Effects of Meal Fructose/Glucose Composition on Postprandial Glucose Appearance and Hepatic Glycogen Synthesis in Healthy Subjects
Abstract
:1. Introduction
2. Experimental Section
2.1. Human Studies
2.2. Blood Biochemical Parameters
2.3. Blood Glucose and Urinary Glucuronide Processing for 2H NMR Analysis
2.4. NMR Spectroscopy
2.5. Sources of Plasma Gglucose and Hepatic Glycogen Synthesis
2.6. Statistical Analysis
3. Results
3.1. Plasma Biochemical Parameters
3.2. Plasma Glucose and Urinary Glucuronide 2H Positional Enrichments from 2H2O
3.3. Sources of Plasma Glucose Appearance and Hepatic Glycogen Synthesis Following LF and HF Meals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, G.A.; Nielsen, S.J.; Popkin, B.M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 2004, 79, 537–543. [Google Scholar] [CrossRef]
- Dekker, M.J.; Su, Q.Z.; Baker, C.; Rutledge, A.C.; Adeli, K. Fructose: A highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E685–E694. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, O.P.; Cherrington, A.D. Effects of fructose on hepatic glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 441–448. [Google Scholar] [CrossRef]
- Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018, 27, 351–361.e3. [Google Scholar] [CrossRef] [Green Version]
- Varga, V.; Murányi, Z.; Kurucz, A.; Marcolongo, P.; Benedetti, A.; Bánhegyi, G.; Margittai, É. Species-specific glucose-6-phosphatase activity in the small intestine-studies in three different mammalian models. Int. J. Mol. Sci. 2019, 20, 5039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, T.C.; Martins, F.O.; Carvalho, F.; Gonçalves, A.; Scott, D.K.; O’Doherty, R.; Macedo, M.P.; Jones, J.G. 2H enrichment distribution of hepatic glycogen from 2H2O reveals the contribution of dietary fructose to glycogen synthesis. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E384–E391. [Google Scholar] [CrossRef] [PubMed]
- Di Nunzio, G.D.B.; Torres, A.N.; Silva, J.G.; Silva, L.P.; Barosa, C.; Tavares, L.; Jones, J.G. Determining the contribution of a high-fructose corn syrup formulation to hepatic glycogen synthesis during ad-libitum feeding in mice. Sci. Rep. 2020, in press. [Google Scholar] [CrossRef]
- Jarak, I.; Barosa, C.; Martins, F.O.; Silva, J.C.; Santos, C.; Belew, G.D.; Rito, J.; Viegas, I.; Teixeira, J.; Oliveira, P.J.; et al. Sources of hepatic glycogen synthesis in mice fed with glucose or fructose as the sole dietary carbohydrate. Magn. Reson. Med. 2019, 81, 639–644. [Google Scholar] [CrossRef]
- Jones, J.G.; Fagulha, A.; Barosa, C.; Bastos, M.; Barros, L.; Baptista, C.; Caldeira, M.M.; Carvalheiro, M. Noninvasive analysis of hepatic glycogen kinetics before and after breakfast with deuterated water and acetaminophen. Diabetes 2006, 55, 2294–2300. [Google Scholar] [CrossRef] [Green Version]
- Barosa, C.; Silva, C.; Fagulha, A.; Barros, L.; Caldeira, M.M.; Carvalheiro, M.; Jones, J.G. Sources of hepatic glycogen synthesis following a milk-containing breakfast meal in healthy subjects. Metabolism 2012, 61, 250–254. [Google Scholar] [CrossRef]
- Newgard, C.B.; Hirsch, L.J.; Foster, D.W.; McGarry, J.D. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat. A direct or an indirect pathway? J. Biol. Chem. 1983, 258, 8046–8052. [Google Scholar] [CrossRef]
- Magnusson, I.; Chandramouli, V.; Schumann, W.; Kumaran, K.; Wahren, J.; Landau, B.R. Pathways of hepatic glycogen formation in humans following ingestion of a glucose load in the fed state. Metabolism 1989, 38, 583–585. [Google Scholar] [CrossRef]
- Magnusson, I.; Chandramouli, V.; Schumann, W.; Kumaran, K.; Landau, B.R. Quantitation of the pathways of hepatic glycogen formation on ingesting a glucose load. J. Clin. Investig. 1987, 80, 1748–1754. [Google Scholar] [CrossRef]
- Jones, J.; Kahl, S.; Carvalho, F.; Barosa, C.; Roden, M. Simplified analysis of acetaminophen glucuronide for quantifying gluconeogenesis and glycogenolysis using deuterated water. Anal. Biochem. 2015, 479, 37–39. [Google Scholar] [CrossRef]
- Jones, J.G.; Merritt, M.; Malloy, C.R. Quantifying tracer levels of 2H2O enrichment from microliter amounts of plasma and urine by 2H NMR. Magn. Reson. Med. 2001, 45, 156–158. [Google Scholar] [CrossRef]
- Chandramouli, V.; Ekberg, K.; Schumann, W.C.; Wahren, J.; Landau, B.R. Origins of the hydrogen bound to carbon 1 of glucose in fasting: Significance in gluconeogenesis quantitation. Am. J. Physiol. Endocrinol. Metab. 1999, 277, E717–E723. [Google Scholar] [CrossRef]
- Petersen, K.F.; Laurent, D.; Yu, C.L.; Cline, G.W.; Shulman, G.I. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes. 2001, 50, 1263–1268. [Google Scholar] [CrossRef] [Green Version]
- Shiota, M.; Galassetti, P.; Monohan, M.; Neal, D.W.; Cherrington, A.D. Small amounts of fructose markedly augment net hepatic glucose uptake in the conscious dog. Diabetes. 1998, 47, 867–873. [Google Scholar] [CrossRef]
- Agius, L.; Peak, M. Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin. Biochem. J. 1993, 296, 785–796. [Google Scholar] [CrossRef] [Green Version]
- Oh, A.R.; Sohn, S.; Lee, J.; Park, J.M.; Nam, K.T.; Hahm, K.B.; Kim, Y.B.; Lee, H.J.; Cha, J.Y. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome. Metabolism 2018, 85, 286–297. [Google Scholar] [CrossRef]
- Kato, T.; Iizuka, K.; Takao, K.; Horikawa, Y.; Kitamura, T.; Takeda, J. ChREBP-Knockout mice show sucrose intolerance and fructose malabsorption. Nutrients 2018, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Crapo, P.A.; Kolterman, O.G.; Olefsky, J.M. Effects of oral fructose in normal, diabetic, and impaired glucose-tolerance subjects. Diabetes Care. 1980, 3, 575–581. [Google Scholar] [CrossRef]
- Lee, B.M.; Wolever, T.M.S. Effect of glucose, sucrose and fructose on plasma glucose and insulin responses in normal humans: Comparison with white bread. Eur. J. Clin. Nutr. 1998, 52, 924–928. [Google Scholar] [CrossRef]
- Moore, M.C.; Cherrington, A.D.; Mann, S.L.; Davis, S.N. Acute fructose administration decreases the glycemic response to an oral glucose tolerance test in normal adults. J. Clin. Endocrinol. Metab. 2000, 85, 4515–4519. [Google Scholar] [CrossRef]
- Fernández-Novell, J.M.; Ramió-Lluch, L.; Orozco, A.; Gómez-Foix, A.M.; Guinovart, J.J.; Rodríguez-Gil, J.E. Glucose and fructose have sugar-specific effects in both liver and skeletal muscle in vivo: A role for liver fructokinase. PLoS ONE 2014, 9, e109726. [Google Scholar] [CrossRef]
- Theytaz, F.; De Giorgi, S.; Hodson, L.; Stefanoni, N.; Rey, V.; Schneiter, P.; Giusti, V.; Tappy, L. Metabolic fate of fructose ingested with and without glucose in a mixed meal. Nutrients 2014, 6, 2632–2649. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Hannou, S.A.; Haslam, D.E.; McKeown, N.M.; Herman, M.A. Fructose metabolism and metabolic disease. J. Clin. Investig. 2020, 128, 545–555. [Google Scholar] [CrossRef]
- Lambertz, J.; Weiskirchen, S.; Landert, S.; Weiskirchen, R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front. Immunol. 2017, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
- Yki-Jarvinen, H. Nutritional modulation of nonalcoholic fatty liver disease and insulin resistance: Human data. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 709–714. [Google Scholar] [CrossRef]
- Mirtschink, P.; Jang, C.; Arany, Z.; Krek, W. Fructose metabolism, cardiometabolic risk, and the epidemic of coronary artery disease. Eur. Heart J. 2018, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
High Fructose | Low Fructose | |||
---|---|---|---|---|
−30 min | 180 min | −30 min | 180 min | |
Triglycerides (mg/dL) | 77 ± 7 | 78 ± 6 | 76 ± 10 | 79 ± 13 |
NEFA (mmol/L) | 0.44 ± 0.07 | 0.40 ± 0.09 | 0.35 ± 0.04 | 0.27 ± 0.05 |
Insulin (µUI/mL) | 8.0 ± 1.5 | 5.5 ± 1.3 | 7.7 ± 1.2 | 5.7 ± 1.2 1 |
C-peptide (ng/mL) | 1.7 ± 0.2 | 1.9 ± 0.2 | 1.7 ± 0.1 | 2.1 ± 0.2 |
Body Water 2H-Enrichment | Plasma Glucose 2H-En-richment | Urinary Glucuronide 2H-Enrichment | ||||
---|---|---|---|---|---|---|
G1 | G5 | G6S | U1 | U5 | ||
High fructose | 0.28 ± 0.01 | 0.16 ± 0.01 1 | 0.18 ± 0.01 2 | 0.12 ± 0.01 1 | 0.18 ± 0.01 | 0.17 ± 0.01 |
Low fructose | 0.29 ± 0.01 | 0.11 ± 0.01 1 | 0.10 ± 0.01 | 0.07 ± 0.00 | 0.19 ± 0.01 | 0.15 ± 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barosa, C.; Ribeiro, R.T.; Andrade, R.; Raposo, J.F.; Jones, J.G. Effects of Meal Fructose/Glucose Composition on Postprandial Glucose Appearance and Hepatic Glycogen Synthesis in Healthy Subjects. J. Clin. Med. 2021, 10, 596. https://doi.org/10.3390/jcm10040596
Barosa C, Ribeiro RT, Andrade R, Raposo JF, Jones JG. Effects of Meal Fructose/Glucose Composition on Postprandial Glucose Appearance and Hepatic Glycogen Synthesis in Healthy Subjects. Journal of Clinical Medicine. 2021; 10(4):596. https://doi.org/10.3390/jcm10040596
Chicago/Turabian StyleBarosa, Cristina, Rogério T. Ribeiro, Rita Andrade, João F. Raposo, and John G. Jones. 2021. "Effects of Meal Fructose/Glucose Composition on Postprandial Glucose Appearance and Hepatic Glycogen Synthesis in Healthy Subjects" Journal of Clinical Medicine 10, no. 4: 596. https://doi.org/10.3390/jcm10040596
APA StyleBarosa, C., Ribeiro, R. T., Andrade, R., Raposo, J. F., & Jones, J. G. (2021). Effects of Meal Fructose/Glucose Composition on Postprandial Glucose Appearance and Hepatic Glycogen Synthesis in Healthy Subjects. Journal of Clinical Medicine, 10(4), 596. https://doi.org/10.3390/jcm10040596