Expanding the Role of Complement Therapies: The Case for Lupus Nephritis
Abstract
:1. Introduction: The Yin and Yang of Complement Protection Versus Injury
2. Complement Activation in Three Easy Steps
2.1. The Classical Pathway
2.2. The Lectin Pathway
2.3. The Alternative Pathway
2.4. The Final Common Pathway
3. Complement and LN
3.1. Complement Protects against Autoimmunity
3.2. Complement Causes Tissue Injury in SLE
4. Complement as a Therapeutic Target in LN
Compatibility of Complement Therapy with LN Standard-of-Care
5. Timing Is Everything: When Should a Complement-Targeted Intervention Be Started?
5.1. Systemic Complement Activation Markers
5.2. Intra-Renal Complement Activation Markers
6. Complement Therapeutics Today and Tomorrow
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, M.; Blom, A.M. Complement in removal of the dead—balancing inflammation. Immunol. Rev. 2016, 274, 218–232. [Google Scholar] [CrossRef]
- Birmingham, D.J.; Hebert, L.A. CR1 and CR1-like: The primate immune adherence receptors. Immunol. Rev. 2001, 180, 100–111. [Google Scholar] [CrossRef]
- Birmingham, D.J.; Gavit, K.F.; McCarty, S.M.; Yu, C.Y.; Rovin, B.H.; Nagaraja, H.N.; Hebert, L.A. Consumption of erythrocyte CR1 (CD35) is associated with protection against systemic lupus erythematosus renal flare. Clin. Exp. Immunol. 2006, 143, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Truedsson, L.; Bengtsson, A.A.; Sturfelt, G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 2007, 40, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Agnello, V. Association of systemic lupus erythematosus and SLE-like syndromes with hereditary and acquired complement deficiency states. Arthritis Rheum. 1978, 21, S146–S152. [Google Scholar] [CrossRef]
- Macedo, A.C.; Isaac, L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front. Immunol. 2016, 7, 55. [Google Scholar] [CrossRef] [Green Version]
- Grumach, A.S.; Kirschfink, M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol. Immunol. 2014, 61, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Noris, M.; Remuzzi, G. Genetics of Immune-Mediated Glomerular Diseases: Focus on Complement. Semin. Nephrol. 2017, 37, 447–463. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Takahashi, R.; Sumida, T. Mannose binding lectin: Genetics and autoimmune disease. Autoimmun. Rev. 2005, 4, 364–372. [Google Scholar] [CrossRef]
- Mahto, H.; Pati, A.; Sahu, S.K.; Sharma, H.P.; Padhi, A.; Panda, A.K. Association of MBL-2 gene polymorphisms with systemic lupus erythematosus: An updated meta-analysis and trial sequential analysis. Lupus 2020, 29, 1227–1237. [Google Scholar] [CrossRef]
- Garred, P.; Larsen, F.; Seyfarth, J.; Fujita, R.; Madsen, H.O. Mannose-binding lectin and its genetic variants. Genes Immun. 2006, 7, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Tanha, N.; Troelsen, L.; From Hermansen, M.L.; Kjaer, L.; Faurschou, M.; Garred, P.; Jacobsen, S. MBL2 gene variants coding for mannose-binding lectin deficiency are associated with increased risk of nephritis in Danish patients with systemic lupus erythematosus. Lupus 2014, 23, 1105–1111. [Google Scholar] [CrossRef]
- Madsen, H.O.; Garred, P.; Thiel, S.; Kurtzhals, J.A.; Lamm, L.U.; Ryder, L.P.; Svejgaard, A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J. Immunol. 1995, 155, 3013–3020. [Google Scholar] [PubMed]
- Panda, A.K.; Parida, J.R.; Tripathy, R.; Pattanaik, S.S.; Ravindran, B.; Das, B.K. Mannose binding lectin: A biomarker of systemic lupus erythematosus disease activity. Arthritis Res. Ther. 2012, 14, R218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisano, S.; Matsushita, M.; Fujita, T.; Endo, Y.; Takebayashi, S. Mesangial IgA2 deposits and lectin pathway-mediated complement activation in IgA glomerulonephritis. Am. J. Kidney Dis. 2001, 38, 1082–1088. [Google Scholar] [CrossRef]
- Botto, M.; Dell′Agnola, C.; Bygrave, A.E.; Thompson, E.M.; Cook, H.T.; Petry, F.; Loos, M.; Pandolfi, P.P.; Walport, M.J. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 1998, 19, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.A.; Pickering, M.C.; Warren, J.; Fossati-Jimack, L.; Cortes-Hernandez, J.; Cook, H.T.; Botto, M.; Walport, M.J. C1q deficiency and autoimmunity: The effects of genetic background on disease expression. J. Immunol. 2002, 168, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Koralov, S.B.; Kelsoe, G. Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J. Exp. Med. 2000, 192, 1339–1352. [Google Scholar] [CrossRef] [Green Version]
- Klos, A.; Tenner, A.J.; Johswich, K.O.; Ager, R.R.; Reis, E.S.; Kohl, J. The role of the anaphylatoxins in health and disease. Mol. Immunol. 2009, 46, 2753–2766. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Lee, J.D.; Kemper, C.; Woodruff, T.M. The Complement Receptor C5aR2: A Powerful Modulator of Innate and Adaptive Immunity. J. Immunol. 2019, 202, 3339–3348. [Google Scholar] [CrossRef]
- Bao, L.; Haas, M.; Quigg, R.J. Complement factor H deficiency accelerates development of lupus nephritis. J. Am. Soc. Nephrol. 2011, 22, 285–295. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Garnier, G.; Circolo, A.; Wetsel, R.A.; Ruiz, P.; Holers, V.M.; Boackle, S.A.; Colten, H.R.; Gilkeson, G.S. Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J. Immunol. 2000, 164, 786–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, M.K.; Jarmi, T.; Ruiz, P.; Xu, Y.; Holers, V.M.; Gilkeson, G.S. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int. 2004, 65, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez de Cordoba, S.; Esparza-Gordillo, J.; Goicoechea de Jorge, E.; Lopez-Trascasa, M.; Sanchez-Corral, P. The human complement factor H: Functional roles, genetic variations and disease associations. Mol. Immunol. 2004, 41, 355–367. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, H.; Khosravi, M.; Cui, H.; Qian, X.; Kelly, J.A.; Kaufman, K.M.; Langefeld, C.D.; Williams, A.H.; Comeau, M.E.; et al. Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet. 2011, 7, e1002079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.M.; Yu, F.; Tan, Y.; Song, D.; Zhao, M.H. Serum complement factor H is associated with clinical and pathological activities of patients with lupus nephritis. Rheumatology 2012, 51, 2269–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birmingham, D.J.; Irshaid, F.; Nagaraja, H.N.; Zou, X.; Tsao, B.P.; Wu, H.; Yu, C.Y.; Hebert, L.A.; Rovin, B.H. The complex nature of serum C3 and C4 as biomarkers of lupus renal flare. Lupus 2010, 19, 1272–1280. [Google Scholar] [CrossRef]
- Grossman, T.R.; Hettrick, L.A.; Johnson, R.B.; Hung, G.; Peralta, R.; Watt, A.; Henry, S.P.; Adamson, P.; Monia, B.P.; McCaleb, M.L. Inhibition of the alternative complement pathway by antisense oligonucleotides targeting complement factor B improves lupus nephritis in mice. Immunobiology 2016, 221, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, L.A.; Mizui, M.; Nalbandian, A.; Bosse, R.; Crispin, J.C.; Tsokos, G.C. Complement receptor of the immunoglobulin superfamily reduces murine lupus nephritis and cutaneous disease. Clin. Immunol. 2015, 160, 286–291. [Google Scholar] [CrossRef]
- Sekine, H.; Kinser, T.T.; Qiao, F.; Martinez, E.; Paulling, E.; Ruiz, P.; Gilkeson, G.S.; Tomlinson, S. The benefit of targeted and selective inhibition of the alternative complement pathway for modulating autoimmunity and renal disease in MRL/lpr mice. Arthritis Rheum. 2011, 63, 1076–1085. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Haas, M.; Kraus, D.M.; Hack, B.K.; Rakstang, J.K.; Holers, V.M.; Quigg, R.J. Administration of a soluble recombinant complement C3 inhibitor protects against renal disease in MRL/lpr mice. J. Am. Soc. Nephrol. 2003, 14, 670–679. [Google Scholar] [CrossRef] [Green Version]
- Birmingham, D.J.; Bitter, J.E.; Ndukwe, E.G.; Dials, S.; Gullo, T.R.; Conroy, S.; Nagaraja, H.N.; Rovin, B.H.; Hebert, L.A. Relationship of Circulating Anti-C3b and Anti-C1q IgG to Lupus Nephritis and Its Flare. Clin. J. Am. Soc. Nephrol. 2016, 11, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hu, Q.; Madri, J.A.; Rollins, S.A.; Chodera, A.; Matis, L.A. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc. Natl. Acad. Sci. USA 1996, 93, 8563–8568. [Google Scholar] [CrossRef] [Green Version]
- Biesecker, G.; Katz, S.; Koffler, D. Renal localization of the membrane attack complex in systemic lupus erythematosus nephritis. J. Exp. Med. 1981, 154, 1779–1794. [Google Scholar] [CrossRef] [Green Version]
- Wilson, H.R.; Medjeral-Thomas, N.R.; Gilmore, A.C.; Trivedi, P.; Seyb, K.; Farzaneh-Far, R.; Gunnarsson, I.; Zickert, A.; Cairns, T.D.; Lightstone, L.; et al. Glomerular membrane attack complex is not a reliable marker of ongoing C5 activation in lupus nephritis. Kidney Int. 2019, 95, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Contreras, G.; Mattiazzi, A.; Guerra, G.; Ortega, L.M.; Tozman, E.C.; Li, H.; Tamariz, L.; Carvalho, C.; Kupin, W.; Ladino, M.; et al. Recurrence of lupus nephritis after kidney transplantation. J. Am. Soc. Nephrol. 2010, 21, 1200–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goral, S.; Ynares, C.; Shappell, S.B.; Snyder, S.; Feurer, I.D.; Kazancioglu, R.; Fogo, A.B.; Helderman, J.H. Recurrent lupus nephritis in renal transplant recipients revisited: It is not rare. Transplantation 2003, 75, 651–656. [Google Scholar] [CrossRef] [PubMed]
- Norby, G.E.; Strom, E.H.; Midtvedt, K.; Hartmann, A.; Gilboe, I.M.; Leivestad, T.; Stenstrom, J.; Holdaas, H. Recurrent lupus nephritis after kidney transplantation: A surveillance biopsy study. Ann. Rheum. Dis. 2010, 69, 1484–1487. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Franchimont, D.; Hiroi, N.; Frey, G.; Boettner, A.; Ehrhart-Bornstein, M.; O′Shea, J.J.; Chrousos, G.P.; Bornstein, S.R. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 2002, 16, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Lemercier, C.; Julen, N.; Coulpier, M.; Dauchel, H.; Ozanne, D.; Fontaine, M.; Ripoche, J. Differential modulation by glucocorticoids of alternative complement protein secretion in cells of the monocyte/macrophage lineage. Eur. J. Immunol. 1992, 22, 909–915. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, M.; Zeng, Y.; Sun, X.; Gong, T.; Zhang, Z. Mechanistic studies of a novel mycophenolic acid-glucosamine conjugate that attenuates renal ischemia/reperfusion injury in rat. Mol. Pharm. 2014, 11, 3503–3514. [Google Scholar] [CrossRef] [PubMed]
- Pennington, J.E.; Matthews, W.J., Jr.; Marino, J.T., Jr.; Colten, H.R. Cyclophosphamide and cortisone acetate inhibit complement biosynthesis by guinea pig bronchoalveolar macrophages. J. Immunol. 1979, 123, 1318–1321. [Google Scholar]
- Renner, B.; Klawitter, J.; Goldberg, R.; McCullough, J.W.; Ferreira, V.P.; Cooper, J.E.; Christians, U.; Thurman, J.M. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol. 2013, 24, 1849–1862. [Google Scholar] [CrossRef] [Green Version]
- Loeschenberger, B.; Niess, L.; Wurzner, R.; Schwelberger, H.; Eder, I.E.; Puhr, M.; Guenther, J.; Troppmair, J.; Rudnicki, M.; Neuwirt, H. Calcineurin inhibitor-induced complement system activation via ERK1/2 signalling is inhibited by SOCS-3 in human renal tubule cells. Eur. J. Immunol. 2018, 48, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Reddy, V.; Klein, C.; Isenberg, D.A.; Glennie, M.J.; Cambridge, G.; Cragg, M.S.; Leandro, M.J. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology 2017, 56, 1227–1237. [Google Scholar] [CrossRef] [Green Version]
- De Rosa, M.; Azzato, F.; Toblli, J.E.; De Rosa, G.; Fuentes, F.; Nagaraja, H.N.; Nash, R.; Rovin, B.H. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int. 2018, 94, 788–794. [Google Scholar] [CrossRef] [Green Version]
- Birmingham, D.J.; Hebert, L.A. The Complement System in Lupus Nephritis. Semin. Nephrol. 2015, 35, 444–454. [Google Scholar] [CrossRef]
- Wu, Y.L.; Yang, Y.; Chung, E.K.; Zhou, B.; Kitzmiller, K.J.; Savelli, S.L.; Nagaraja, H.N.; Birmingham, D.J.; Tsao, B.P.; Rovin, B.H.; et al. Phenotypes, genotypes and disease susceptibility associated with gene copy number variations: Complement C4 CNVs in European American healthy subjects and those with systemic lupus erythematosus. Cytogenet. Genome Res. 2008, 123, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Siegert, C.; Daha, M.; Westedt, M.L.; van der Voort, E.; Breedveld, F. IgG autoantibodies against C1q are correlated with nephritis, hypocomplementemia, and dsDNA antibodies in systemic lupus erythematosus. J. Rheumatol. 1991, 18, 230–234. [Google Scholar] [PubMed]
- Sinico, R.A.; Rimoldi, L.; Radice, A.; Bianchi, L.; Gallelli, B.; Moroni, G. Anti-C1q autoantibodies in lupus nephritis. Ann. N. Y. Acad. Sci. 2009, 1173, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Welch, T.R.; Beischel, L.S.; Frenzke, M.; Witte, D. Regulated expression of complement factor B in the human kidney. Kidney Int. 1996, 50, 521–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, T.R.; Beischel, L.S.; Witte, D.P. Differential expression of complement C3 and C4 in the human kidney. J. Clin. Investig. 1993, 92, 1451–1458. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.V.; Malvar, A.; Song, H.; Alberton, V.; Lococo, B.; Vance, J.; Zhang, J.; Yu, L.; Birmingham, D.; Rovin, B.H. Molecular imaging of the kidney in lupus nephritis to characterize response to treatment. Transl. Res. 2017, 182, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Ohsawa, I.; Nagamachi, S.; Ishii, M.; Kusaba, G.; Inoshita, H.; Toki, A.; Horikoshi, S.; Ohi, H.; Matsushita, M.; et al. Significance of glomerular activation of the alternative pathway and lectin pathway in lupus nephritis. Lupus 2011, 20, 1378–1386. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.; Kim, M.; Lee, H.Y.; Kim, Y.; Kang, M.S.; Kim, J. Activation of the alternative complement pathway predicts renal outcome in patients with lupus nephritis. Lupus 2020, 29, 862–871. [Google Scholar] [CrossRef]
- Kelly, R.H.; Carpenter, A.B.; Sudol, K.S.; Jagarlapudi, S.P.; Manzi, S. Complement C3 fragments in urine: Detection in systemic lupus erythematosus patients by western blotting. Appl. Theor. Electrophor. 1993, 3, 265–269. [Google Scholar]
- Negi, V.S.; Aggarwal, A.; Dayal, R.; Naik, S.; Misra, R. Complement degradation product C3d in urine: Marker of lupus nephritis. J. Rheumatol. 2000, 27, 380–383. [Google Scholar] [PubMed]
- Kusunoki, Y.; Akutsu, Y.; Itami, N.; Tochimaru, H.; Nagata, Y.; Takekoshi, Y.; Sagawa, A.; Kataoka, Y.; Nagasawa, S. Urinary excretion of terminal complement complexes in glomerular disease. Nephron 1991, 59, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.D.; Bannerman, F.; Beresford, M.W.; Oni, L. A systematic review of the role of eculizumab in systemic lupus erythematosus-associated thrombotic microangiopathy. BMC Nephrol. 2020, 21, 245. [Google Scholar] [CrossRef]
- Pickering, M.C.; Ismajli, M.; Condon, M.B.; McKenna, N.; Hall, A.E.; Lightstone, L.; Terence Cook, H.; Cairns, T.D. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology 2015, 54, 2286–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayne, D.R.W.; Bruchfeld, A.N.; Harper, L.; Schaier, M.; Venning, M.C.; Hamilton, P.; Burst, V.; Grundmann, F.; Jadoul, M.; Szombati, I.; et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2017, 28, 2756–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mainolfi, N.; Ehara, T.; Karki, R.G.; Anderson, K.; Mac Sweeney, A.; Liao, S.M.; Argikar, U.A.; Jendza, K.; Zhang, C.; Powers, J.; et al. Discovery of 4-((2S,4S)-4-Ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)be nzoic Acid (LNP023), a Factor B Inhibitor Specifically Designed To Be Applicable to Treating a Diverse Array of Complement Mediated Diseases. J. Med. Chem. 2020, 63, 5697–5722. [Google Scholar] [CrossRef] [PubMed]
- Wiles, J.A.; Galvan, M.D.; Podos, S.D.; Geffner, M.; Huang, M. Discovery and Development of the Oral Complement Factor D Inhibitor Danicopan (ACH-4471). Curr. Med. Chem. 2020, 27, 4165–4180. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Drug Type | Complement Target | Stage | Disease | Clinical Trials Identifier |
---|---|---|---|---|---|
ACH-4471 | Small Molecule Inhibitor | Factor D | Phase 2 | C3G | NCT03369236 |
ALN-CC5 | Small Interfering RNA | C5 | Phase 2 | PNH | NCT02352493 |
APL-2 | Synthetic Cyclic Peptide | C3 | Phase 2 | Various Glomerulopathies | NCT03453619 |
Avocopan | Small Molecule Inhibitor | C5aR1 | Phase 3 | AAV | NCT02994927 |
Eculizumab | Monoclonal Antibody | C5 | Phase 1 | C3G | NCT01221181 |
IFX1 | Monoclonal Antibody | C5a | Phase 2 | AAV | NCT03712345 |
IONIS-FB-LRx | Ligand Conjugated Antisense Inhibitor | Factor B | Phase 2 | IgAN | NCT04014335 |
LNP023 | Small Molecule Inhibitor | Factor B | Phase 2 | IgAN | NCT03373461 |
Narsoplimab | Monoclonal Antibody | MASP-2 | Phase 3 Phase 2 | IgAN LN | NCT03608033 NCT02682407 |
Ravulizumab | Monoclonal Antibody | C5 | Phase 2 | LN | NCT04564399 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.L.; Birmingham, D.J.; Rovin, B.H. Expanding the Role of Complement Therapies: The Case for Lupus Nephritis. J. Clin. Med. 2021, 10, 626. https://doi.org/10.3390/jcm10040626
Li NL, Birmingham DJ, Rovin BH. Expanding the Role of Complement Therapies: The Case for Lupus Nephritis. Journal of Clinical Medicine. 2021; 10(4):626. https://doi.org/10.3390/jcm10040626
Chicago/Turabian StyleLi, Nicholas L., Daniel J. Birmingham, and Brad H. Rovin. 2021. "Expanding the Role of Complement Therapies: The Case for Lupus Nephritis" Journal of Clinical Medicine 10, no. 4: 626. https://doi.org/10.3390/jcm10040626
APA StyleLi, N. L., Birmingham, D. J., & Rovin, B. H. (2021). Expanding the Role of Complement Therapies: The Case for Lupus Nephritis. Journal of Clinical Medicine, 10(4), 626. https://doi.org/10.3390/jcm10040626