Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. DNA Isolation and Genotyping
2.3. Statistical Analysis
3. Results
3.1. The Distribution of the Breast Tumor Features, Alleles and Genotypes
3.2. The Associations of MDM2 Polymorphisms with Breast Cancer Characteristics
3.3. The Associations of MDM4 Polymorphisms with Breast Cancer Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, X.; Li, T.; Bai, Z.; Yang, Y.; Liu, X.; Zhan, J.; Shi, B. Breast cancer intrinsic subtype classification, clinical use and future trends. Am. J. Cancer Res. 2015, 5, 2929–2943. [Google Scholar] [PubMed]
- Coughlin, S.S.; Ekwueme, D.U. Breast cancer as a global health concern. Cancer Epidemiol. 2009, 33, 315–318. [Google Scholar] [CrossRef]
- Golubnitschaja, O.; Debald, M.; Yeghiazaryan, K.; Kuhn, W.; Pešta, M.; Costigliola, V.; Grech, G. Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures. Tumor Biol. 2016, 37, 12941–12957. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Li, M.; Lu, C.; Shi, J.; Zhou, L.; Yuan, Q.; Yang, M. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res. Treat. 2013, 140, 151–157. [Google Scholar] [CrossRef]
- Hashemi, M.; Sanaei, S.; Hashemi, S.M.; Eskandari, E.; Bahari, G. Association of Single Nucleotide Polymorphisms of the MDM4 Gene with the Susceptibility to Breast Cancer in a Southeast Iranian Population Sample. Clin. Breast Cancer 2018, 18, e883–e891. [Google Scholar] [CrossRef]
- Rudolph, A.; Chang-Claude, J.; Schmidt, M.K. Gene–environment interaction and risk of breast cancer. Br. J. Cancer 2016, 114, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Li, Y.; Mu, K.; Li, Z.; Meng, Q.; Wu, X.; Wang, Y.; Li, L. Amplification of Mdmx and overexpression of MDM2 contribute to mammary carcinogenesis by substituting for p53 mutations. Diagn. Pathol. 2014, 9, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haupt, S.; Vijayakumaran, R.; Miranda, P.J.; Burgess, A.; Lim, E.; Haupt, Y. The role of MDM2 and MDM4 in breast cancer development and prevention. J. Mol. Cell Biol. 2017, 9, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Karni-Schmidt, O.; Lokshin, M.; Prives, C. The roles of MDM2 and MDMX in cancer. Annu. Rev. Pathol. 2016, 11, 617–644. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Wang, L.-E.; Liu, Z.; Wei, S.; Li, G.; Sturgis, E.M.; Wei, Q. Polymorphisms of MDM4 and risk of squamous cell carcinoma of the head and neck. Pharm. Genom. 2011, 21, 388–396. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, M.; Mandani, G.; Momand, J. The MDM2 gene family. Biomol. Concepts 2014, 5, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Xiao, G.; Piersigilli, A.; Gou, J.; Ogunwobi, O.; Bargonetti, J. Context-dependent roles of MDMX (MDM4) and MDM2 in breast cancer proliferation and circulating tumor cells. Breast Cancer Res. 2019, 21, 5. [Google Scholar] [CrossRef]
- Li, Q.; Lozano, G. Molecular Pathways: Targeting Mdm2 and Mdm4 in Cancer Therapy. Clin. Cancer Res. 2013, 19, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swetzig, W.M.; Wang, J.; Das, G.M. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Oncotarget 2016, 7, 16049–16069. [Google Scholar] [CrossRef] [Green Version]
- Silwal-Pandit, L.; Vollan, H.K.M.; Chin, S.-F.; Rueda, O.M.; McKinney, S.; Osako, T.; Quigley, D.A.; Kristensen, V.N.; Aparicio, S.; Børresen-Dale, A.-L.; et al. TP53 Mutation Spectrum in Breast Cancer Is Subtype Specific and Has Distinct Prognostic Relevance. Clin. Cancer Res. 2014, 20, 3569–3580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.-J.; Luo, Y.-J.; Shi, Z.-Y.; Xu, X.-L.; Yao, G.-L.; Liu, R.-P.; Zhao, H. The associations between MDM4 gene polymorphisms and cancer risk. Oncotarget 2016, 7, 55611–55623. [Google Scholar] [CrossRef] [Green Version]
- Bauer, M.; Kantelhardt, E.J.; Stiewe, T.; Nist, A.; Mernberger, M.; Politt, K.; Hanf, V.; Lantzsch, T.; Uleer, C.; Peschel, S.; et al. Specific allelic variants of SNPs in the MDM2 and MDMX genes are associated with earlier tumor onset and progression in Caucasian breast cancer patients. Oncotarget 2019, 10, 1975–1992. [Google Scholar] [CrossRef] [Green Version]
- Junttila, M.R.; Evan, G.I. p53—A Jack of all trades but master of none. Nat. Rev. Cancer 2009, 9, 821–829. [Google Scholar] [CrossRef]
- Haupt, S.; Buckley, D.L.; Pang, J.-M.B.; Panimaya, J.; Paul, P.J.; Gamell, C.; Takano, E.A.; Lee, Y.Y.; Hiddingh, S.; Rogers, T.-M.; et al. Targeting Mdmx to treat breast cancers with wild-type p53. Cell Death Dis. 2015, 6, e1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, M.; Li, Y.C.; Wahl, G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 2013, 13, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Marine, J.-C. MDM2 and MDMX in Cancer and Development; Elsevier: Amsterdam, The Netherlands, 2011; Volume 94, pp. 45–75. [Google Scholar]
- Gansmo, L.B.; Bjørnslett, M.; Halle, M.K.; Salvesen, H.B.; Dørum, A.; Birkeland, E.; Hveem, K.; Romundstad, P.; Vatten, L.; Lønning, P.E.; et al. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian-but not endometrial cancer. Tumor Biol. 2016, 37, 10697–10702. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Masroor, M.; Tanwer, K.; Mir, R.; Javid, J.; Ahmad, I.; Zuberi, M.; Kaza, R.C.M.; Jain, S.K.; Khurana, N.; et al. Clinical significance of TP53 (R72P) and MDM2 (T309G) polymorphisms in breast cancer patients. Clin. Transl. Oncol. 2015, 18, 728–734. [Google Scholar] [CrossRef]
- Haupt, S.; Mejía-Hernández, J.O.; Vijayakumaran, R.; Keam, S.P.; Haupt, Y. The long and the short of it: The MDM4 tail so far. J. Mol. Cell Biol. 2019, 11, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Miranda, P.J.; Buckley, D.; Raghu, D.; Pang, J.-M.B.; Takano, E.A.; Vijayakumaran, R.; Teunisse, A.F.; Posner, A.; Procter, T.; Herold, M.J.; et al. MDM4 is a rational target for treating breast cancers with mutant p53. J. Pathol. 2017, 241, 661–670. [Google Scholar] [CrossRef]
- Xiong, S.; Pant, V.; Zhang, Y.; Aryal, N.K.; You, M.J.; Kusewitt, D.; Lozano, G. The p53 inhibitor Mdm4 cooperates with multiple genetic lesions in tumourigenesis. J. Pathol. 2017, 241, 501–510. [Google Scholar] [CrossRef]
- Burgess, A.; Chia, K.M.; Haupt, S.; Thomas, D.; Haupt, Y.; Lim, E. Clinical Overview of MDM2/X-Targeted Therapies. Front. Oncol. 2016, 6, 7. [Google Scholar] [CrossRef]
- Portman, N.; Milioli, H.H.; Alexandrou, S.; Coulson, R.; Yong, A.; Fernandez, K.J.; Chia, K.M.; Halilovic, E.; Segara, D.; Parker, A.; et al. MDM2 inhibition in combination with endocrine therapy and CDK4/6 inhibition for the treatment of ER-positive breast cancer. Breast Cancer Res. 2020, 22, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Shah, K.; Oza, M.J.; Behl, T. Reactivation of p53 gene by MDM2 inhibitors: A novel therapy for cancer treatment. Biomed. Pharmacother. 2019, 109, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, X.; Wang, G.; Yang, Y.; Yuan, Y.; Ouyang, L. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur. J. Med. Chem. 2019, 176, 92–104. [Google Scholar] [CrossRef]
- Xu, C.; Zhu, J.; Fu, W.; Liang, Z.; Song, S.; Zhao, Y.; Lyu, L.; Zhang, A.; He, J.; Duan, P. MDM4 rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016, 7, 71718–71726. [Google Scholar] [CrossRef] [Green Version]
- Wynendaele, J.; Böhnke, A.; Leucci, E.; Nielsen, S.J.; Lambertz, I.; Hammer, S.; Sbrzesny, N.; Kubitza, D.; Wolf, A.; Gradhand, E.; et al. An Illegitimate microRNA Target Site within the 3′ UTR of MDM4 Affects Ovarian Cancer Progression and Chemosensitivity. Cancer Res. 2010, 70, 9641–9649. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, Z.; Zhu, H.; Fu, G.; Wang, S.; Wu, D.; Zhou, J.; Wei, Q.; Zhang, Z. A Novel Functional Polymorphism C1797G in the MDM2 Promoter Is Associated with Risk of Bladder Cancer in a Chinese Population. Clin. Cancer Res. 2008, 14, 3633–3640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Wang, J.; Wang, J.; Zhang, J.; Gu, X.; Feng, X. The Study of MDM2 rs937283 Variant and Cancer Susceptibility in a Central Chinese Population. Technol. Cancer Res. Treat. 2018, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Jiang, Z.; Wu, Y.; Chen, X.; Xiao, X.; Yu, H. A Functional Polymorphism (rs937283) in the MDM2 Promoter Region is Associated with Poor Prognosis of Retinoblastoma in Chinese Han Population. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulin, F.E.M.; O’Neill, M.; McGregor, G.; Cassidy, A.; Ashfield, A.; Ali, C.W.; Munro, A.J.; Baker, L.; A Purdie, C.; Lane, D.P.; et al. MDM2 SNP309 is associated with high grade node positive breast tumours and is in linkage disequilibrium with a novel MDM2 intron 1 polymorphism. BMC Cancer 2008, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Győrffy, B.; Hatzis, C.; Sanft, T.; Hofstatter, E.; Aktas, B.; Pusztai, L. Multigene prognostic tests in breast cancer: Past, present, future. Breast Cancer Res. 2015, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Nechuta, S.; Chen, W.Y.; Cai, H.; Poole, E.M.; Kwan, M.L.; Flatt, S.W.; Patterson, R.E.; Pierce, J.P.; Caan, B.J.; Shu, X.O. A pooled analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor-positive breast cancer prognosis. Int. J. Cancer 2015, 138, 2088–2097. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, C.; Pusztai, L. Gene-Expression Signatures in Breast Cancer. N. Engl. J. Med. 2009, 360, 790–800. [Google Scholar] [CrossRef] [Green Version]
- Møller, H.; Henson, K.; Lüchtenborg, M.; Broggio, J.; Charman, J.; Coupland, V.H.; Davies, E.; Jack, R.H.; Sullivan, R.; Vedsted, P.; et al. Short-term breast cancer survival in relation to ethnicity, stage, grade and receptor status: National cohort study in England. Br. J. Cancer 2016, 115, 1408–1415. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Xu, Z.; Cheng, G.; Min, Z.-C.; Mi, Y.; Zhang, Z.-Z.; Tao, J.; Li, P.-C.; Wang, M.-L.; Tang, J.-L.; et al. Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. Cancer Genet. Cytogenet. 2010, 202, 76–81. [Google Scholar] [CrossRef]
- Jin, L.; Xu, L.; Song, X.; Wei, Q.; Sturgis, E.M.; Li, G. Genetic Variation in MDM2 and p14ARF and Susceptibility to Salivary Gland Carcinoma. PLoS ONE 2012, 7, e49361. [Google Scholar] [CrossRef] [Green Version]
- Tas, A.; Atabey, M.; Caglayan, G.; Bostanci, M.E.; Bolukbasi, S.S.; Topcu, O.; Silig, Y. Investigation of the association between the MDM2 T309G polymorphism and gastric cancer. Biomed. Rep. 2017, 7, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bykov, V.J.N.; Eriksson, S.E.; Bianchi, J.; Wiman, K.G. Targeting mutant p53 for efficient cancer therapy. Nat. Rev. Cancer 2018, 18, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Murphy, M.E. Genetic Modifiers of the p53 Pathway. Cold Spring Harb. Perspect. Med. 2016, 6, a026302. [Google Scholar] [CrossRef]
- Lalonde, M.-E.; Ouimet, M.; Larivière, M.; A Kritikou, E.; Sinnett, D. Identification of functional DNA variants in the constitutive promoter region of MDM2. Hum. Genom. 2012, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miedl, H.; Lebhard, J.; Ehart, L.; Schreiber, M. Association of the MDM2 SNP285 and SNP309 genetic variants with the risk, age at onset and prognosis of breast cancer in central European women: A hospital-based case-control study. Int. J. Mol. Sci. 2019, 20, 509. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, M.; Tas, A.; Donmez, G.; Kacan, T.; Silig, Y. Significant association of the MDM2 T309G polymorphism with breast cancer risk in a Turkish population. Asian Pac. J. Cancer Prev. 2018, 19, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Purrington, K.S.; Slager, S.; Eccles, D.; Yannoukakos, D.; Fasching, P.A.; Miron, P.; Carpenter, J.; Chang-Claude, J.; Martin, N.G.; Montgomery, G.W.; et al. Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis 2014, 35, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Milne, R.L.; Kuchenbaecker, K.B.; Michailidou, K.; Beesley, J.; Kar, S.; Lindström, S.; Hui, S.; Lemaçon, A.; Soucy, P.; Lemaçon, A.; et al. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nat. Genet. 2017, 49, 1767–1778. [Google Scholar] [CrossRef] [Green Version]
- Pedram, N.; Pouladi, N.; Hosseinpour Feizi, M.A.; Montazeri, V.; Sakhinia, E.; Estiar, M.A. Analysis of the Association between MDM4 rs4245739 Single Nucleotide Polymorphism and Breast Cancer Susceptibility. Clin. Lab. 2016, 59, 1303–1308. [Google Scholar] [CrossRef]
Gene, SNP | Primer Sequence F-Forward, R-Reverse | Thermal Conditions | Fragments, bp |
---|---|---|---|
MDM2 rs2279744 | F 5′-CGCGGGAGTTCAGGGTAAAG-3′ R 5′-CTGAGTCAACCTGCCCACTG-3′ | 5 min of denaturation at 95 °C, then 35 cycles of 95 °C for 30 s, 63 °C for 30 s, and 72 °C for 30 s. The final cycle had a 7 min extension at 72 °C | 157 |
MDM2 rs937283 | F 5′-TGACCGAGATCCTGCTGCTTTC-3′ R 5′-TGAGTCAACCTGCCCACTGAAC-3′ | 5 min of denaturation at 95 °C, then 35 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 30 s. The final cycle had a 7 min extension at 72 °C | 617 |
MDM2 rs937282 | F 5′-GGTAACAGCGACACGGAGAT -3′ R 5′-CTCCGGGATGATGGAGTG -3′ | 5 min of denaturation at 95 °C, then 35 cycles of 95 °C for 30 s, 57,5 °C for 30 s, and 72 °C for 30 s. The final cycle had a 7 min extension at 72 °C | 231 |
MDM4 rs1380576 | F 5′-GAAGAGGTGACATTTAACCTGAGACTT-3′ R 5′-GTGGTCTATCCCCTCAGCACATTTCCA-3′ | 5 min of denaturation at 94 °C, then 35 cycles of 94 °C for 30 s, 56,6 °C for 45 s, and 72 °C for 30 s. The final cycle had a 10 min extension at 72 °C | 195 |
MDM4 rs4245739 | F 5′-AAGACTAAAGAAGGCTGGGG-3′ R 5′-TTCAAATAATGTGGTAAGTGACC-3′ | 3 min of denaturation at 94 °C, then 35 cycles of 94 °C for 30 s, 51 °C for 30 s, and 72 °C for 30 s. The final cycle had a 10 min extension at 72 °C | 134 |
Gene and SNP | Restriction Endonuclease | Restriction Conditions | Fragments, bp |
---|---|---|---|
MDM2 rs2279744 | MspA1I | 37 °C for 1 h | T allele 157; G allele 109 + 48 |
MDM2 rs937283 | MboI | 37 °C for 1–16 h | A allele 437 + 87 + 86 + 7; G allele 524 + 86 + 7 |
MDM2 rs937282 | Hpy188I | 37 °C for 1 h | C allele 231; G allele 182 + 49 |
MDM4 rs1380576 | BseNI (BsrI) | 65 °C for 1–16 h | G allele 195; C allele 172 + 23 |
MDM4 rs4245739 | MspI (HpaII) | 37 °C for 1–16 h | C allele 110 + 24; A allele 134 |
Characteristics | Frequencies (%) |
---|---|
Age | |
30–40 years | 35 |
41–50 years | 65 |
Pathological tumor size (pT) | |
T1a | 68 |
T1b | 32 |
Pathological lymph node involvement (N) | |
negative (N0) | 55 |
positive (N1) | 45 |
Estrogen receptor (ER) | |
negative | 43 |
positive | 57 |
Progesterone receptor (PR) | |
negative | 52 |
positive | 48 |
Human epidermal growth factor receptor 2 (HER2) | |
negative | 78 |
positive | 22 |
Tumor grade (G) | |
G1 and G2 | 71 |
G3 | 29 |
Progress | |
absent | 69 |
present | 31 |
Metastasis | |
absent | 74 |
present | 26 |
Death | |
absent | 78 |
present | 22 |
Polymorphism | Allele Frequency (European Population Allele Frequencies from 1000 Genomes Project Database) | Genotype Frequency | |||
---|---|---|---|---|---|
MDM2 rs2279744 NG_016708.1:g.5610T>G | T-0.68 (0.65) | G-0.32 (0.35) | TT-0.49 | TG-0.38 | GG-0.13 |
MDM2 rs937283 NG_016708.1:g.5194A>G | A-0.47 (0.61) | G-0.53 (0.39) | AA-0.24 | AG-0.46 | GG-0.30 |
MDM2 rs937282 NG_016708.1:g.4827C>G | C-0.46 (0.51) | G-0.54 (0.49) | CC-0.23 | CG-0.46 | GG-0.31 |
MDM4 rs1380576 NG_029367.1:g.7772G>C | G-0.24 (0.31) | C-0.76 (0.69) | GG-0.10 | GC-0.28 | CC-0.62 |
MDM4 rs4245739 NG_029367.1:g.38336C>A | C-0.20 (0.26) | A-0.80 (0.74) | CC-0.07 | AC-0.26 | AA-0.67 |
SNP | Genotype | Positive ER | Positive HER2 | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
MDM2 rs937283 | AA | 1.00 | (ref.) | - | 1.00 | (ref.) | - |
AG | 2.538 | 1.336–4.823 | 0.004 | 0.231 | 0.060–0.894 | 0.034 | |
GG | 0.765 | 0.371–1.574 | 0.467 | 1.406 | 0.444–4.448 | 0.562 | |
MDM2 rs937282 | CC | 1.00 | (ref.) | - | 1.00 | (ref.) | - |
CG | 2.538 | 1.366–4.823 | 0.004 | 0.346 | 0.093–1.287 | 0.113 | |
GG | 0.722 | 0.354–1.474 | 0.371 | 1.558 | 0.476–5.104 | 0.464 |
SNP | Genotype | Positive ER | Positive PR | ||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | ||
MDM4 rs1380576 | GG | 1.00 | (ref.) | - | 1.00 | (ref.) | - |
CG | 0.647 | 0.303–1.381 | 0.261 | 5.824 | 0.645–52.599 | 0.117 | |
CC | 2.263 | 1.319–3.883 | 0.003 | 12.462 | 1.486–104.514 | 0.020 | |
MDM4 rs4245739 | CC | 1.00 | (ref.) | - | 1.00 | (ref.) | - |
AC | 0.857 | 0.396–1.853 | 0.695 | 0.733 | 0.337-1.597 | 0.435 | |
AA | 1.913 | 1.155–3.168 | 0.012 | 1.233 | 0.762–1.996 | 0.393 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartnykaitė, A.; Savukaitytė, A.; Ugenskienė, R.; Daukšaitė, M.; Korobeinikova, E.; Gudaitienė, J.; Juozaitytė, E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. J. Clin. Med. 2021, 10, 866. https://doi.org/10.3390/jcm10040866
Bartnykaitė A, Savukaitytė A, Ugenskienė R, Daukšaitė M, Korobeinikova E, Gudaitienė J, Juozaitytė E. Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. Journal of Clinical Medicine. 2021; 10(4):866. https://doi.org/10.3390/jcm10040866
Chicago/Turabian StyleBartnykaitė, Agnė, Aistė Savukaitytė, Rasa Ugenskienė, Monika Daukšaitė, Erika Korobeinikova, Jurgita Gudaitienė, and Elona Juozaitytė. 2021. "Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer" Journal of Clinical Medicine 10, no. 4: 866. https://doi.org/10.3390/jcm10040866
APA StyleBartnykaitė, A., Savukaitytė, A., Ugenskienė, R., Daukšaitė, M., Korobeinikova, E., Gudaitienė, J., & Juozaitytė, E. (2021). Associations of MDM2 and MDM4 Polymorphisms with Early-Stage Breast Cancer. Journal of Clinical Medicine, 10(4), 866. https://doi.org/10.3390/jcm10040866