The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology
Abstract
:1. Introduction
2. A Brief History of Alcohol Use and Abuse
3. Alcoholic Liver Disease (ALD)
3.1. Early Studies, Epidemiology, and Risk Factors
3.2. Genetics, a Risk Factor on Its Own
3.3. Animal Models (Rodents and Primates)
3.3.1. Lieber-DeCarli Pair Feeding Model
3.3.2. Charles Lieber’s Baboon Model
3.3.3. The Tsukamoto-French Intragastric Infusion Model
3.3.4. The NIAAA Chronic and Binge Drinking Model
3.4. Ethanol Oxidation and Its Consequences on the Liver
3.4.1. Alcohol Dehydrogenase (ADH)
- Increase of fatty acid- and triglyceride synthesis and inhibition of ß-oxidation of fatty acids;
- Decreased pyruvate and increased lactate concentrations in the liver. This may lead to an inhibition of gluconeogenesis and hypoglycemia. In addition, lactic acidosis with hyperuricemia may occur. Lactate also stimulates hepatic stellate cells (HSCs) to produce collagen;
- Severe effects on porphyrin metabolism resulting in secondary porphyria;
- The deleterious effects of acetaldehyde will be discussed below.
3.4.2. Hepatic Microsomal Ethanol Oxidizing System (MEOS)
- Interaction of the microsomal ethanol metabolism with the metabolism of a variety of xenobiotics, drugs and carcinogens leading to increased toxicity and carcinogenesis [63];
3.4.3. First Pass Metabolism (FPM) of Ethanol
3.5. Mechanisms of Hepatic Toxicity
3.5.1. Acetaldehyde
- Inhibition of the nuclear repair system [80];
- A disturbed methyl-transfer with decreased levels of the active methyl donor S-adenosyl-methionine (SAME). As a consequence, membrane damage and hypomethylation of DNA may occur, which may contribute to hepatic carcinogenesis [81];
- Stimulation of fibrogenesis [9].
3.5.2. Oxidative Stress
3.5.3. The Gut–Liver Axis: Inflammation through Kupffer Cell Activation by Endotoxins from the Gut
3.6. Sequence of Liver Injury
3.6.1. Alcoholic Fatty Liver
- Alcohol metabolism increases the hepatic NADH/NAD+ ratio, which inhibits mitochondrial β-oxidation of fatty acids and stimulates fatty acid synthesis resulting in hepatic steatosis.
- Alcohol consumption up-regulates the hepatic expression of SREBP1c, a transcription factor that stimulates expression of lipogenic genes, which results in increased fatty acid synthesis.
- Alcohol, probably via acetaldehyde, inactivates peroxisome proliferator-activated receptor-α (PPARα), a nuclear hormone receptor that up-regulates the expression of many genes involved in free fatty acid transport and oxidation.
- Alcohol inhibits 5′-AMP-activated protein kinase (AMPK) and subsequently inhibits fatty acid synthesis but promotes fatty acid oxidation via the dysregulation of various enzymes involved in fat metabolism.
- Alcohol consumption affects fatty acid mobilization and clearance. Alcohol consumption induces lipolysis and the death of adipocytes, which increases fatty acids in the circulation and finally their hepatic uptake.
- Alcohol consumption can also stimulate the influx of lipids from the intestine to the liver.
- Alcohol activates and inhibits autophagy. While acute alcohol stimulates autophagy and may prevent fat accumulation, chronic alcohol ingestion inhibits autophagy, thereby reducing lipid clearance.
3.6.2. Alcoholic Steatohepatitis (ASH) and Alcoholic Hepatitis (AH)
3.6.3. Fibrosis and Cirrhosis
3.6.4. Hepatocellular Cancer
3.7. Clinical Aspects of ALD
3.7.1. Diagnosis
3.7.2. Prognosis
3.7.3. Treatment
Abstinence
Medication for AH
Treatment of Cirrhosis
Liver Transplantation
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Acetaldehyde. |
AASLD | American Association for the Study of the Liver Disease |
ABIC | Age, bilirubin, INR, creatinine |
ACG | American College of Gastroenterology |
ADH | alcohol dehydrogenase |
ALD | alcoholic liver disease |
ALDH | acetaldehyde dehydrogenase |
CH3CHO | acetyl radical. |
CH3CH2O | ethoxy radical. |
CYP2E1 | cytochrome P450 2E1 |
DNA | deoxyribonucleic acid |
FPM | first pass metabolism |
HCC | hepatocellular carcinoma |
HO | hydroxyl radical. |
HO.2 | superoxide radical |
H2O2 MELD | hydroxyl peroxide modified model for end-stage liver disease |
MEOS | microsomal ethanol oxidizing system |
ROS | reactive oxygen species, |
4-HNE | 4-hydroxynonenal |
LT | liver transplantation |
MDA | malondialdehyde |
RO | alkoxyl radical. |
ROO | peroxyl radical |
SAME | S-adenosyl-methionine |
References
- WHO. Global Status Report on Alcohol and Health 2014; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Blachier, M.; Leleu, H.; Peck-Radosavljevic, M.; Valla, D.C.; Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 2013, 58, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Best, C.H.; Hartroft, W.S.; Lucas, C.C.; Ridout, J.H. Liver Damage Produced by Feeding Alcohol or Sugar and its Prevention by Choline. Sel. Pap. Charles H Best 1963, 2, 1001–1005. [Google Scholar] [CrossRef] [Green Version]
- DHS. Jahrbuch Sucht 2020; Pabst Science Publishers: Lengerich, Germany, 2020. [Google Scholar]
- Rehm, J.; Samokhvalow, A.W.; Neuman, M.G.; Room, R.; Parry, C.D.; Lönnroth, K.; Patra, J.; Poznyak, V.; Popova, S. The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review. BMC Public Health 2009, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- EASL. HEPAHEALTH Project Report. Risk Factors and the Burden of Liver Disease in Europe and Selected Central Asian Countries; EASL: Geneva, Switzerland, 2018. [Google Scholar]
- Lieber, C.S.; Jones, D.P.; DeCarli, L.M. Effects of Prolonged Ethanol Intake: Production of Fatty Liver Despite Adequate Diets. J. Clin. Investig. 1965, 44, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Lieber, C.S. Effects of ethanol upon lipid metabolism. Lipids 1974, 9, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.S. Alcohol and the liver: 1994 update. Gastroenterology 1994, 106, 1085–1105. [Google Scholar] [CrossRef]
- Lieber, C.S. Metabolism of ethanol. In Metabolic Aspects of Alcoholism; Lieber, C.S., Ed.; MTP Press: Lancaster, UK, 1977; pp. 1–30. [Google Scholar]
- Lelbach, W.K. Cirrhosis in the Alcoholic and its Relation to the Volume of Alcohol Abuse. Ann. N. Y. Acad. Sci. 1975, 252, 85–105. [Google Scholar] [CrossRef] [PubMed]
- Pequignot, G.; Tuyns, A.J.; Berta, J.L. Ascitic Cirrhosis in Relation to Alcohol Consumption. Int. J. Epidemiol. 1978, 7, 113–120. [Google Scholar] [CrossRef]
- Seitz, H.K.; Bataller, R.; Cortez-Pinto, H.; Gao, B.; Gual, A.; Lackner, C.; Mathurin, P.; Mueller, S.; Szabo, G.; Tsukamoto, H. Alcoholic liver disease. Nat. Rev. Dis. Prim. 2018, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Pimpin, L.; Cortez-Pinto, H.; Negro, F.; Corbould, E.; Lazarus, J.V.; Webber, L.; Sheron, N. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. 2018, 69, 718–735. [Google Scholar] [CrossRef]
- Addolorato, G.; Abenavoli, L.; Dallio, M.; Federico, A.; Germani, G.; Gitto, S.; Leandro, G.; Loguercio, C.; Marra, F.; Stasi, E. Alcohol associated liver disease 2020: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig. Liver Dis. 2020, 52, 374–391. [Google Scholar] [CrossRef] [PubMed]
- Gavaler, J.S.; Arria, A.M. Increased susceptibility of women to alcohol liver disease: Artificial or real? In Alcoholic Liver Disease. Pathology and Pathogenesis, 2nd ed.; Hall, P., Ed.; Edward Arnold Publishers: London, UK, 1995; pp. 123–133. [Google Scholar]
- Seitz, H.K.; Mueller, S. Alcoholic Liver Disease. In Clinical Hepatology; Springer International Publishing: New York, NY, USA, 2010; Volume 2, pp. 1111–1151. [Google Scholar]
- Frezza, M.; DiPadua, C.; Pozzato, G.; Terpin, M.; Baraona, E.; Lieber, C.S. High blood alcohol levels in women: The role of decreased pastric alcohol dehydrogenase activity and first pass metabolism. N. Engl. J. Med. 1990, 322, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Kamochi, M.; Yoshikawa, H.; Nakayama, Y. Trends in Alcoholic Liver Disease Research. Clinical and Scientific Aspects; InTech: London, UK, 2012; pp. 23–40. [Google Scholar]
- Seitz, H.K.; Mueller, S.; Hellerbrand, C.; Liangpunsakul, S. Effect of chronic alcohol consumption on the development and progression of non-alcoholic fatty liver disease (NAFLD). HepatoBiliary Surg. Nutr. 2015, 4, 147–151. [Google Scholar] [PubMed]
- Boyle, M.; Masson, S.; Anstee, Q.M. The bidirectional impacts of alcohol consumption and the metabolic syndrome: Cofactors for progressive fatty liver disease. J. Hepatol. 2018, 68, 251–267. [Google Scholar] [CrossRef] [Green Version]
- Ascha, M.S.; Hanouneh, I.A.; Lopez, R.; Tamimi, T.A.-R.; Feldstein, A.F.; Zein, N.N. The incidence and risk factors of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Hepatology 2010, 51, 1972–1978. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, Y.; Arase, Y.; Ikeda, K.; Akuta, N.; Kobayashi, M.; Saitoh, S.; Suzuki, F.; Suzuki, Y.; Inao, M.; Mochida, S.; et al. Effects of alcohol consumption on hepatocarcinogenesis in Japanese patients with fatty liver disease. Clin. Gastroenterol. Hepatol. 2016, 14, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-J.; Liang, K.-Y.; Chang, A.-S.; Chang, Y.-C.; Lu, S.-N.; Liaw, Y.-F.; Chang, W.-Y.; Sheen, M.-C.; Lin, T.-M. Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma. Hepatology 1991, 13, 398–406. [Google Scholar] [CrossRef]
- Mueller, S.; Millonig, G.; Seitz, H.K. Alcoholic liver disease and hepatitis C: A frequently underestimated combination. World J. Gastroenterol. 2009, 15, 3462–3471. [Google Scholar]
- Fletcher, L.M.; Powell, L.W. Hemochromatosis and alcoholic liver disease. Alcohol 2003, 30, 131–136. [Google Scholar] [CrossRef]
- Strnad, P.; Buch, S.; Hamesch, K.; Hampe, J.; Trautwein, C.; Berg, T. Heterozygous carriage of the alpha1-antitrypsin Z variant rs28929474 predisposes to the development of cirrhosis in the presence of alcohol misuse and non- alcohol-related fatty liver disease. J. Hepatol. 2017, 66, S177. [Google Scholar] [CrossRef]
- Hrubec, Z.; Omenn, G.S. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: Twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol. Clin. Exp. Res. 1981, 5, 207–215. [Google Scholar] [CrossRef]
- Stickel, F.; Moreno, C.; Hampe, J.; Morgan, M.Y. The genetics of alcohol dependence and alcohol-related liver disease. J. Hepatol. 2017, 66, 195–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salameh, H. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am. J. Gastroenterol. 2015, 110, 846–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stickel, F. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 2011, 53, 86–95. [Google Scholar] [CrossRef]
- Buch, S. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 andMBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 2015, 47, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Schwantes-An, T.H.; Darley, R.; Mathurin, P.; Masson, S.; Liangpunsakul, S.; Mueller, S. for the GenomALC Consortium. Genome-wide association study and meta-analysis identifies novel risk factors for alcohol related liver cirrhosis. Hepatology 2020. [Google Scholar] [CrossRef] [PubMed]
- BasuRay, S.; Smagris, E.; Cohen, J.; Hobbs, H.H. The PNPLA3 variant associated with fatty liver disease (1148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017, 66, 1111–1124. [Google Scholar] [CrossRef] [Green Version]
- Innes, H.; Buch, S.; Hutchinson, I.N.; Guha, J.R.; Morling, E.; Barnes, W. Genome-wide association study for alcohol-related cirrhosis identifies risk loci in MARC1 and HNRNPUL1. Gastroenterology 2020, 159, 1276–1289. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. Quantitative relationship between the amount of dietary fat and alcoholic fatty liver. Am. J. Clin. Nutr. 1970, 23, 474–478. [Google Scholar] [CrossRef]
- Popper, H.; Lieber, C.S. Histogensis of alcoholic fibrosis and cirrhosis in the baboon. Am. J. Pathol. 1980, 9, 695–716. [Google Scholar]
- Seitz, H.K.; Mueller, S. Metabolism of alcohol and its consequences. In Metabolism of Drugs and Other Xenobiotics; Anzenbacher, P., Zenger, U.M., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2012; pp. 493–516. [Google Scholar]
- Wang, Y.; Seitz, H.K.; Wang, X.D. Moderate alcohol consumption aggravates high fat diet induced steatohepatitis in rats. Alcohol. Clin. Exp. Res. 2010, 34, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Millonig, G.; Nair, J.; Patsenker, E.; Stickel, F.; Mueller, S.; Bartsch, H.; Seitz, H.K. Ethanol-induced cytochrome P-4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 2009, 50, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, H.; French, S.W.; Benson, N.; Delgado, G.; Rao, G.A.; Larkin, E.C.; Largman, C. Severe and progressive steatosis and focal necrosis in rat liver induced by continuous intragastric infusion of ethanol and low fat diet. Hepatology 1985, 5, 224–232. [Google Scholar] [CrossRef]
- Bertola, A.; Mathews, S.; Ki, S.H.; Wang, H.; Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 2013, 8, 627–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, H.A.; Perkins, J.R. The physiological role of liver alcohol dehydrogenase. Biochem. J. 1970, 118, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Von Wartburg, J.P.; Papenberg, J.; Aebi, H. An atypical human alcohol dehydrogenase. Can. J. Biochem. 1965, 43, 889–898. [Google Scholar] [CrossRef]
- Von Wartburg, J.P.; Schürch, P.M. Atypical human liver alcohol dehydrogenase. Ann. N. Y. Acad. Sci. 1968, 151, 936–946. [Google Scholar] [CrossRef]
- Seitz, H.K.; Egerer, G.; Simanowski, U.A.; Waldherr, R.; Echey, R.; Agarwal, D.P.; Goedde, H.W.; von Wartburg, J.P. Human gastric alcohol dehydrogenase activity: Effect of age, sex, and alcoholism. Gut 1993, 34, 1433–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenberg, H.J. The genetics of alcohol metabolism: Role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health 2007, 30, 5–13. [Google Scholar]
- Pares, X.; Farres, J. Alcohol and aldehyde dehydrogenases in the gastrointestinal tract. In Alcohol and the Gastrointestinal Tract; Preedy, V.R., Watson, R.R., Eds.; CRC Press: Boca Raton, FL, USA, 1996; pp. 41–56. [Google Scholar]
- Seitz, H.K.; Stickel, F. Molecular mechanisms of alcohol mediated carcinogenesis. Nat. Rev. Cancer 2007, 7, 599–612. [Google Scholar] [CrossRef]
- Homann, N.; Stickel, F.; König, I.R.; Junghanns, K.; Benesova, M.; Schuppan, D.; Himsel, S.; Zuber-Jerger, I.; Hellerbrand, C.; Ludwig, D.; et al. Alcohol dehydrogenase 1C*1 allele is a genetic marker for alcohol-associated cancer in heavy drinkers. Int. J. Cancer 2006, 118, 1998–2002. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Stickel, F. Acetaldehyde, an underestimated risk factor in cancer development: Role of genetics in ethanol metabolism. Genes Nutr. 2010, 5, 121–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, C.S.; DeCarli, L.M. Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding. Science 1968, 162, 917–918. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. Hepatic microsomal ethanol oxidizing system. In vitro characteristics and adaptive properties in vivo. J. Biol. Chem. 1970, 245, 2505–2512. [Google Scholar] [CrossRef]
- Lieber, C.S.; DeCarli, L.M. The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo. J. Pharmacol. Exp. Ther. 1972, 181, 279–287. [Google Scholar] [PubMed]
- Teschke, R.; Hasumura, Y.; Lieber, C.S. Hepatic microsomal ethanol oxidizing system: Solubilization, isolation and characterization. Arch. Biochem. Biophys. 1974, 163, 404–415. [Google Scholar] [CrossRef]
- Lieber, C.S. Cytochrome P4502E1; its physiological and pathological role. Physiol. Rev. 1997, 77, 517–544. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.S.; DeCarli, L.M.; Matsusaki, S.; Ohnishi, K.; Teschke, R. The microsomal ethanol oxidizing system. In Methods in Enzymology; Fleischer, S., Packer, L., Eds.; Academic Press: New York, NY, USA, 1978; pp. 355–368. [Google Scholar]
- Salaspuro, M.; Lieber, C.S. Non-uniformity of blood ethanol elimination. Its exaggeration after chronic consumption. Ann. Clin. Res. 1978, 10, 1978. [Google Scholar]
- Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 2006, 65, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Linhart, K.; Bartsch, H.; Seitz, H.K. The role of reactive oxygen species (ROS) and cytochrome P4502E1 in the generation of carcinogenic etheno DNA adducts. Redox Biol. 2014, 3, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Seitz, H.K.; Mueller, S. The role of oxidative stress in hepatocarcinogenesis. In Studies on Hepatic Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice; Albano, E., Parola, M., Eds.; Springer International Publishing: New York, NY, USA, 2015; pp. 479–504. [Google Scholar]
- French, S.W. The Importance of CYP2E1 in the Pathogenesis of Alcoholic Liver Disease and Drug Toxicity and the Role of Proteasome, in Cytochrome P-4502E1: Its Role in Disease and Drug Metabolism; Springer Science and Business Media: Dordrecht, The Netherlands, 2013; pp. 145–165. [Google Scholar]
- Seitz, H.K.; Wang, X.D. The Role of Cytochrome P4502E1 in Ethanolmediated Carcinogenesis, in Cytochrome P-4502E1: Its Role in Disease and Drug Metabolism; Springer Science and Business Media: Dordrecht, The Netherlands, 2013; pp. 131–144. [Google Scholar]
- Oneta, C.M.; Lieber, C.S.; Li, J.J.; Ruttimann, S.; Schmid, B.; Lattmann, J.; Rosman, A.S.; Seitz, H.K. Dynamics of cytochrome P4502E1 activity in man: Induction by ethanol and disappearance during withdrawal phase. J. Hepatol. 2002, 36, 47–52. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M.; Johansson, I. Mechanisms of hydroxyl radical formation and ethanol oxidation by ethanol-inducible and other forms of rabbit liver microsomal cytochrome P-450. J. Biol. Chem. 1984, 259, 6447–6458. [Google Scholar] [CrossRef]
- Albano, E.; Tomasi, A.; Ingelman-Sundberg, M. Spin trapping of alcohol derived radicals in microsomes and reconstituted systems by electron spin resonance. Methods Enzymol. 1994, 223, 117–127. [Google Scholar]
- Liu, C.; Russell, R.M.; Seitz, H.K.; Wang, X.D. Ethanol enhances retinoic acid metabolism into polar metabolites in rat liver via induction of cytochrome P4502E1. Gastroenterology 2001, 120, 179–189. [Google Scholar] [CrossRef]
- Wang, X.D.; Liu, C.; Chung, J.; Stickel, F.; Seitz, H.K.; Russell, R.M. Chronic alcohol intake reduces retinoic acid concentration and enhances AP-1 (c-jun and c-fos) expression in rat liver. Hepatology 1998, 28, 744–750. [Google Scholar] [CrossRef]
- Oneta, C.M.; Simanowski, U.A.; Martinez, M.; Alali Hassani, A.; Parés, X.; Homann, N.; Conradt, C.; Waldherr, R.; Fiehn, W.; Coutelle, C.; et al. First pass metabolism of ethanol is strikingly influenced by the speed of gastric emptying. Gut 1998, 43, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Seitz, H.K.; Pöschl, G. The role of gastrointestinal factors in alcohol metabolism. Invited commentary. Alcohol Alcohol. 1997, 32, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Ammon, E.; Schäfer, C.; Hoffmann, U. Disposition and first pass metabolism of ethanol in humans: Is it gastric or hepatic and does it depend on gender? Clin. Pharmacol. Ther. 1996, 59, 503–513. [Google Scholar] [CrossRef]
- Viitala, K.; Israel, Y.; Blake, E.; Niemelä, O. Serum IgA, IgG, and IgM antibodies directed against acetaldehyde-derived epitopes: Relationship to liver disease severity and alcohol consumption. Hepatology 1997, 25, 2418–2424. [Google Scholar] [CrossRef]
- Hoerner, M.; Behrens, U.J.; Worner, T.M.; Blacksberg, I.; Braly, L.F.; Schaffner, F.; Lieber, C.S. The role of alcoholism and liver disease in the appearance of serum antibodies against acetaldehyde adducts. Hepatology 1988, 8, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Stein, S.; Lao, Y.; Yang, I.Y.; Hecht, S.; Moriya, M. Genotoxicity of acetaldehyde- and crotonaldehyde induced 1, N2-propanodeoxyguanosine DNA adducts in humanb cells. Mut. Res. 2006, 608, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Theruvathu, J.A.; Jaruga, P.; Nath, R.; Dizdaroglu, M.; Brooks, P.J. Polyamines stimulate the formation of mutagenic 1, N2-propanodesoxyguanisine adducts from acetaldehyde. Nucleic Acid Res. 2005, 33, 3513–3520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visapää, J.P.; Götte, K.; Benesova, M.; Li, J.J.; Homann, N.; Conradt, C.; Inoue, H.; Tisch, M.; Hörrmann, K.; Väkeväinen, S.; et al. Increased risk of upper aerodigestive tract cancer in heavy drinkers with ADH 1C*1 ly allele possibly due to increased salivary acetaldehyde concentrations. Gut 2004, 53, 871–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Väkeväinen, S.; Tillonen, J.; Salaspuro, M. 4-Methylpyrazole decreases salivary acetaldehyde levels in aldh2-deficient subjects but not in subjects with normal aldh2. Alcohol. Clin. Exp. Res. 2003, 25, 829–834. [Google Scholar] [CrossRef]
- Salaspuro, M. Acetaldehyde, microbes, and cancer of the digestive tract. Crit. Rev. Clin. Lab. 2003, 40, 183–208. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Simanowski, U.A.; Garzon, F.T.; Rideout, J.M.; Peters, T.J.; Koch, A.; Berger, M.R.; Einecke, H.; Maiwald, M. Possible role of acetaldehyde in ethanol-related rectal co-carcinogenesis in the rat. Gastroenterology 1990, 98, 406–413. [Google Scholar] [CrossRef]
- Garro, A.J.; Espina, N.; Farinati, F.; Lieber, C.S. The effect of chronic ethanol consumption on carcinogen metabolism and on O6 methylguanine transferase mediated repair of alkylated DANN. Alcohol. Clin. Exp. Res. 1986, 10, 73S–77S. [Google Scholar] [CrossRef]
- Stickel, F.; Seitz, H.K. Ethanol and methyl transfer: Its role in liver disease and hepatocarcinogenesis. In Nutrition and Alcohol: Linking Nutrient Interactions and Dietary Intake; Watson, R.R., Preedy, V.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 57–72. [Google Scholar]
- Lu, Y.; Zhuge, J.; Wang, X.; Bai, J.; Cederbaum, A.I. Cytochrome P4502E1 contributes to ethanol-induced fatty liver in mice. Hepatology 2008, 47, 1483–1494. [Google Scholar] [CrossRef]
- Nieto, N.; Friedman, S.L.; Cederbaum, A.I. Stimulation and proliferation of primary rat hepatic stellate cells by cytochrome P-4502E1-derived reactive oxygen species. Hepatology 2002, 35, 62–73. [Google Scholar] [CrossRef]
- Cederbaum, A.I. Nrf2 and antioxidant defense against CYP2E1 toxicity. In Cytochrome P4502E1: Its Role in Disease and Drug Metabolism; Dey, A., Ed.; Springer Science: Dordrecht, The Netherlands, 2013; pp. 105–130. [Google Scholar]
- Albano, E. Free radical mechanisms in immune reactions associated with alcoholic liver disease. Free Radic. Biol. Med. 2002, 32, 110–114. [Google Scholar] [CrossRef]
- Ingelman-Sundberg, M.; Johansson, I.; Yin, H.; Terelius, Y.; Eliasson, E.; Clot, P.; Albano, E. Ethanol-inducible cytochrome P4502E1: Genetic polymorphism, regulation, and possible role in the etiology of alcohol-induced liver disease. Alcohol 1993, 10, 447–452. [Google Scholar] [CrossRef]
- Wang, X.D.; Seitz, H.K. Alcohol and Retinoid Interaction. In Nutrition and Alcohol: Linking Nutrient Interactions and Dietary Intake; Watson, R.R., Preedy, V.R., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 313–321. [Google Scholar]
- Gebhardt, A.C.; Lucas, D.; Menez, J.F.; Seitz, H.K. Chlormethiazole inhibition of cytochrome P4502E1 as assessed by chlorzoxazone hydroxylation in humans. Hepatology 1997, 26, 957–961. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, H.; Nair, J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: Role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch. Surg. 2006, 391, 499–510. [Google Scholar] [CrossRef]
- Pandya, G.A.; Moriya, M. 1, N6-etheno-deoxyadenosine, a DNA adduct highly mutagenic in mammalian cells. Biochemistry 1996, 35, 11487–11492. [Google Scholar] [CrossRef]
- Frank, A.; Seitz, H.K.; Bartsch, H. Immunohistochemical detection of 1,N6-ethenodeoxyadenosine in nuclei of human liver affected by diseases predisposing to hepatocarcinogenesis. Carcinogenesis 2004, 25, 1027–1031. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, H.; Barbin, A.; Marion, M.J.; Nair, J.; Guichard, Y. Formation, detection, and role in carcinogenesis of ethenobases in DNA. Drug Metab. Rev. 1994, 26, 349–371. [Google Scholar] [CrossRef]
- Lieber, C.S.; Cao, Q.I.; DeCarli, L.M.; Leo, M.A.; Mak, K.M.; Ponomarenko, A.; Ren, C.; Wang, X. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P4502E1 induction of mitochiondria. Alcohol. Clin. Exp. Res. 2007, 31, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Stickel, F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol. Chem. 2006, 387, 349–360. [Google Scholar] [CrossRef]
- Silva, I.; Rausch, V.; Seitz, H.K.; Mueller, S. Does hypoxia cause carcinogenic iron accumulation in alcoholic liver disease (ALD)? Cancers 2017, 9, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganne-Carrie, N.; Christides, C.; Chastang, C.; Ziol, M.; Chapel, F.; Imbert-Bismut, F. Liver iron is predictive of death in alcoholic cirrhosis: A multivariate study of 229 consecutive patients with alcoholic and/or hepatitis C virus cirrhosis: A prospective follow up study. Gut 2000, 46, 277–282. [Google Scholar] [CrossRef]
- Butura, A.; Nilson, K.; Morgan, K.; Morgan, T.R.; French, S.W.; Johansson, I.; Schuppe-Koistinen, I.; Ingelman-Sundberg, M. The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model. J. Hepatol. 2009, 50, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wu, D.; Wang, X.; Ward, S.; Cederbaum, A.I. Chronic ethanol induced liver injury and oxidant stress is decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knocking mice. Free Radic. Biol. Med. 2010, 15, 1406–1416. [Google Scholar] [CrossRef] [Green Version]
- Morgan, K.; French, S.W.; Morgan, T. Production of a cytochrome P4502E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 2002, 36, 122–134. [Google Scholar] [CrossRef]
- Gouillon, Z.; Lucas, D.; Li, J.; Hagbjork, A.L.; French, B.A.; Fu, P.; Fang, C.; Ingelmann-Sundberg, M.; Donohue, T.M., Jr.; French, S.W. Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc. Soc. Exp. Biol. Med. 2000, 224, 302–308. [Google Scholar] [CrossRef]
- Ye, Q.; Lian, F.; Chavez, P.R.; Chung, J.; Ling, W.; Qin, H.; Seitz, H.K.; Wang, X.D. Cytochrome P4502E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol fed rats. Hepatobiliary Surg. Nutr. 2012, 1, 5–18. [Google Scholar]
- Mueller, S.; Pecerella, T.; Qin, H.; Glassen, K.; Waldherr, R.; Flechtenmacher, C.; Millonig, G.; Patsenker, E.; Stickel, F.; Bruckner, T.; et al. Carcinogenic etheno DNA-Adducts in Alcoholic Liver Disease: Correlation with Cytochrome P-4502E1 and Fibrosis. Alcohol. Clin. Exp. Res. 2018, 42, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Mahli, A.; Thasler, W.E.; Patsenker, E.; Muller, S.; Stickel, F.; Seitz, H.K.; Cederbaum, A.I.; Hellerbrand, C. Identification of cytochrome P4502E1 as a critical mediator of alcohol effects on steatotic hepatocytes. Oncotarget 2015, 8, 41464–41478. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Zhang, C.L.; Zhao, X.L.; Xie, K.Q.; Zeng, T. Inhibition of cytochrome P4502E1 by chlormethiazole attenuated acute ethanol-induced fatty liver. Chem. Biol. Interact. 2014, 222, 18–26. [Google Scholar] [CrossRef]
- Bajaj, J.S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015, 148, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Bode, J.C.; Bode, C.; Heidelbach, R.; Dürr, H.K.; Martini, G.A. Jejunal microflora in patients with chronic alcohol abuse. Hepatogastroenterology 1984, 31, 30–34. [Google Scholar] [PubMed]
- Bode, C.; Kugler, V.; Bode, J.C. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J. Hepatol. 1987, 4, 8–14. [Google Scholar] [CrossRef]
- Fukui, H.; Brauner, B.; Bode, J.C.; Bode, C. Plasma endotoxin concentrations in patients with alcoholic and non-alcoholic liver disease: Reevaluation with an improved chromogenic assay. J. Hepatol. 1991, 12, 162–169. [Google Scholar] [CrossRef]
- Bode, C.; Kolepke, R.; Schäfer, K.; Bode, J.C. Breath hydrogen excretion in patients with alcoholic liver disease--evidence of small intestinal bacterial overgrowth. Z. Gastroenterol. 1993, 31, 3–7. [Google Scholar]
- Schäfer, C.; Parlesak, A.; Schütt, C.; Bode, J.C.; Bode, C. Concentrations of lipopolysaccharide-binding protein, bactericidal/permeability-increasing protein, soluble CD14 and plasma lipids in relation to endotoxaemia in patients with alcoholic liver disease. Alcohol Alcohol. 2002, 37, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Méndez-Sánchez, N.; Valencia-Rodriguez, A.; Vera-Barajas, A.; Abenavoli, L.; Scarpellini, E.; Ponciano-Rodriguez, G.; Wang, D.Q. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. Hepatoma Res. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Thurman, R.G.; Bradford, B.U.; Iimuro, Y.; Knecht, K.T.; Arteel, G.E.; Yin, M.; Connor, H.D.; Wall, C.; Raleigh, J.A.; Frankenberg, M.V.; et al. The role of gut-derived bacterial toxins and free radicals in alcohol-induced liver injury. Gastroenterol. Hepatol. 1998, 13, 39–50. [Google Scholar] [CrossRef]
- Thurman, R.G. Alcoholic liver injury involves activation of Kupffer cells by endotoxin. Am. J. Physiol. 1998, 275, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Adachi, Y.; Bradford, B.U.; Gao, W.; Bojes, H.K.; Thurman, R.G. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 1994, 20, 453–460. [Google Scholar] [CrossRef]
- Albano, E.; Vidali, M. Immune mechanisms in alcoholic liver disease. Genes Nutr. 2010, 5, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Nagy, L.E. The role of innate immunity in alcoholic liver disease. Alcohol Res. Curr. Rev. 2015, 37, 237–250. [Google Scholar]
- Szabo, G.; Satishchandran, A. MicroRNAs in alcoholic liver disease. Semin. Liver Dis. 2015, 35, 36–42. [Google Scholar]
- Bala, S. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J. Hepatol. 2016, 64, 1378–1387. [Google Scholar] [CrossRef] [Green Version]
- Bala, S. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 2012, 56, 1946–1957. [Google Scholar] [CrossRef] [Green Version]
- Satishchandran, A. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology 2018, 154, 238–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juskeviciute, E. Inhibition of miR-21 rescues liver regeneration after partial hepatectomy in ethanol-fed rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G794–G806. [Google Scholar] [CrossRef] [Green Version]
- Purohit, V.; Ga, B.; Song, B.-J. Molecular mechanisms of alcoholic fatty liver. Alcohol. Clin. Exp. Res. 2009, 33, 191–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraona, E.; Lieber, C.S. Effects of ethanol on lipid metabolism. J. Lipid Res. 1979, 20, 289–315. [Google Scholar] [CrossRef]
- You, M.; Fischer, M.; Deeg, M.A.; Crabb, D.W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 2002, 277, 29342–29347. [Google Scholar] [CrossRef] [Green Version]
- Galli, A.; Pinaire, J.; Fischer, M.; Dorris, R.; Crabb, D.W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 2001, 276, 68–75. [Google Scholar]
- You, M.; Matsumoto, M.; Pacold, C.M.; Cho, W.K.; Crabb, D.W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 2004, 127, 1798–1808. [Google Scholar] [CrossRef]
- Zhong, W. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: Role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am. J. Pathol. 2012, 180, 998–1007. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.; Kim, S.J.; Gao, B. Alcohol, adipose tissue and liver disease: Mechanistic links and clinical considerations. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Dolganiuc, A.; Thomes, P.G.; Ding, W.X.; Lemasters, J.J.; Donohue, T.M. Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res. 2012, 36, 1301–1308. [Google Scholar] [CrossRef] [Green Version]
- Kobyliak, N.; Dynnyk, O.; Abenavoli, L. The Role of Liver Biopsy to Assess Alcoholic Liver Disease. Rev. Recent Clin. Trials 2016, 11, 175–179. [Google Scholar] [CrossRef]
- Maddrey, W.C. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 1978, 75, 193–199. [Google Scholar] [CrossRef]
- Orrego, H.; Israel, Y.; Blake, J.E. Assessment of prognostic factors in alcoholic liver isease: Towards a gloibalquantitative expression of severity. Hepatology 1983, 3, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W. MELD accurately predicts mortality in patients with alcoholic hepatitis. Hepatology 2005, 41, 353–358. [Google Scholar] [CrossRef]
- Dominguez, M. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am. J. Gastroenterol. 2008, 103, 2747–2756. [Google Scholar] [CrossRef] [PubMed]
- Forrest, E.H. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 2005, 54, 1174–1179. [Google Scholar] [CrossRef]
- Louvet, A. The Lille model: A new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 2007, 45, 1348–1354. [Google Scholar] [CrossRef]
- Altamirano, J. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014, 146, 1231–1239. [Google Scholar] [CrossRef]
- Cubero, F.J.; Urtasun, R.; Nieto, N. Alcohol and liver fibrosis. Sem. Liver Dis. 2009, 29, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Stickel, F.; Schuppan, D.; Hahn, E.G.; Seitz, H.K. Effect of ethanol on hepatocarcinogenesis. Gut 2002, 51, 132–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baan, R. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007, 8, 292–293. [Google Scholar] [CrossRef]
- Tuma, D.J.; Thiele, G.; Xu, D.; Klassen, L.W.; Sorell, M.F. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long term ethanol administration. Hepatology 1996, 23, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Garro, A.J.; Seitz, H.K.; Lieber, C.S. Enhancement of dimethyl-nitrosamine metabolism and activation to a mutagen following chronic ethanol consumption. Cancer Res. 1981, 41, 120–124. [Google Scholar]
- Varela-Rey, M.; Woodhoo, A.; Martinez-Chantar, M.L.; Mato, J.M.; Lu, S.C. Alcohol, DNA methylation, and cancer. Alcohol Res. 2013, 35, 25–35. [Google Scholar] [PubMed]
- Seitz, H.K.; Mueller, S. Molecular mechanisms of alcohol-associated carcinogenesis. In Molecular Aspects of Alcohol and Nutrition; Patel, V.B., Ed.; Academic Press: Amsterdam, The Netherlands, 2016; pp. 305–314. [Google Scholar]
- Coulouarn, C.; Clement, B. Stellate cells and the development of liver cancer: Therapeutical potential of targeting the strome. J. Hepatol. 2014, 60, 1306–1309. [Google Scholar] [CrossRef]
- Anton, R.F.; Lieber, C.; Tabakoff, B. Carbohydrate deficient transferrin and gamma-glutamyl transferase for the detection and monitoring of alcohol use: Results from a multisite study. Alcohol. Clin. Exp. Res. 2002, 26, 1215–1222. [Google Scholar] [PubMed]
- Bell, H. Serum carbohydrate-deficient transferrin as a marker of alcohol consumption in patients with chronic liver diseases. Alcohol. Clin. Exp. Res. 1993, 17, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Varga, A.; Hansson, P.; Lundqvist, C.; Alling, C. Phosphatidylethanol in blood as a marker of ethanol consumption in healthy volunteers: Comparison with other markers. Alcohol. Clin. Exp. Res. 1998, 22, 1832–1837. [Google Scholar] [CrossRef]
- Faller, A.; Richter, B.; Kluge, M.; Meier, P.; Seitz, H.K.; Thierauf, A.; Gann, H.; Winkler, M.; Mattern, R.; Skopp, G. LC-MS/MS analysis of phosphatidylethanol in dried blood spots versus conventional blood specimens. Anal. Bioanal. Chem. 2011, 401, 1163–1166. [Google Scholar] [CrossRef]
- Kissack, J.C.; Bishop, J.; Leatherwood Roper, A. Ethylglucuronide as a biomarker for ethanol detection. Pharmacotherapy 2008, 28, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Moreau, K.B.; Mueller, P.; Driesch, D.; Osswald, B.; Seitz, H.K. Trauma in cirrhosis: An indicator of the pattern of alcohol abuse in different societies. Alcohol. Clin. Exp. Res. 1992, 16, 141–143. [Google Scholar] [CrossRef]
- Thiele, M. Controlled attenuation parameter and alcoholic hepatic steatosis: Diagnostic accuracy and role of alcohol detoxification. J. Hepatol. 2018, 68, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Neuman, M.G. Apoptosis in diseases of the liver. Crit. Rev. Clin. Lab. Sci. 2001, 38, 109–166. [Google Scholar] [CrossRef] [PubMed]
- Parés, A. Serum hyaluronate reflects hepatic fibrogenesis in alcoholic liver disease and is useful as a marker of fibrosis. Hepatology 1996, 24, 1399–1403. [Google Scholar] [CrossRef]
- Stickel, F. Serum hyaluronate correlates with histological progression in alcoholic liver disease. Eur. J. Gastroenterol. Hepatol. 2003, 15, 945–950. [Google Scholar] [CrossRef]
- Mueller, S. Increased liver stiffness in alcoholic liver disease: Differentiating fibrosis from steatohepatitis. World J. Gastroenterol. 2010, 16, 966–972. [Google Scholar] [CrossRef]
- Mueller, S.; Seitz, H.K.; Rausch, V. Non-invasive diagnosis of alcoholic liver disease. World J. Gastroenterol. 2014, 20, 14626–14641. [Google Scholar] [CrossRef] [PubMed]
- Seitz, H.K.; Arslic-Schmitt, T. Alkohol-Abstinenz allein verbessert die Leberfunktioin und verlängert das Überleben bei der alkoholischen Lebererkrankung. Sucht 2016, 62, 1–5. [Google Scholar] [CrossRef]
- Alexander, J.F.; Lischner, M.W.; Galambos, J.H.T. Natural history of alcoholic hepatitis. The long term prognosis. Am. J. Gastroenterol. 1971, 56, 515–525. [Google Scholar] [PubMed]
- Parés, A.; Caballería, J.; Bruguera, M.; Torres, M.; Rodés, J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 1986, 2, 33–42. [Google Scholar] [CrossRef]
- Powell, W.J., Jr.; Klatskin, G. Duration of survival in patients with Laennec’s cirrhosis. Am. J. Med. 1968, 44, 406–420. [Google Scholar] [CrossRef]
- Borowsky, S.A.; Strome, S.; Lott, E. Continued heavy drinking and survival in alcoholic cirrhotics. Gastroenterology 1981, 80, 1405–1409. [Google Scholar] [CrossRef]
- D’Amico, G.; Morabito, A.; Pagliaro, L.; Marubini, E. Survival and prognostic indicators in compensated and decompensated cirrhosis. Dig. Dis. Sci. 1986, 31, 468–475. [Google Scholar] [CrossRef]
- Morgan, M. Alcoholic liver disease: Natural history, diagnosis, clinical feature, evaluation, management, prognosis, and prevention. In Oxford Textbook of Clinical Hepatology; Bircher, J., Benhamou, J.P., McIntyre, N., Rizzetto, M., Rodes, J., Eds.; Oxford University Press: Oxford, UK, 1999; pp. 1186–1238. [Google Scholar]
- Schenker, S. Alcoholic liver disease: Evaluation of natural history and prognostic factors. Hepatology 1984, 4, 36–43. [Google Scholar] [CrossRef]
- Chedid, A. Prognostic factors in alcoholic liver disease. VA Cooperative Study Group. Am. J. Gastroenterol. 1991, 86, 210–216. [Google Scholar]
- Jepsen, P.; Ott, P.; Andersen, P.K.; Sørensen, H.T.; Vilstrup, H. Clinical course of alcoholic liver cirrhosis: A Danish population based cohort study. Hepatology 2010, 51, 1675–1682. [Google Scholar] [CrossRef]
- Addolorato, G.; Mirijello, A.; Barrio, P.; Gual, A. Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol. 2016, 65, 618–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathurin, P. Corticosteroids improve short- term survival in patients with severe alcoholic hepatitis: Meta-analysis of individual patient data. Gut 2011, 60, 255–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabré, E.; Rodríguez-Iglesias, P.; Caballería, J.; Quer, J.C.; Sánchez-Lombraña, J.L.; Parés, A.; Papo, M.; Planas, R.; Gassull, M.A. Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: A multicenter randomized trial. Hepatology 2000, 32, 36–42. [Google Scholar]
- Stickel, F.; Höhn, B.; Schuppan, D.; Seitz, H.K. Nutritional Therapy in alcoholic liver disease. Aliment. Pharmacol. Ther. 2003, 18, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-Khac, E. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N. Engl. J. Med. 2011, 365, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, P.S.; Runyon, B.A. Treatment of patients with cirrhosis. N. Engl. J. Med. 2016, 375, 767–777. [Google Scholar] [CrossRef] [Green Version]
- Galle, P.R. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starzl, T.E.; Van Thiel, D.; Tzakis, A.G. Orthotopic liver transplantation for alcoholic cirrhoses. JAMA 1988, 260, 2542–2544. [Google Scholar] [CrossRef] [Green Version]
- Edenberg, H.J.; Foroud, T. Genetics of alcoholism. Handb. Clin. Neurol. 2014, 125, 561–571. [Google Scholar]
- Kumar, S.; Stauber, R.E.; Gaaler, J.S. Orthotopic liver transplantation for alcoholic liver disease. Hepatology 1990, 11, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Seitz, H.K. Commentary: Alcohol and alcoholism special issue on ‘alcohol and liver transplantation’. Alcohol Alcohol. 2018, 53, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Foster, P.F.; Fabrega, F.; Karademir, S. Prediction of abstinence from ethanol in alcoholic recipients following liver transplantation. Hepatology 1997, 25, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Mathurin, P.H.; Moreno, P.H.; Didier, S. Early liver transplantation for Severe Alcoholic Hepatitis. N. Engl. J. Med. 2011, 365, 1790–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addolorato, G.; Mirijello, A.; Leggio, L. Liver transplantation in alcoholic patients: Impact of an alcohol addiction unit within a liver transplant center. Alcohol. Clin. Exp. Res. 2013, 37, 1601–1608. [Google Scholar] [CrossRef] [PubMed]
- Mathurin, P. EASL clinical practical guidelines: Management of alcoholic liver disease. J. Hepatol. 2012, 57, 399–420. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seitz, H.K.; Neuman, M.G. The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology. J. Clin. Med. 2021, 10, 858. https://doi.org/10.3390/jcm10040858
Seitz HK, Neuman MG. The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology. Journal of Clinical Medicine. 2021; 10(4):858. https://doi.org/10.3390/jcm10040858
Chicago/Turabian StyleSeitz, Helmut K., and Manuela G. Neuman. 2021. "The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology" Journal of Clinical Medicine 10, no. 4: 858. https://doi.org/10.3390/jcm10040858
APA StyleSeitz, H. K., & Neuman, M. G. (2021). The History of Alcoholic Liver Disease: From an Unrecognized Disease to One of the Most Frequent Diseases in Hepatology. Journal of Clinical Medicine, 10(4), 858. https://doi.org/10.3390/jcm10040858