Breathing Re-Education and Phenotypes of Sleep Apnea: A Review
Abstract
:1. Introduction
1.1. Breathing Re-Education
- Establishing full-time nasal breathing during wakefulness and sleep.
- Correcting the resting posture of the tongue.
- Slowing the respiratory rate.
- Using breath-hold time (BHT) to establish chemosensitivity to CO2.
- Restoring diaphragm function and the lateral expansion of the lower ribs.
- Reducing the minute volume towards normal to regulate levels of CO2.
- Take a normal breath in and out through your nose;
- Pinch your nose with your fingers to hold your breath;
- As you hold your breath, move your body or gently nod your head up and down;
- Hold your breath for as long as you can—until you feel a strong air hunger;
- Let go of your nose and breathe through it as calmly as possible.
1.2. Prevalence of OSAHS
1.3. The Four Phenotypes/Endotypes of OSAHS
1.3.1. Pharyngeal Critical Closing Pressure (Pcrit)
1.3.2. Loop Gain
1.3.3. Upper Airway Recruitment
1.3.4. Arousal Threshold
1.4. Sex Differences in OSAS Prevalence
2. Applying the Three Dimensions of Breathing Re-Education to Each of the Four Phenotypes of OSAHS
2.1. Breathing Re-Education and Pcrit
2.2. Breathing Re-Education and Loop Gain
2.3. Breathing Re-Education, Myofunctional Therapy and Upper Airway Recruitment
2.4. Breathing Re-Education and Arousal Threshold
3. Discussion
4. Conclusions
- Nasal breathing during rest and sleep.
- Practicing reduced breathing volume during wakefulness to expose the body to slightly elevated carbon dioxide in order to reduce the chemosensitivity to CO2.
- Low breathing with greater amplitudes of the diaphragm and improved respiratory muscle strength.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lal, C.; Strange, C.; Bachman, D. Neurocognitive impairment in obstructive sleep apnea. Chest 2012, 141, 1601–1610. [Google Scholar] [CrossRef]
- Foldvary-Schaefer, N.R.; Waters, T.E. Sleep-Disordered Breathing. Continuum 2017, 23, 1093–1116. [Google Scholar] [CrossRef]
- Yamauchi, M.; Tamaki, S.; Yoshikawa, M.; Ohnishi, Y.; Nakano, H.; Jacono, F.J.; Loparo, K.A.; Strohl, K.P.; Kimura, H. Differences in breathing patterning during wakefulness in patients with mixed apnea-dominant vs. obstructive-dominant sleep apnea. Chest 2011, 140, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Courtney, R. Breathing retraining in sleep apnoea: A review of approaches and potential mechanisms. Sleep Breath 2020, 24, 1315–1325. [Google Scholar] [CrossRef]
- Messineo, L.; Taranto-Montemurro, L.; Azarbarzin, A.; Oliveira Marques, M.D.; Calianese, N.; White, D.P.; Wellman, A.; Sands, S.A. Breath-holding as a means to estimate the loop gain contribution to obstructive sleep apnoea. J. Physiol. 2018, 596, 4043–4056. [Google Scholar] [CrossRef] [Green Version]
- Jack, S.; Rossiter, H.B.; Pearson, M.G.; Ward, S.A.; Warburton, C.J.; Whipp, B.J. Ventilatory responses to inhaled carbon dioxide, hypoxia, and exercise in idiopathic hyperventilation. Am. J. Respir. Crit. Care Med. 2004, 170, 118–125. [Google Scholar] [CrossRef]
- Jones, M.; Harvey, A.; Marston, L.; O’Connell, N.E. Breathing exercises for dysfunctional breathing/hyperventilation syndrome in adults. Cochrane Database Syst. Rev. 2013, 5, CD009041. [Google Scholar] [CrossRef] [Green Version]
- Courtney, R. Multi-dimensional model of dysfunctional breathing and integrative breathing therapy–commentary on the functions of breathing and its dysfunctions and their relationship to breathing therapy. J. Yoga Phys. Ther. 2016, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, I. Breathing, voice, and movement therapy: Applications to breathing disorders. Biofeedback Self Regul. 1994, 19, 141–153. [Google Scholar] [CrossRef]
- Faust-Christmann, C.A.; Taetz, B.; Zolynski, G.; Zimmermann, T.; Bleser, G. A Biofeedback App to Instruct Abdominal Breathing (Breathing-Mentor): Pilot Experiment. JMIR Mhealth Uhealth 2019, 7, e13703. [Google Scholar] [CrossRef]
- Bruton, A.; Holgate, S.T. Hypocapnia and asthma: A mechanism for breathing retraining? Chest 2005, 127, 1808–1811. [Google Scholar] [CrossRef] [Green Version]
- Courtney, R. Strengths, Weaknesses, and Possibilities of the Buteyko Breathing Method. Biofeedback 2008, 36, 59–63. [Google Scholar]
- McKeown, P. The Buteyko technique: News. J. Dent. Sleep Med. 2019, 6, 2. [Google Scholar] [CrossRef]
- Russo, M.A.; Santarelli, D.M.; O’Rourke, D. The physiological effects of slow breathing in the healthy human. Breathe 2017, 13, 298–309. [Google Scholar] [CrossRef]
- Bilo, G.; Revera, M.; Bussotti, M.; Bonacina, D.; Styczkiewicz, K.; Caldara, G.; Giglio, A.; Faini, A.; Giuliano, A.; Lombardi, C.; et al. Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics. PLoS ONE 2012, 7, e49074. [Google Scholar] [CrossRef]
- Ainsworth, B.; Bruton, A.; Thomas, M.; Yardley, L. One year later: Highlighting the challenges and opportunities in disseminating a breathing-retraining digital behaviour change intervention. Digit. Health 2020, 6, 2055207620936441. [Google Scholar] [CrossRef] [PubMed]
- Bruton, A.; Lee, A.; Yardley, L.; Raftery, J.; Arden-Close, E.; Kirby, S.; Zhu, S.; Thiruvothiyur, M.; Webley, F.; Taylor, L.; et al. Physiotherapy breathing retraining for asthma: A randomised controlled trial. Lancet Respir. Med. 2018, 6, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Santino, T.A.; Chaves, G.S.; Freitas, D.A.; Fregonezi, G.A.; Mendonça, K.M. Breathing exercises for adults with asthma. Cochrane Database Syst. Rev. 2020, 3, CD001277. [Google Scholar] [CrossRef] [PubMed]
- Vagedes, J.; Helmert, E.; Kuderer, S.; Vagedes, K.; Wildhaber, J.; Andrasik, F. The Buteyko breathing technique in children with asthma: A randomized controlled pilot study. Complement. Ther. Med. 2020, 23, 102582. [Google Scholar] [CrossRef]
- Heinzer, R.; Vat, S.; Marques-Vidal, P.; Marti-Soler, H.; Andries, D.; Tobback, N.; Mooser, V.; Preisig, M.; Malhotra, A.; Waeber, G.; et al. Prevalence of sleep-disordered breathing in the general population: The HypnoLaus study. Lancet Respir. Med. 2015, 3, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Osman, A.M.; Carter, S.G.; Carberry, J.C.; Eckert, D.J. Obstructive sleep apnea: Current perspectives. Nat. Sci. Sleep 2018, 10, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Senaratna, C.V.; Perret, J.L.; Lodge, C.J.; Lowe, A.J.; Campbell, B.E.; Matheson, M.C.; Hamilton, G.S.; Dharmage, S.C. Prevalence of obstructive sleep apnea in the general population: A systematic review. Sleep Med. Rev. 2017, 34, 70–81. [Google Scholar] [CrossRef]
- Subramani, Y.; Singh, M.; Wong, J.; Kushida, C.A.; Malhotra, A.; Chung, F. Understanding Phenotypes of Obstructive Sleep Apnea: Applications in Anesthesia, Surgery, and Perioperative Medicine. Anesth. Analg. 2017, 124, 179–191. [Google Scholar] [CrossRef]
- Appleton, S.L.; Vakulin, A.; McEvoy, R.D.; Vincent, A.; Martin, S.A.; Grant, J.F.; Taylor, A.W.; Antic, N.A.; Catcheside, P.G.; Wittert, G.A.; et al. Undiagnosed obstructive sleep apnea is independently associated with reductions in quality of life in middle-aged, but not elderly men of a population cohort. Sleep Breath 2015, 19, 1309–1316. [Google Scholar] [CrossRef] [PubMed]
- Kapur, V.; Strohl, K.P.; Redline, S.; Iber, C.; O’Connor, G.; Nieto, J. Underdiagnosis of sleep apnea syndrome in U.S. communities. Sleep Breath 2002, 6, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.; Hillman, D.R.; Cooper, M.N.; Ward, K.L.; Hunter, M.; Cullen, S.; James, A.; Palmer, L.J.; Mukherjee, S.; Eastwood, P. High prevalence of undiagnosed obstructive sleep apnoea in the general population and methods for screening for representative controls. Sleep Breath 2013, 17, 967–973. [Google Scholar] [CrossRef]
- Weaver, T.E.; Grunstein, R.R. Adherence to continuous positive airway pressure therapy: The challenge to effective treatment. Proc. Am. Thorac. Soc. 2008, 5, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Rowland, S.; Aiyappan, V.; Hennessy, C.; Catcheside, P.; Chai-Coezter, C.L.; McEvoy, R.D.; Antic, N.A. Comparing the Efficacy, Mask Leak, Patient Adherence, and Patient Preference of Three Different CPAP Interfaces to Treat Moderate-Severe Obstructive Sleep Apnea. J. Clin. Sleep Med. 2018, 14, 101–108. [Google Scholar] [CrossRef]
- Tefft, B.C. Prevalence of Motor Vehicle Crashes Involving Drowsy Drivers, United States, 2009–2013; AAA Foundation for Traffic Safety: Washington, DC, USA, 2014. [Google Scholar]
- Basyuni, S.; Barabas, M.; Quinnell, T. An update on mandibular advancement devices for the treatment of obstructive sleep apnoea hypopnoea syndrome. J. Thorac. Dis. 2018, 10, S48–S56. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.D.; Gleadhill, I.C.; Cinnamond, M.J.; Gabbey, J.; Burden, D.J. Mandibular advancement appliances and obstructive sleep apnoea: A randomized clinical trial. Eur. J. Orthod. 2002, 24, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Heidsieck, D.S.P.; Koolstra, J.H.; de Ruiter, M.H.T.; Hoekema, A.; de Lange, J. Biomechanical effects of a mandibular advancement device on the temporomandibular joint. J. Craniomaxillofac. Surg. 2018, 46, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Borrie, F.; Keightley, A.; Blacker, S.; Serrant, P. Mandibular advancement appliances for treating sleep apnoea/hypopnoea syndrome. Evid. Based Dent. 2013, 14, 27–28. [Google Scholar] [CrossRef] [PubMed]
- Eckert, D.J.; White, D.P.; Jordan, A.S.; Malhotra, A.; Wellman, A. Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am. J. Respir. Crit. Care Med. 2013, 188, 996–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckert, D.J. Phenotypic approaches to obstructive sleep apnoea—New pathways for targeted therapy. Sleep Med. Rev. 2018, 37, 45–59. [Google Scholar] [CrossRef]
- Carberry, J.C.; Amatoury, J.; Eckert, D.J. Personalized Management Approach for OSA. Chest 2018, 153, 744–755. [Google Scholar] [CrossRef]
- Light, M.; Owens, R.L.; Schmickl, C.N.; Malhotra, A. Precision Medicine for Obstructive Sleep Apnea. Sleep Med. Clin. 2019, 14, 391–398. [Google Scholar] [CrossRef]
- Malhotra, A.; Mesarwi, O.; Pepin, J.L.; Owens, R.L. Endotypes and phenotypes in obstructive sleep apnea. Curr. Opin. Pulm. Med. 2020, 26, 609–614. [Google Scholar] [CrossRef]
- Coughlin, K.; Davies, G.M.; Gillespie, M.B. Phenotypes of Obstructive Sleep Apnea. Otolaryngol. Clin. N. Am. 2020, 53, 329–338. [Google Scholar] [CrossRef]
- Bosi, M.; De Vito, A.; Eckert, D.; Steier, J.; Kotecha, B.; Vicini, C.; Poletti, V. Qualitative Phenotyping of Obstructive Sleep Apnea and Its Clinical Usefulness for the Sleep Specialist. Int. J. Environ. Res. Public Health 2020, 17, 2058. [Google Scholar] [CrossRef] [Green Version]
- Gleadhill, I.C.; Schwartz, A.R.; Schubert, N.; Wise, R.A.; Permutt, S.; Smith, P.L. Upper airway collapsibility in snorers and in patients with obstructive hypopnea and apnea. Am. Rev. Respir. Dis. 1991, 143, 1300–1303. [Google Scholar] [CrossRef]
- Hillman, D.R.; Platt, P.R.; Eastwood, P.R. The upper airway during anaesthesia. Br. J. Anaesth. 2003, 91, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlisle, T.; Ward, N.R.; Atalla, A.; Cowie, M.R.; Simonds, A.K.; Morrell, M.J. Investigation of the link between fluid shift and airway collapsibility as a mechanism for obstructive sleep apnea in congestive heart failure. Physiol. Rep. 2017, 5, e12956. [Google Scholar] [CrossRef] [PubMed]
- Deacon, N.L.; Jen, R.; Li, Y.; Malhotra, A. Treatment of Obstructive Sleep Apnea. Prospects for Personalized Combined Modality Therapy. Ann. Am. Thorac. Soc. 2016, 13, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Rassovsky, Y.; Abrams, K.; Kushner, M.G. Suffocation and respiratory responses to carbon dioxide and breath holding challenges in individuals with panic disorder. J. Psychosom. Res. 2006, 60, 291–298. [Google Scholar] [CrossRef]
- Dempsey, J.A.; Smith, C.A.; Przybylowski, T.; Chenuel, B.; Xie, A.; Nakayama, H.; Skatrud, J.B. The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep. J. Physiol. 2004, 560, 1–11. [Google Scholar] [CrossRef]
- Deacon-Diaz, N.; Malhotra, A. Inherent vs. Induced Loop Gain Abnormalities in Obstructive Sleep Apnea. Front. Neurol. 2018, 9, 896. [Google Scholar] [CrossRef]
- Buterbaugh, J.; Wynstra, C.; Provencio, N.; Combs, D.; Gilbert, M.; Parthasarathy, S. Cerebrovascular reactivity in young subjects with sleep apnea. Sleep 2015, 38, 241–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, A.S.; McSharry, D.G.; Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014, 383, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Bonsignore, M.R.; Suarez Giron, M.C.; Marrone, O.; Castrogiovanni, A.; Montserrat, J.M. Personalised medicine in sleep respiratory disorders: Focus on obstructive sleep apnoea diagnosis and treatment. Eur. Respir. Rev. 2017, 26, 170069. [Google Scholar] [CrossRef] [Green Version]
- Edwards, B.A.; Eckert, D.J.; Jordan, A.S. Obstructive sleep apnoea pathogenesis from mild to severe: Is it all the same? Respirology 2017, 22, 33–42. [Google Scholar] [CrossRef]
- Guilleminault, C.; Li, K.; Chen, N.H.; Poyares, D. Two-point palatal discrimination in patients with upper airway resistance syndrome, obstructive sleep apnea syndrome, and normal control subjects. Chest 2002, 122, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.T.; Jobin, V.; Payne, R.; Beauregard, J.; Naor, N.; Kimoff, R.J. Laryngeal and velopharyngeal sensory impairment in obstructive sleep apnea. Sleep 2005, 28, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Malhotra, A. Connecting insomnia, sleep apnoea and depression. Respirology 2017, 22, 1249–1250. [Google Scholar] [CrossRef] [Green Version]
- Demyttenaere, K.; De Fruyt, J.; Stahl, S.M. The many faces of fatigue in major depressive disorder. Int. J. Neuropsychopharmacol. 2005, 8, 93–105. [Google Scholar] [CrossRef]
- Butler, M.P.; Emch, J.T.; Rueschman, M.; Sands, S.A.; Shea, S.A.; Wellman, A.; Redline, S. Apnea-Hypopnea Event Duration Predicts Mortality in Men and Women in the Sleep Heart Health Study. Am. J. Respir. Crit. Care Med. 2019, 199, 903–912. [Google Scholar] [CrossRef]
- Richardson, H.L.; Walker, A.M.; Horne, R.S. Sleep position alters arousal processes maximally at the high-risk age for sudden infant death syndrome. J. Sleep Res. 2008, 17, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Pizzorno, J.E.; Murray, M.T.; Joiner-Bey, H. Hyperventilation syndrome/breathing pattern disorders. In The Clinician’s Handbook of Natural Medicine E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; pp. 431–447. [Google Scholar]
- Huang, T.; Lin, B.M.; Markt, S.C.; Stampfer, M.J.; Laden, F.; Hu, F.B.; Tworoger, S.S.; Redline, S. Sex differences in the associations of obstructive sleep apnoea with epidemiological factors. Eur. Respir. J. 2018, 51, 1702421. [Google Scholar] [CrossRef]
- Fietze, I.; Laharnar, N.; Obst, A.; Ewert, R.; Felix, S.B.; Garcia, C.; Gläser, S.; Glos, M.; Schmidt, C.O.; Stubbe, B.; et al. Prevalence and association analysis of obstructive sleep apnea with gender and age differences—Results of SHIP-Trend. J. Sleep Res. 2019, 28, e12770. [Google Scholar] [CrossRef] [PubMed]
- LoMauro, A.; Aliverti, A. Sex differences in respiratory function. Breathe 2018, 14, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Ott, H.W.; Mattle, V.; Zimmermann, U.S.; Licht, P.; Moeller, K.; Wildt, L. Symptoms of premenstrual syndrome may be caused by hyperventilation. Fertil. Steril. 2006, 86, 1001.e17–1001.e19. [Google Scholar] [CrossRef]
- Gargaglioni, L.H.; Marques, D.A.; Patrone, L.G.A. Sex differences in breathing. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2019, 238, 110543. [Google Scholar] [CrossRef] [PubMed]
- Stavaras, C.; Pastaka, C.; Papala, M.; Gravas, S.; Tzortzis, V.; Melekos, M.; Seitanidis, G.; Gourgoulianis, K.I. Sexual function in pre- and post-menopausal women with obstructive sleep apnea syndrome. Int. J. Impot. Res. 2012, 24, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Spacone, A.; Paolucci, T.; Prosperi, P.; Giannandrea, N.; Pezzi, L.; Bellomo, R.G.; Saggini, R. Possible phenotyping of apnoea obstructive sleep of female patients. J. Biol. Regul. Homeost. Agents 2020, 34, 1545–1547. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, T.J.; McLachlan, C.R.; Sears, M.R.; Poulton, R.; Hancox, R.J. The relationship between body fat and respiratory function in young adults. Eur. Respir. J. 2016, 48, 734–747. [Google Scholar] [CrossRef]
- Mafort, T.T.; Rufino, R.; Costa, C.H.; Lopes, A.J. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip. Respir. Med. 2016, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Kunitomo, F.; Kimura, H.; Tatsumi, K.; Kuriyama, T.; Watanabe, S.; Honda, Y. Sex differences in awake ventilatory drive and abnormal breathing during sleep in eucapnic obesity. Chest 1988, 93, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.B.; Lan, M.Y.; Huang, Y.C.; Kao, M.C.; Lan, M.C. Association Between Breathing Route, Oxygen Desaturation, and Upper Airway Morphology. Laryngoscope 2020. [Google Scholar] [CrossRef]
- Baptista, P.M.; Lugo-Saldana, R.; Garaycochea, O. Endoscopic Evaluation of Upper Airway While Playing the Didgeridoo. Glob. J. Otolaryngol. 2017, 6, 555699. [Google Scholar] [CrossRef]
- Eley, R.; Gorman, D. Didgeridoo playing and singing to support asthma management in Aboriginal Australians. J. Rural Health 2010, 26, 100–104. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, M.; Tanuma, T. The effect of nasal and oral breathing on airway collapsibility in patients with obstructive sleep apnea: Computational fluid dynamics analyses. PLoS ONE 2020, 15, e0231262. [Google Scholar] [CrossRef] [Green Version]
- Madronio, M.R.; Di Somma, E.; Stavrinou, R.; Kirkness, J.P.; Goldfinch, E.; Wheatley, J.R.; Amis, T.C. Older individuals have increased oro-nasal breathing during sleep. Eur. Respir. J. 2004, 24, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Academy of Orofacial Myofunctional Therapy. “What Is Myofunctional Therapy?”. Available online: https://aomtinfo.org (accessed on 9 September 2020).
- Trevisan, M.E.; Boufleur, J.; Soares, J.C.; Haygert, C.J.; Ries, L.G.; Corrêa, E.C. Diaphragmatic amplitude and accessory inspiratory muscle activity in nasal and mouth-breathing adults: A cross-sectional study. J. Electromyogr. Kinesiol. 2015, 25, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.C.; Jardim, J.R.; Inoue, D.P.; Pignatari, S.S. The relationship between excursion of the diaphragm and curvatures of the spinal column in mouth breathing children. J. Pediatr. (Rio J.) 2008, 84, 171–177. [Google Scholar] [CrossRef]
- Veron, H.L.; Antunes, A.G.; Milanesi, J.M.; Correa, E.C.R. Implications of mouth breathing on the pulmonary function and respiratory muscles. Rev. CEFAC 2016, 18, 242–251. [Google Scholar] [CrossRef] [Green Version]
- Kolar, P.; Neuwirth, J.; Sanda, J.; Suchanek, V.; Svata, Z.; Volejnik, J.; Pivec, M. Analysis of diaphragm movement during tidal breathing and during its activation while breath holding using MRI synchronized with spirometry. Physiol. Res. 2009, 58, 383–392. [Google Scholar] [PubMed]
- Gunhan, K. Pathophysiology of Obstructive Sleep Apnea. In Nasal Physiology and Pathophysiology of Nasal Disorders; Önerci, T.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 313–330. [Google Scholar]
- Swift, A.C.; Campbell, I.T.; McKown, T.M. Oronasal obstruction, lung volumes, and arterial oxygenation. Lancet 1988, 1, 73–75. [Google Scholar] [CrossRef]
- Bartley, J.; Wong, C. Nasal Pulmonary Interactions. In Nasal Physiology and Pathophysiology of Nasal Disorders; Önerci, T.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 559–566. [Google Scholar]
- Khaleghipour, S.; Masjedi, M.; Kelishadi, R. The effect of breathing exercises on the nocturnal enuresis in the children with the sleep-disordered breathing. Iran. Red Crescent Med. J. 2013, 15, e8986. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, M.F.; McLean, H.; Urton, A.M.; Tan, A.; O’Donnell, D.; Driver, H.S. Effect of nasal or oral breathing route on upper airway resistance during sleep. Eur. Respir. J. 2003, 22, 827–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, T.; Finn, L.; Kim, H. Nasal obstruction as a risk factor for sleep-disordered breathing. The University of Wisconsin Sleep and Respiratory Research Group. J. Allergy Clin. Immunol. 1997, 99, S757–S762. [Google Scholar] [CrossRef]
- Bachour, A.; Maasilta, P. Mouth breathing compromises adherence to nasal continuous positive airway pressure therapy. Chest 2004, 126, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
- Kohler, M.; Bloch, K.E.; Stradling, J.R. The role of the nose in the pathogenesis of obstructive sleep apnoea and snoring. Eur. Respir. J. 2007, 30, 1208–1215. [Google Scholar] [CrossRef] [PubMed]
- Menezes, V.A.; Cavalcanti, L.L.; Cavalcanti de Albuquerque, T.; Garcia, A.F.G.; Leal, R.B. Mouth breathing within a multidisciplinary approach: Perception of orthodontists in the city of Recife, Brazil. Dent. Press J. Orthod. 2011, 16, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Guilleminault, C.; Chiu, H.Y.; Sullivan, S.S. Mouth breathing, “nasal disuse,” and pediatric sleep-disordered breathing. Sleep Breath 2015, 19, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Zaghi, S.; Peterson, C.; Shamtoob, C.; Fung, B.; Ng, D.K.K.; Jagomagi, T.; Archambault, N.; O’Connor, B.; Winslow, K.; Peeran, Z.; et al. Assessment of Nasal Breathing Using Lip Taping: A Simple and Effective Screening Tool. Int. J. Otorhinolaryngol. 2020, 6, 10–15. [Google Scholar] [CrossRef]
- Koutsourelakis, I.; Vagiakis, E.; Roussos, C.; Zakynthinos, S. Obstructive sleep apnoea and oral breathing in patients free of nasal obstruction. Eur. Respir. J. 2006, 28, 1222–1228. [Google Scholar] [CrossRef]
- Tafil-Klawe, M.; Klawe, J.J. Role of nose breathing in genioglossus muscle response to hypoxia in older and younger subjects. J. Physiol. Pharmacol. 2003, 54 (Suppl. S1), 48–54. [Google Scholar]
- Meurice, J.C.; Marc, I.; Carrier, G.; Sériès, F. Effects of mouth opening on upper airway collapsibility in normal sleeping subjects. Am. J. Respir. Crit. Care Med. 1996, 153, 255–259. [Google Scholar] [CrossRef] [Green Version]
- Stanley, N.N.; Cunningham, E.L.; Altose, M.D.; Kelsen, S.G.; Levinson, R.S.; Cherniack, N.S. Evaluation of breath holding in hypercapnia as a simple clinical test of respiratory chemosensitivity. Thorax 1975, 30, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Jack, S.; Darke, K.; Oats, K. Breath hold time in idiopathic hyperventilators. Eur. Respir. J. 1998, 12, 412S. [Google Scholar]
- Jack, S.; Rossiter, H.B.; Warburton, C.J.; Whipp, B.J. Behavioral influences and physiological indices of ventilatory control in subjects with idiopathic hyperventilation. Behav. Modif. 2003, 27, 637–652. [Google Scholar] [CrossRef]
- Courtney, R.; Greenwood, K.M.; Cohen, M. Relationships between measures of dysfunctional breathing in a population with concerns about their breathing. J. Bodyw. Mov. Ther. 2011, 15, 24–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, R.; Cohen, M. Investigating the claims of Konstantin Buteyko, M.D., Ph.D.: The relationship of breath holding time to end tidal CO2 and other proposed measures of dysfunctional breathing. J. Altern. Complement. Med. 2008, 14, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Nardi, A.E.; Freire, R.; Zin, W.A. Panic disorder and control of breathing. Respir. Physiol. Neurobiol. 2009, 167, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, K.; Rhodes, T.; Mueller, J.; Waninger, A.; Butler, R. Development of a screening protocol to identify individuals with dysfunctional breathing. Int. J. Sports Phys. Ther. 2017, 12, 774–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, U.P. Evidence-Based Role of Hypercapnia and Exhalation Phase in Vagus Nerve Stimulation: Insights into Hypercapnic Yoga Breathing Exercises. J. Yoga Phys. Ther. 2017, 7, 276. [Google Scholar] [CrossRef]
- Edwards, B.A.; Andara, C.; Landry, S.; Sands, S.A.; Joosten, S.A.; Owens, R.L.; White, D.P.; Hamilton, G.S.; Wellman, A. Upper-Airway Collapsibility and Loop Gain Predict the Response to Oral Appliance Therapy in Patients with Obstructive Sleep Apnea. Am. J. Respir. Crit. Care Med. 2016, 194, 1413–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Op de Beeck, S.; Dieltjens, M.; Azarbarzin, A.; Willemen, M.; Verbraecken, J.; Braem, M.J.; Wellman, A.; Sands, S.A.; Vanderveken, O.M. Mandibular Advancement Device Treatment Efficacy is Associated with Polysomnographic Endotypes. Ann. Am. Thorac Soc. 2020. [Google Scholar] [CrossRef]
- Deacon-Diaz, N.L.; Sands, S.A.; McEvoy, R.D.; Catcheside, P.G. Daytime loop gain is elevated in obstructive sleep apnea but not reduced by CPAP treatment. J. Appl. Physiol. 2018, 125, 1490–1497. [Google Scholar] [CrossRef]
- Kubin, L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr. Physiol. 2016, 6, 1801–1850. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.C.; Cheng, S.; McKenzie, D.K.; Butler, J.E.; Gandevia, S.C.; Bilston, L.E. Respiratory Movement of Upper Airway Tissue in Obstructive Sleep Apnea. Sleep 2013, 36, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, C. Interaction of psychological and emotional variables with breathing dysfunction. In Recognizing and Treating Breathing Disorders, 2nd ed.; Chaitow, L., Bradley, D., Gilbert, C., Eds.; Churchill Livingstone: London, UK, 2014; pp. 79–91. [Google Scholar]
- Cori, J.M.; O’Donoghue, F.J.; Jordan, A.S. Sleeping tongue: Current perspectives of genioglossus control in healthy individuals and patients with obstructive sleep apnea. Nat. Sci. Sleep. 2018, 10, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mediano, O.; Romero-Peralta, S.; Resano, P.; Cano-Pumarega, I.; Sánchez-de-la-Torre, M.; Castillo-García, M.; Martínez-Sánchez, A.B.; Ortigado, A.; García-Río, F. Obstructive Sleep Apnea: Emerging Treatments Targeting the Genioglossus Muscle. J. Clin. Med. 2019, 8, 1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.; Sharshar, R.; Elkolaly, R.M.; Serageldin, S. Upper airway muscle exercises outcome in patients with obstructive sleep apnea syndrome. Egypt. J. Chest Dis. Tuberc. 2017, 66, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Camacho, M.; Certal, V.; Abdullatif, J.; Zaghi, S.; Ruoff, C.M.; Capasso, R.; Kushida, C.A. Myofunctional Therapy to Treat Obstructive Sleep Apnea: A Systematic Review and Meta-analysis. Sleep 2015, 38, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wishney, M.; Darendeliler, M.A.; Dalci, O. Myofunctional therapy and prefabricated functional appliances: An overview of the history and evidence. Aust. Dent. J. 2019, 64, 135–144. [Google Scholar] [CrossRef]
- Guimarães, K.C.; Drager, L.F.; Genta, P.R.; Marcondes, B.F.; Lorenzi-Filho, G. Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am. J. Respir. Crit. Care Med. 2009, 179, 962–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor-Reina, C.; Plaza, G.; Garcia-Iriarte, M.T.; Ignacio-Garcia, J.M.; Baptista, P.; Casado-Morente, J.C.; De Vicente, E. Tongue peak pressure: A tool to aid in the identification of obstruction sites in patients with obstructive sleep apnea/hypopnea syndrome. Sleep Breath 2020, 24, 281–286. [Google Scholar] [CrossRef]
- O’Connor-Reina, C.; Plaza, G.; Ignacio-Garcia, J.M.; Baptista, P.; Garcia-Iriarte, M.T.; Casado-Morente, J.C.; De Vicente, E.; Gonzalez, V.; Rodriguez-Reina, A. New mHealth Application software based on myofunctional therapy applied to sleep-disordered breathing in non-compliant subjects. Sleep Sci. Pract. 2020, 4, 3. [Google Scholar] [CrossRef]
- O’Connor-Reina, C.; Ignacio-Garcia, J.M.; Rodriguez-Ruiz, E.; Morillo Dominguez, M.D.C.; Ignacio Barrios, V.; Baptista Jardin, P.; Casado Morente, J.C.; Garcia Iriarte, M.T.; Plaza, G. Myofunctional therapy app for severe apnea–hypopnea sleep obstructive syndrome: A pilot randomized controlled trial. JMIR mHealth uHealth 2020. [Google Scholar] [CrossRef]
- Suzuki, M.; Okamoto, T.; Akagi, Y.; Matsui, K.; Sekiguchi, H.; Satoya, N.; Inoue, Y.; Tatsuta, A.; Hagiwara, N. Efficacy of oral myofunctional therapy in middle-aged to elderly patients with obstructive sleep apnoea treated with continuous positive airway pressure. J. Oral Rehabil. 2020. [Google Scholar] [CrossRef]
- Huang, Y.S.; Hsu, S.C.; Guilleminault, C.; Chuang, L.C. Myofunctional Therapy: Role in Pediatric OSA. Sleep Med. Clin. 2019, 14, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Diaféria, G.; Santos-Silva, R.; Truksinas, E.; Haddad, F.L.M.; Santos, R.; Bommarito, S.; Gregório, L.C.; Tufik, S.; Bittencourt, L. Myofunctional therapy improves adherence to continuous positive airway pressure treatment. Sleep Breath 2017, 21, 387–395. [Google Scholar] [CrossRef] [PubMed]
- De Felício, C.M.; da Silva Dias, F.V.; Trawitzki, L.V.V. Obstructive sleep apnea: Focus on myofunctional therapy. Nat. Sci. Sleep 2018, 10, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.C.; Ellenberger, H.H.; Ballanyi, K.; Richter, D.W.; Feldman, J.L. Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science 1991, 254, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Yackle, K.; Schwarz, L.A.; Kam, K.; Sorokin, J.M.; Huguenard, J.R.; Feldman, J.L.; Luo, L.; Krasnow, M.A. Breathing control center neurons that promote arousal in mice. Science 2017, 355, 1411–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gleeson, K.; Zwillich, C.W. Adenosine stimulation, ventilation, and arousal from sleep. Am. Rev. Respir. Dis. 1992, 145, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Cottle, M.H. The work, ways, positions and patterns of nasal breathing (relevance in heart and lung illness). In Proceedings of the American Rhinologic Society, New Orleans, LA, USA, 19 September 1972; pp. 377–385. [Google Scholar]
- Barelli, P. Nasopulmonary physiology. In Behavioral and Psychological Approaches to Breathing Disorders; Timmons, B.H., Ley, R., Eds.; Springer Science + Business Media: New York, NY, USA, 1994; pp. 47–58. [Google Scholar]
- Daugherty, J.L.; Hendricks, L.V.; Simpson, C. Sleep aids: Sedative-hypnotic drugs in America. Natl. Forum J. Counsel. Addict. 2014, 3, 1. [Google Scholar]
- Mendels, J. Criteria for selection of appropriate benzodiazepine hypnotic therapy. J. Clin. Psychiatry 1991, 52, 42–46. [Google Scholar]
- Chong, Y.; Fryer, C.D.; Gu, Q. Prescription sleep aid use among adults: United States, 2005–2010. NCHS Data Brief 2013, 127, 1–8. [Google Scholar]
- Gerritsen, R.J.S.; Band, G.P.H. Breath of Life: The Respiratory Vagal Stimulation Model of Contemplative Activity. Front. Hum. Neurosci. 2018, 12, 397. [Google Scholar] [CrossRef] [Green Version]
- Narkiewicz, K.; van de Borne, P.; Montano, N.; Hering, D.; Kara, T.; Somers, V.K. Sympathetic neural outflow and chemoreflex sensitivity are related to spontaneous breathing rate in normal men. Hypertension 2006, 47, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.J.; Baghdoyan, H.A.; Lydic, R. Neuropharmacology of Sleep and Wakefulness. Sleep Med. Clin. 2010, 5, 513–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.W.; Young, T.H. Novel porous oral patches for patients with mild obstructive sleep apnea and mouth breathing: A pilot study. Otolaryngol. Head Neck Surg. 2015, 152, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, N. Keep Your Mouth Shut, But Should You Tape It? In Forbes Healthcare. 2019. Available online: https://www.forbes.com/sites/ninashapiro/2019/10/18/keep-your-mouth-shut-but-should-you-tape-it/ (accessed on 22 September 2020).
- Ayuse, T.; Kirkness, J.; Sanuki, T.; Kurata, S.; Okayasu, I. Pathogenesis of upper airway obstruction and mechanical intervention during sedation and sleep. J. Dent. Sleep Med. 2016, 3, 11–19. [Google Scholar] [CrossRef]
- Birch, M. Obstructive sleep apnoea and breathing retraining. Aust. Nurs. J. 2004, 12, 27–29. [Google Scholar]
- Birch, M. Sleep apnoea: A survey of breathing retraining. Aust. Nurs. J. 2012, 20, 40–41. [Google Scholar]
- Lum, L.C. Hyperventilation syndromes. In Behavioral and Psychological Approaches to Breathing Disorders; Timmons, B.H., Ley, R., Eds.; Springer Science + Business Media: New York, NY, USA, 1994; pp. 113–124. [Google Scholar]
- Courtney, R. Breathing training for dysfunctional breathing in asthma: Taking a multidimensional approach. ERJ Open Res. 2017, 3, 00065–02017. [Google Scholar] [CrossRef] [Green Version]
- Meuret, A.E.; Ritz, T. Hyperventilation in panic disorder and asthma: Empirical evidence and clinical strategies. Int. J. Psychophysiol. 2010, 78, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Lum, L.C. Hyperventilation: The tip and the iceberg. J. Psychosom. Res. 1975, 19, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Law, N.; Ruane, L.E.; Low, K.; Hamza, K.; Bardin, P.G. Dysfunctional breathing is more frequent in chronic obstructive pulmonary disease than in asthma and in health. Respir. Physiol. Neurobiol. 2018, 247, 20–23. [Google Scholar] [CrossRef]
- Folgering, H.; Colla, P. Some anomalies in the control of PACO2 in patients with a hyperventilation syndrome. Bull. Eur. Physiopathol. Respir. 1978, 14, 503–512. [Google Scholar] [PubMed]
- Trembach, N.; Zabolotskikh, I. Breath-holding test in evaluation of peripheral chemoreflex sensitivity in healthy subjects. Respir. Physiol. Neurobiol. 2017, 235, 79–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, R. The functions of breathing and its dysfunctions and their relationship to breathing therapy. Int. J. Osteopat. Med. 2009, 12, 78–85. [Google Scholar] [CrossRef]
- Hagman, C.; Janson, C.; Emtner, M. Breathing retraining—A five-year follow-up of patients with dysfunctional breathing. Respir. Med. 2011, 105, 1153–1159. [Google Scholar] [CrossRef] [Green Version]
- Boulding, R.; Stacey, R.; Niven, R.; Fowler, S.J. Dysfunctional breathing: A review of the literature and proposal for classification. Eur. Respir. Rev. 2016, 25, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Barker, N.; Everard, M.L. Getting to grips with ‘dysfunctional breathing’. Paediatr. Respir. Rev. 2015, 16, 53–61. [Google Scholar] [CrossRef]
- Douglas, N.J.; White, D.P.; Weil, J.V.; Zwillich, C.W. Effect of breathing route on ventilation and ventilatory drive. Respir. Physiol. 1983, 51, 209–218. [Google Scholar] [CrossRef]
- Tavel, M.E. Hyperventilation syndrome: Why is it regularly overlooked? Am. J. Med. 2020. [Google Scholar] [CrossRef]
- Du Pasquier, D.; Fellrath, J.M.; Sauty, A. Syndrome d’hyperventilation et respiration dysfonctionnelle: Mise à jour [Hyperventilation syndrome and dysfunctional breathing: Update]. Rev. Med. Suisse 2020, 16, 1243–1249. (In French) [Google Scholar]
- Mangin, D.; Bequignon, E.; Zerah-Lancner, F.; Isabey, D.; Louis, B.; Adnot, S.; Papon, J.F.; Coste, A.; Boyer, L.; Devars du Mayne, M. Investigating hyperventilation syndrome in patients suffering from empty nose syndrome. Laryngoscope 2017, 127, 1983–1988. [Google Scholar] [CrossRef]
- Stupak, H.D. The Invisible Forces in Our Nasal Airway: Air Flow and Cavity Negative Pressure. Nasal Obstruction Versus Nasal Underuse: Are the Turbinates the Problem or the Solution? In Stupak HD: Rethinking Rhinoplasty and Facial Surgery; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 13–36. [Google Scholar] [CrossRef]
- Hudgel, D.W.; Hendricks, C.; Dadley, A. Alteration in obstructive apnea pattern induced by changes in oxygen- and carbon-dioxide-inspired concentrations. Am. Rev. Respir. Dis. 1988, 138, 16–19. [Google Scholar] [CrossRef] [PubMed]
- Yokhana, S.S.; Gerst, D.G., 3rd; Lee, D.S.; Badr, M.S.; Qureshi, T.; Mateika, J.H. Impact of repeated daily exposure to intermittent hypoxia and mild sustained hypercapnia on apnea severity. J. Appl. Physiol. 2012, 112, 367–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.G.; Wang, Y.H.; Tang, F.T.; Lin, K.H.; Lien, I.N. Resistive inspiratory muscle training in sleep-disordered breathing of traumatic tetraplegia. Arch. Phys. Med. Rehabil. 2002, 83, 491–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, T.; Meuret, A.E.; Wilhelm, F.H.; Roth, W.T. Changes in pCO2, symptoms, and lung function of asthma patients during capnometry-assisted breathing training. Appl. Psychophysiol. Biofeedback 2009, 34, 1–6. [Google Scholar] [CrossRef]
- Grammatopoulou, E.P.; Skordilis, E.K.; Georgoudis, G.; Haniotou, A.; Evangelodimou, A.; Fildissis, G.; Katsoulas, T.; Kalagiakos, P. Hyperventilation in asthma: A validation study of the Nijmegen Questionnaire—NQ. J. Asthma 2014, 51, 839–846. [Google Scholar] [CrossRef]
- Bianchini, A.P.; Guedes, Z.C.; Vieira, M.M. A study on the relationship between mouth breathing and facial morphological pattern. Braz. J. Otorhinolaryngol. 2007, 73, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Knösel, M.; Klein, S.; Bleckmann, A.; Engelke, W. Coordination of tongue activity during swallowing in mouth-breathing children. Dysphagia 2012, 27, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löth, S.; Petruson, B.; Wirén, L.; Wilhelmsen, L. Better quality of life when nasal breathing of snoring men is improved at night. Arch. Otolaryngol. Head Neck Surg. 1999, 125, 64–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowler, S.D.; Green, A.; Mitchell, C.A. Buteyko breathing techniques in asthma: A blinded randomised controlled trial. Med. J. Aust. 1998, 169, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Rahimov, A. Efectos del Ejercicio en el Sistema Respiratorio. Available online: https://www.respiracionnormal.org/ejercicio/ (accessed on 21 January 2020).
Functional Breathing | Phenotypes of Sleep Apnea | |
---|---|---|
Nasal Breathing (wakefulness and sleep) |
| |
Biochemical | ||
Biomechanical |
| |
Resonance Frequency |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKeown, P.; O’Connor-Reina, C.; Plaza, G. Breathing Re-Education and Phenotypes of Sleep Apnea: A Review. J. Clin. Med. 2021, 10, 471. https://doi.org/10.3390/jcm10030471
McKeown P, O’Connor-Reina C, Plaza G. Breathing Re-Education and Phenotypes of Sleep Apnea: A Review. Journal of Clinical Medicine. 2021; 10(3):471. https://doi.org/10.3390/jcm10030471
Chicago/Turabian StyleMcKeown, Patrick, Carlos O’Connor-Reina, and Guillermo Plaza. 2021. "Breathing Re-Education and Phenotypes of Sleep Apnea: A Review" Journal of Clinical Medicine 10, no. 3: 471. https://doi.org/10.3390/jcm10030471
APA StyleMcKeown, P., O’Connor-Reina, C., & Plaza, G. (2021). Breathing Re-Education and Phenotypes of Sleep Apnea: A Review. Journal of Clinical Medicine, 10(3), 471. https://doi.org/10.3390/jcm10030471