.; Baumann, P.; Ruether, E.; Poser, W.; Havemann-Reinecke, U. Psychiatric comorbidity and additional abuse of drugs in maintenance treatment with L- and D,L-methadone. World J. Biol. Psychiatry 2010, 11, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tao, G.J.; Hu, L.; Qu, J.; Han, Y.; Zhang, G.; Qian, Y.; Jiang, C.Y.; Liu, W.T. Lidocaine alleviates morphine tolerance via AMPK-SOCS3-dependent neuroinflammation suppression in the spinal cord. J. Neuroinflamm. 2017, 14, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swe, K.M.; Abas, A.B.; Bhardwaj, A.; Barua, A.; Nair, N.S. Zinc supplements for treating thalassaemia and sickle cell disease. Cochrane Database Syst. Rev. 2013, 6, CD009415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Shu, Y.; Ji, Q.; Liu, J.; He, X.; Li, W. Attenuation of morphine analgesic tolerance by rosuvastatin in naive and morphine tolerance rats. Inflammation 2015, 38, 134–141. [Google Scholar] [CrossRef]
- Deng, X.T.; Han, Y.; Liu, W.T.; Song, X.J. B Vitamins Potentiate Acute Morphine Antinociception and Attenuate the Development of Tolerance to Chronic Morphine in Mice. Pain Med. 2017, 18, 1961–1974. [Google Scholar] [CrossRef]
- Wang, Y.; Barker, K.; Shi, S.; Diaz, M.; Mo, B.; Gutstein, H.B. Blockade of PDGFR-beta activation eliminates morphine analgesic tolerance. Nat. Med. 2012, 18, 385–387. [Google Scholar] [CrossRef] [Green Version]
- Donica, C.L.; Cui, Y.; Shi, S.; Gutstein, H.B. Platelet-derived growth factor receptor-beta antagonism restores morphine analgesic potency against neuropathic pain. PLoS One 2014, 9, e97105. [Google Scholar] [CrossRef]
- Youssef, F.; Pater, A.; Shehata, M. Opioid-induced Hyperalgesia. J. Pain Relief 2015, 4, 183–185. [Google Scholar]
- Benjamin, L.J.; Payne, R. Pain in sickle cell disease: A multidimensional construct. In Renaissance of Sickle Cell Disease Research in the Genomic Era; Pace, B., Ed.; Imperial College Press: London, UK, 2007; pp. 99–118. [Google Scholar]
- De Montalembert, M.; Ferster, A.; Colombatti, R.; Rees, D.C.; Gulbis, B. ENERCA clinical recommendations for disease management and prevention of complications of sickle cell disease in children. Am. J. Hematol. 2011, 86, 72–75. [Google Scholar] [CrossRef]
- Breedlove, S.M.; Watson, N.V. Behavioral Neuroscience, 8th ed.; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Labbe, E.; Herbert, D.; Haynes, J. Physicians’ attitude and practices in sickle cell disease pain management. J. Palliat. Care 2005, 21, 246–251. [Google Scholar] [CrossRef]
- Payne, R. Pain management in sickle cell disease. Rationale and techniques. Ann. N. Y. Acad. Sci. 1989, 565, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.J.; Berger, B.L.; A Lief, P.; Wollack, A.; Papper, E.M.; Brodie, B.B. The physiological disposition and fate of meperidine (demerol) in man and a method for its estimation in plasma. J. Pharmacol. Exp. Ther. 1955, 114, 289–298. [Google Scholar] [PubMed]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Klein, T.E.; Shen, D.D.; Callaghan, J.T.; Kharasch, E.D.; Skaar, T.C. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for Codeine Therapy in the Context of Cytochrome P450 2D6 (CYP2D6) Genotype. Clin. Pharmacol. Ther. 2011, 91, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Neafsey, P.; Ginsberg, G.L.; Hattis, D.; Sonawane, B. Genetic Polymorphism in Cytochrome P450 2D6 (CYP2D6): Population Dis-tribution of CYP2D6 Activity. J. Toxicol. Environ. Health Part B 2009, 12, 334–361. [Google Scholar] [CrossRef]
- Inturrisi, C.E.; Umans, J.G. Meperidine biotransformation and central nervous system toxicity in animals and humans. In Opioid Analgesics in the Management of Clinical Pain; Foley, K.M., Inturrisi, C.E., Eds.; Advances in Pain Research and Therapy; Raven Press: New York, NY, USA, 1986; Volume 8, pp. 143–154. [Google Scholar]
- Munetz, M.R.; Cornes, C.L. Distinguishing akathisia and tardive dyskinesia: A review of the literature. J. Clin. Psychopharmacol. 1983, 3, 343–350. [Google Scholar] [CrossRef]
- Abrams, D.; Couey, P.; Dixit, N.; Sagi, V.; Hagar, W.; Vichinsky, E.; Kelly, M.E.; Connett, J.E.; Gupta, K. Effect of Inhaled Cannabis for Pain in Adults With Sickle Cell Disease. JAMA Netw. Open 2020, 3, e2010874. [Google Scholar] [CrossRef]
- White, C.M. Pharmacologic and clinical assessment of kratom: An update. Am. J. Health Syst. Pharm. 2019, 76, 1915–1925. [Google Scholar] [CrossRef]
- Ruta, N.S.; Ballas, S.K. The Opioid Drug Epidemic and Sickle Cell Disease: Guilt by Association. Pain Med. 2016, 17, 1793–1798. [Google Scholar] [CrossRef] [Green Version]
- Ballas, S.K.; Kanter, J.; Agodoa, I.; Howard, R.; Wade, S.; Noxon, V.; Dampier, C. Opioid utilization patterns in United States individuals with sickle cell disease. Am. J. Hematol. 2018, 93, E345–E347. [Google Scholar] [CrossRef] [Green Version]
Natural Morphine, Codeine, Papaverine, Thebaine |
Semi-synthetic Heroin, Hydrocodone, Hydromorphone, Oxycodone, Oxymorphone, Naloxone, Naltrexone, Nalmefene Nalbuphine, Buprenorphine, Butorphanol |
Synthetic Meperidine, Fentanyl, Methadone, Levorphanol |
Endogenous Enkaphelin and Endorphin |
Agonists Naturally occurring (opium alkaloids) Codeine Morphine Papaverine Semisynthetic opioids Hydrocodone (Hycodan, Vicodin, Lortab, Tussionex) Oxycodone (Percocet, Percodan, Roxicet, Roxicodone, Tylox, Oxycontin) Hydromorphone (Dilaudid) Oxymorphone (Numorphan **, Opana, Opana ER) Synthetic opioids Morphinans Levorphanol (Levo-Dromoran) Phenylpiperidines Meperidine (Demerol, Pethidine) Alfentanil and Remifentanil Fentanyl (Sublimaze, Durgesic, Actiq, Fentora, Lazanda, Onsolis) Sufentanil Diphenylheptanes Methadone (Dolophine) Propoxyphene HCl (Darvon, Darvocet, Wygesic) * Propoxyphene Napsylate (Darvon N) * Partial agonists Buprenorphine (Buprenex, Subutex, Butrans, Suboxone) Dezocine (Dalgan) † Mixed agonists-antagonists Pentazocine (Talwin, Talwin NX) Nalbuphine (Nubain **) Butorphanol (Stadol ††) Other Tapentadol (Nucynta) |
|
|
|
Opioid | Phase I CYP450 | Phase II Glucuronidation | Active Metabolite | Inactive Metabolite | Non-Opioid Active Metabolite |
---|---|---|---|---|---|
Morphine | None | Yes | Hydromorphone | Normorphine | M6G, M3G |
Hydromorphone | None | Yes | None | Minor Metabolites | HM3G |
Oxymorphone | None | Yes | None | Oxy3G | 6-OH-Oxymorphone |
Codeine | CYP2D6 | None | Morphine, Hydrocodone | Norcodeine | None |
Hydrocodone | CYP2D6, 3A4 | None | Hydromorphone | Norhydrocodone | None |
Oxycodone | CYP2D6, 3A4 | None | Oxymorphone | None | Noroxycodone |
Fentanyl | CYP3A4 | None | None | Norfentanyl | None |
Methadone | CYP2D6, 3A4, 2C8, 2C9, 2C19,2B6, 1A2 | None | None | 2-C2H5-5-CH3-3,3diphenypyrrolidine | None |
Tramadol | CYP2D6, 3A4, 2B6 | None | None | Nortramadol | O-desmethyl-tramadol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ballas, S.K. Opioids and Sickle Cell Disease: From Opium to the Opioid Epidemic. J. Clin. Med. 2021, 10, 438. https://doi.org/10.3390/jcm10030438
Ballas SK. Opioids and Sickle Cell Disease: From Opium to the Opioid Epidemic. Journal of Clinical Medicine. 2021; 10(3):438. https://doi.org/10.3390/jcm10030438
Chicago/Turabian StyleBallas, Samir K. 2021. "Opioids and Sickle Cell Disease: From Opium to the Opioid Epidemic" Journal of Clinical Medicine 10, no. 3: 438. https://doi.org/10.3390/jcm10030438
APA StyleBallas, S. K. (2021). Opioids and Sickle Cell Disease: From Opium to the Opioid Epidemic. Journal of Clinical Medicine, 10(3), 438. https://doi.org/10.3390/jcm10030438