Diagnostic Accuracy of Magnetic Resonance Imaging in the Detection of Type and Location of Meniscus Tears: Comparison with Arthroscopic Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. MRI Evaluation
2.2. Arthroscopic Evaluation
2.3. Statistical Analysis
3. Results
3.1. Diagnostic Accuracy of MRI for Meniscus Tears
3.2. Location and Type of Meniscus Tears in ACL-Injured Patients
3.3. Location and Type of Meniscus Tears in ACL-Intact Patients
3.4. Comparison of the Type and Location of Meniscus Tears between ACL-Injured and ACL-Intact Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musahl, V.; Citak, M.; O’Loughlin, P.; Choi, D.; Bedi, A.; Pearle, A.D. The Effect of Medial Versus Lateral Meniscectomy on the Stability of the Anterior Cruciate Ligament-Deficient Knee. Am. J. Sports Med. 2010, 38, 1591–1597. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, G.C.; Kim, H.H.; Cha, D.H. Correlation between meniscal extrusion and symptom duration, alignment, and arthritic changes in medial meniscus posterior root tear: Research article. Knee Surg. Relat. Res. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Allaire, R.; Muriuki, M.; Gilbertson, L.; Harner, C.D. Biomechanical Consequences of a Tear of the Posterior Root of the Medial Meniscus: Similar to Total Meniscectomy. JBJS 2008, 90, 1922–1931. [Google Scholar]
- Bae, J.Y.; Park, K.S.; Seon, J.K.; Kwak, D.-S.; Jeon, I.; Song, E.K. Biomechanical analysis of the effects of medial meniscectomy on degenerative osteoarthritis. Med. Biol. Eng. Comput. 2011, 50, 53–60. [Google Scholar] [CrossRef]
- Fairbank, T.J. Knee Joint Changes After Meniscectomy. J. Bone Jt. Surg. Br. Vol. 1948, 30, 664–670. [Google Scholar] [CrossRef]
- Kim, C.; Bin, S.-I.; Kim, J.-M.; Lee, B.-S.; Kim, T.-H. Progression of radiographic osteoarthritis after partial meniscectomy in degenerative medial meniscal posterior root tears was greater in varus- than in neutral-aligned knees: A minimum 5-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 3443–3449. [Google Scholar] [CrossRef]
- Sharifah, M.I.A.; Lee, C.L.; Suraya, A.; Johan, A.; Syed, A.F.S.K.; Tan, S.P. Accuracy of MRI in the diagnosis of meniscal tears in patients with chronic ACL tears. Knee Surg. Sports Traumatol. Arthrosc. 2013, 23, 826–830. [Google Scholar] [CrossRef]
- Krych, A.J.; Wu, I.T.; Desai, V.S.; Murthy, N.S.; Collins, M.S.; Saris, D.B.; Levy, B.A.; Stuart, M.J. High Rate of Missed Lateral Meniscus Posterior Root Tears on Preoperative Magnetic Resonance Imaging. Orthop. J. Sports Med. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- De Smet, A.A.; Graf, B.K. Meniscal tears missed on MR imaging: Relationship to meniscal tear patterns and anterior cruciate ligament tears. Am. J. Roentgenol. 1994, 162, 905–911. [Google Scholar] [CrossRef]
- De Smet, A.A.; Mukherjee, R. Clinical, MRI, and Arthroscopic Findings Associated with Failure to Diagnose a Lateral Meniscal Tear on Knee MRI. Am. J. Roentgenol. 2008, 190, 22–26. [Google Scholar] [CrossRef]
- Bumberger, A.; Koller, U.; Hofbauer, M.; Tiefenboeck, T.M.; Hajdu, S.; Windhager, R.; Waldstein, W. Ramp lesions are frequently missed in ACL-deficient knees and should be repaired in case of instability. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 840–854. [Google Scholar] [CrossRef] [Green Version]
- Moreira, J.; Almeida, M.; Lunet, N.; Gutierres, M. Ramp lesions: A systematic review of MRI diagnostic accuracy and treatment efficacy. J. Exp. Orthop. 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Laprade, R.F.; Ho, C.P.; James, E.; Crespo, B.; Laprade, C.M.; Matheny, L.M. Diagnostic accuracy of 3.0 T magnetic resonance imaging for the detection of meniscus posterior root pathology. Knee Surg. Sports Traumatol. Arthrosc. 2014, 23, 152–157. [Google Scholar] [CrossRef]
- Anderson, A.F.; Irrgang, J.J.; Dunn, W.; Beaufils, P.; Cohen, M.; Cole, B.J.; Coolican, M.; Ferretti, M.; Glenn, R.E.; Johnson, R.; et al. Interobserver Reliability of the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS) Classification of Meniscal Tears. Am. J. Sports Med. 2011, 39, 926–932. [Google Scholar] [CrossRef]
- De Smet, A.A.; Tuite, M.J. Use of the “Two-Slice-Touch” Rule for the MRI Diagnosis of Meniscal Tears. Am. J. Roentgenol. 2006, 187, 911–914. [Google Scholar] [CrossRef]
- Kim, S.H.; Seo, H.J.; Seo, D.W.; Kim, K.-I.; Lee, S.H. Analysis of Risk Factors for Ramp Lesions Associated with Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2020, 48, 1673–1681. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, S.H.; Kim, K.-I.; Yang, J.W. Diagnostic Accuracy of Sequential Arthroscopic Approach for Ramp Lesions of the Posterior Horn of the Medial Meniscus in Anterior Cruciate Ligament–Deficient Knee. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 1582–1589. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, H.-J.; Park, Y.-B.; Jeong, H.-S.; Ha, C.-W. Anterior Cruciate Ligament Tibial Footprint Size as Measured on Magnetic Resonance Imaging: Does It Reliably Predict Actual Size? Am. J. Sports Med. 2018, 48, 1877–1884. [Google Scholar]
- Kim, S.H.; Park, Y.-B.; Kim, D.-H.; Pujol, N.; Lee, H.-J. Predictive factors for failure of anterior cruciate ligament reconstruction via the trans-tibial technique. Arch. Orthop. Trauma Surg. 2020, 140, 1–13. [Google Scholar] [CrossRef]
- Rose, N.E.; Gold, S.M. A comparison of accuracy between clinical examination and magnetic resonance imaging in the diagnosis of meniscal and anterior cruciate ligament tears. Arthrosc. J. Arthrosc. Relat. Surg. 1996, 12, 398–405. [Google Scholar] [CrossRef]
- Jung, J.Y.; Choi, S.-H.; Ahn, J.H.; Lee, S.A. MRI findings with arthroscopic correlation for tear of discoid lateral meniscus: Comparison between children and adults. Acta Radiol. 2013, 54, 442–447. [Google Scholar] [CrossRef]
- Crawford, R.; Walley, G.; Bridgman, S.; Maffulli, N. Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: A systematic review. Br. Med Bull. 2007, 84, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.R.; Wolf, B.R.; Amendola, A.; Andrish, J.T.; Kaeding, C.; Marx, R.G.; Mccarty, E.C.; Parker, R.D.; Wright, R.W.; Spindler, K.P. Multirater Agreement of Arthroscopic Meniscal Lesions. Am. J. Sports Med. 2004, 32, 1937–1940. [Google Scholar] [CrossRef]
- Chhabra, A.; Ashikyan, O.; Hlis, R.; Cai, A.; Planchard, K.; Xi, Y.; McCrum, C.; Shah, J. The International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine classification of knee meniscus tears: Three-dimensional MRI and arthroscopy correlation. Eur. Radiol. 2019, 29, 6372–6384. [Google Scholar] [CrossRef]
- Sonnery-Cottet, B.; Cruz, R.S.; Vieira, T.D.; Goes, R.A.; Saithna, A. Ramp Lesions. Clin. Sports Med. 2020, 39, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Kent, R.N.; Amirtharaj, M.J.; Hardy, B.M.; Pearle, A.D.; Wickiewicz, T.L.; Imhauser, C.W. Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study. J. Biomech. 2018, 74, 9–15. [Google Scholar] [CrossRef]
- Song, G.-Y.; Liu, X.; Zhang, H.; Wang, Q.-Q.; Zhang, J.; Li, Y.; Feng, H. Increased Medial Meniscal Slope Is Associated with Greater Risk of Ramp Lesion in Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2016, 44, 2039–2046. [Google Scholar] [CrossRef]
- Lorbach, O.; Kieb, M.; Herbort, M.; Weyers, I.; Raschke, M.; Engelhardt, M. The influence of the medial meniscus in different conditions on anterior tibial translation in the anterior cruciate deficient knee. Int. Orthop. 2014, 39, 681–687. [Google Scholar] [CrossRef]
- Frank, J.M.; Moatshe, G.; Brady, A.W.; Dornan, G.J.; Coggins, A.; Muckenhirn, K.J.; Slette, E.L.; Mikula, J.D.; Laprade, R.F. Lateral Meniscus Posterior Root and Meniscofemoral Ligaments as Stabilizing Structures in the ACL-Deficient Knee: A Biomechanical Study. Orthop. J. Sports Med. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Kolbe, R.; Schmidt-Hebbel, A.; Forkel, P.; Pogorzelski, J.; Imhoff, A.B.; Feucht, M.J. Steep lateral tibial slope and lateral-to-medial slope asymmetry are risk factors for concomitant posterolateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2585–2591. [Google Scholar] [CrossRef]
- Jah, A.A.E.; Keyhani, S.; Zarei, R.; Moghaddam, A.K. Accuracy of MRI in comparison with clinical and arthroscopic findings in ligamentous and meniscal injuries of the knee. Acta Orthop. Belg. 2005, 71, 189–196. [Google Scholar]
- Erçin, E.; Kaya, I.; Sungur, I.; Demirbas, E.; Ugras, A.A.; Cetinus, E.M. History, clinical findings, magnetic resonance imaging, and arthroscopic correlation in meniscal lesions. Knee Surg. Sports Traumatol. Arthrosc. 2012, 20, 851–856. [Google Scholar] [CrossRef]
- Antinolfi, P.; Crisitiani, R.; Manfreda, F.; Bruè, S.; Sarakatsianos, V.; Placella, G.; Bartoli, M.; Caraffa, A. Relationship between Clinical, MRI, and Arthroscopic Findings: A Guide to Correct Diagnosis of Meniscal Tears. Joints 2017, 5, 164–167. [Google Scholar] [CrossRef] [Green Version]
Total Number of Patients | Anterior Cruciate Ligament (ACL) Injury | No ACL Injury | p-Value | ||
---|---|---|---|---|---|
543 | 192 | 351 | |||
Age | 43.9 ± 17.4 | 37.1 ± 14.6 | 46.9 ± 17.5 | <0.001 | |
Sex | |||||
Male | 379 | 131 | 248 | 0.556 | |
Female | 164 | 61 | 103 | ||
Meniscus tear on arthroscopy | |||||
Medial meniscus | + | 261 | 99 | 162 | 0.228 |
− | 282 | 93 | 189 | ||
Lateral meniscus | + | 271 | 101 | 170 | 0.353 |
− | 273 | 91 | 181 | ||
Meniscus tear in magnetic resonance imaging (MRI) | |||||
Medial meniscus | + | 302 | 110 | 192 | 0.561 |
− | 241 | 82 | 159 | ||
Lateral meniscus | + | 258 | 86 | 172 | 0.347 |
− | 285 | 106 | 179 | ||
Time from MRI to surgery (days) | 22.1 ± 9.2 | 21.9 ± 7.3 | 23.3 ± 9.8 | 0.080 |
Sensitivity | Specificity | Accuracy | PPV | NPV | |
---|---|---|---|---|---|
Type | |||||
Longitudinal | 48.2% | 91.9% | 79.2% | 71.1% | 81.2% |
Horizontal | 33.3% | 96.2% | 94.3% | 22.2% | 97.8% |
Radial | 66.7% | 92.1% | 91.7% | 11.8% | 99.4% |
Vertical flap | 0.0% | 99.5% | 99.5% | 0.0% | 100% |
Horizontal flap | 0.0% | 99.5% | 99.5% | 0.0% | 100% |
Complex | 76.5% | 88.6% | 86.5% | 59.1% | 94.6% |
Location | |||||
Anterior horn | 0.0% | 98.4% | 97.4% | 0.0% | 98.9% |
Body | 50.0% | 100.0% | 98.4% | 100.0% | 98.4% |
Posterior horn | 64.8% | 83.3% | 78.1% | 60.3% | 85.8% |
More than two compartment | 67.6% | 85.8% | 82.3% | 53.2% | 91.7% |
Sensitivity | Specificity | Accuracy | PPV | NPV | |
---|---|---|---|---|---|
Type | |||||
Longitudinal | 31.4% | 96.2% | 84.4% | 64.7% | 86.3% |
Horizontal | 14.3% | 94.6% | 91.7% | 9.1% | 96.7% |
Radial | 58.3% | 95.2% | 90.6% | 63.6% | 94.1% |
Vertical flap | 0.0% | 98.4% | 97.4% | 0.0% | 98.9% |
Horizontal flap | 0.0% | 99.5% | 99.5% | 0.0% | 100% |
Complex | 89.9% | 88.6% | 82.8% | 50.0% | 89.4% |
Location | |||||
Anterior horn | 80.0% | 96.8% | 96.4% | 40.0% | 99.5% |
Body | 30.8% | 97.2% | 92.7% | 44.4% | 95.1% |
Posterior horn | 43.4% | 89.2% | 76.6% | 60.5% | 80.5% |
More than two compartment | 50.0% | 91.9% | 85.4% | 53.6% | 90.9% |
Sensitivity | Specificity | Accuracy | PPV | NPV | |
---|---|---|---|---|---|
Type | |||||
Longitudinal | 58.3% | 98.2% | 95.4% | 70.0% | 96.9% |
Horizontal | 69.2% | 86.8% | 85.5% | 29.5% | 97.2% |
Radial | 38.5% | 94.9% | 92.9% | 22.7% | 97.6% |
Vertical flap | 0.0% | 100% | 99.7% | 0.0% | 99.7% |
Horizontal flap | 0.0% | 99.7% | 99.7% | 0.0% | 100% |
Complex | 65.3% | 90.5% | 83.5% | 72.7% | 87.1% |
Location | |||||
Anterior horn | 0.0% | 99.2% | 98.3% | 0.0% | 99.1% |
Body | 21.1% | 97.9% | 93.7% | 36.4% | 95.6% |
Posterior horn | 62.3% | 87.6% | 82.6% | 55.1% | 90.5% |
More than two compartment | 85.9% | 85.7% | 85.8% | 60.4% | 96.0% |
Sensitivity | Specificity | Accuracy | PPV | NPV | |
---|---|---|---|---|---|
Type | |||||
Longitudinal | 61.8% | 96.6% | 91.2% | 77.3% | 93.2% |
Horizontal | 48.0% | 94.2% | 90.9% | 38.7% | 95.9% |
Radial | 53.6% | 91.0% | 88.0% | 34.1% | 95.8% |
Vertical flap | 75.0% | 99.7% | 99.4% | 75.0% | 99.7% |
Horizontal flap | 0.0% | 100% | 100% | 0.0% | 100% |
Complex | 44.8% | 91.1% | 83.5% | 50.0% | 89.3% |
Location | |||||
Anterior horn | 55.6% | 94.7% | 93.7% | 21.7% | 98.8% |
Body | 47.3% | 95.3% | 87.7% | 65.0% | 90.7% |
Posterior horn | 48.0% | 97.5% | 94.0% | 60.0% | 96.1% |
More than two compartments | 72.8% | 91.9% | 87.5% | 72.8% | 91.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Lee, H.-J.; Jang, Y.-H.; Chun, K.-J.; Park, Y.-B. Diagnostic Accuracy of Magnetic Resonance Imaging in the Detection of Type and Location of Meniscus Tears: Comparison with Arthroscopic Findings. J. Clin. Med. 2021, 10, 606. https://doi.org/10.3390/jcm10040606
Kim SH, Lee H-J, Jang Y-H, Chun K-J, Park Y-B. Diagnostic Accuracy of Magnetic Resonance Imaging in the Detection of Type and Location of Meniscus Tears: Comparison with Arthroscopic Findings. Journal of Clinical Medicine. 2021; 10(4):606. https://doi.org/10.3390/jcm10040606
Chicago/Turabian StyleKim, Seong Hwan, Han-Jun Lee, Ye-Hoon Jang, Kwang-Jin Chun, and Yong-Beom Park. 2021. "Diagnostic Accuracy of Magnetic Resonance Imaging in the Detection of Type and Location of Meniscus Tears: Comparison with Arthroscopic Findings" Journal of Clinical Medicine 10, no. 4: 606. https://doi.org/10.3390/jcm10040606
APA StyleKim, S. H., Lee, H. -J., Jang, Y. -H., Chun, K. -J., & Park, Y. -B. (2021). Diagnostic Accuracy of Magnetic Resonance Imaging in the Detection of Type and Location of Meniscus Tears: Comparison with Arthroscopic Findings. Journal of Clinical Medicine, 10(4), 606. https://doi.org/10.3390/jcm10040606