Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible?
Abstract
:1. Introduction
2. Lipid Lowering Therapy in Patients with Coronary Heart Disease
2.1. Lowering LDL-Cholesterol: The Cornerstone of Lipid-Lowering Therapy
2.2. Targeting Triglyceride and Non-HDL-C: The Refinement of Lipid-Lowering Therapy
3. The Role of Cholesterol-Lowering Therapy in Stroke
4. The Role of Cholesterol-Lowering Therapy in Patients with Concomitant CHD and Prior Stroke
4.1. Attainment of Lipid Goals with Statins and Outcome in Patients with CHD and Concomitant CeVD
4.2. American vs. European Guidelines for the Management of LDL-C in These Very-High Risk Patients
4.3. The Role of New Lipid-Lowering Therapies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GBD. Causes of Death Collaborators. Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [Green Version]
- Mihaylova, B.; Emberson, J.; Blackwell, L.; Keech, A.; Simes, J.; Barnes, E.H.; Voysey, M.; Gray, A.; Collins, R.; Baigent, C. The Effects of Lowering LDL Cholesterol with Statin Therapy in People at Low Risk of Vascular Disease: Meta-Analysis of Individual Data from 27 Randomised Trials. Lancet 2012, 380, 581–590. [Google Scholar]
- Di Napoli, P.; Taccardi, A.A.; Oliver, M.; De Caterina, R. Statins and Stroke: Evidence for Cholesterol-Independent Effects. Eur. Heart J. 2002, 23, 1908–1921. [Google Scholar] [CrossRef] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, 1082. [Google Scholar] [CrossRef]
- Hulley, S.B.; Grady, D.; Browner, W.S. Statins: Underused by Those Who Would Benefit. BMJ 2000, 321, 971–972. [Google Scholar] [CrossRef]
- Xian, Y.; Navar, A.M.; Li, S.; Li, Z.; Robinson, J.; Virani, S.S.; Louie, M.J.; Koren, A.; Goldberg, A.; Roger, V.L.; et al. Intensity of Lipid Lowering with Statin Therapy in Patients with Cerebrovascular Disease Versus Coronary Artery Disease: Insights from the PALM Registry. J. Am. Hear. Assoc. 2019, 8, e013229. [Google Scholar] [CrossRef]
- Hirsh, B.J.; Smilowitz, N.R.; Rosenson, R.S.; Fuster, V.; Sperling, L.S. Utilization of and Adherence to Guideline-Recommended Lipid-Lowering Therapy after Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2015, 66, 184–192. [Google Scholar] [CrossRef] [Green Version]
- De Luca, L.; Arca, M.; Temporelli, P.L.; Meessen, J.; Riccio, C.; Bonomo, P.; Colavita, A.R.; Gabrielli, D.; Gulizia, M.M.; Colivicchi, F. Current Lipid Lowering Treatment and Attainment of LDL Targets Recommended by ESC/EAS Guidelines in Very High-Risk Patients with Established Atherosclerotic Cardiovascular Disease: Insights from the START Registry. Int. J. Cardiol. 2020, 316, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Suarez, C.; Zeymer, U.; Limbourg, T.; Baumgartner, I.; Cacoub, P.; Poldermans, D.; Rӧther, J.; Bhatt, D.L.; Steg, P.G. Influence of Poly-Vascular Disease on Cardiovascular Event Rates. Insights from the REACH Registry. Vasc. Med. 2010, 15, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, D.; Eagle, K.A.; Kline-Rogers, E.; Feldman, L.J.; Juliard, J.-M.; Agnelli, G.; Budaj, A.; Avezum, Á.; Allegrone, J.; Fitzgerald, G.; et al. Impact of Prior Peripheral Arterial Disease and Stroke on Outcomes of Acute Coronary Syndromes and Effect of Evidence-Based Therapies (from the Global Registry of Acute Coronary Events). Am. J. Cardiol. 2007, 100, 1–6. [Google Scholar] [CrossRef]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jukema, J.W.; Szarek, M.; Zijlstra, L.E.; de Silva, H.A.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; et al. ODYSSEY OUTCOMES Committees and Investigator. Alirocumab in Patients with Polyvascular Disease and Recent Acute Coronary Syndrome: Odyssey Outcomes Trial. J. Am. Coll. Cardiol. 2019, 74, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.P.; Pedersen, T.R.; Park, J.-G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; et al. Clinical Efficacy and Safety of Achieving Very Low LDL-Cholesterol Concentrations with the PCSK9 Inhibitor Evolocumab: A Prespecified Secondary Analysis of the FOURIER Trial. Lancet 2017, 390, 1962–1971. [Google Scholar] [CrossRef]
- Scandinavian Simvastatin Survival Study Group. Randomised Trial of Cholesterol Lowering in 4444 Patients with Coronary Heart Disease: The Scandinavian Simvastatin Survival Study (4S). Lancet 1994, 344, 1383–1389. [Google Scholar]
- Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and Safety of Cholesterol-Lowering Treatment: Prospective Me-Ta-Analysis of Data from 90 056 Participants in 14 Randomised Trials of Statins. Lancet 2005, 366, 1267–1278. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and Safety of More Intensive Lowering of LDL Cholesterol: A Meta-Analysis of Data from170 000 Participants in 26 Randomised Trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Boekholdt, S.M.; Hovingh, G.K.; Mora, S.; Arsenault, B.J.; Amarenco, P.; Pedersen, T.R.; LaRosa, J.C.; Waters, D.D.; DeMicco, D.A.; Simes, R.J.; et al. Very Low Levels of Atherogenic Lipoproteins and the Risk for Cardiovascular Events: A Meta-Analysis of Statin Trials. J. Am. Coll. Cardiol. 2014, 64, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Robert, A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef] [PubMed]
- Masana, L.; Pedro-Botet, J.; Civeira, F. IMPROVE-IT Clinical Implications. Should the “High-Intensity Cholesterol-Lowering Therapy” Strategy Replace the “High-Intensity Statin Therapy”? Atherosclerosis 2015, 240, 161–162. [Google Scholar] [CrossRef]
- Allahyari, A.; Jernberg, T.; Hagström, E.; Leosdottir, M.; Lundman, P.; Ueda, P. Application of the 2019 ESC/EAS Dyslipidaemia Guidelines to Nationwide Data of Patients with a Recent Myocardial Infarction: A Simulation Study. Eur. Hear. J. 2020, 41, 3900–3909. [Google Scholar] [CrossRef] [Green Version]
- Koskinas, K.C.; Gencer, B.; Nanchen, D.; Branca, M.; Carballo, D.; Klingenberg, R.; Blum, M.R.; Carballo, S.; Muller, O.; Matter, C.M.; et al. Eligibility for PCSK9 Inhibitors based on the 2019 ESC/EAS and 2018 ACC/AHA Guidelines. Eur. J. Prev. Cardiol. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Rallidis, L.S. The Changing Landscape of Lipid-Lowering Therapy after the New ESC/EAS Guidelines for the Management of Dyslipidaemias: Launching the Era of Triple Hypolipidaemic Therapy in Very High Risk Patients. Atherosclerosis 2020, 292, 231–233. [Google Scholar] [CrossRef] [Green Version]
- Masana, L.; Ibarretxe, D.; Plana, N. Reasons Why Combination Therapy Should Be the New Standard of Care to Achieve the LDL-Cholesterol Targets: Lipid-Lowering Combination Therapy. Curr. Cardiol. Rep. 2020, 22, 66. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.P.; Wiviott, S.D.; Blazing, M.A.; De Ferrari, G.M.; Park, J.G.; Murphy, S.A.; White, J.A.; Tershakovec, A.M.; Cannon, C.P.; Braunwald, E. Long-Term Safety and Efficacy of Achieving Very Low Levels of Low-Density Lipoprotein Cholesterol: A Prespecified Analysis of the IMPROVE-IT Trial. JAMA Cardiol. 2017, 2, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Borén, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease: Pathophysiological, Genetic, and Therapeutic Insights: A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; Hegele, R.A. Clinical Review on Triglycerides. Eur. Heart J. 2020, 41, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawler, P.R.; Kotrri, G.; Koh, M.; Goodman, S.G.; Farkouh, M.E.; Lee, D.S.; Austin, P.C.; Udell, J.A.; Ko, D.T. Real-World Risk of Cardiovascular Outcomes Associated with Hypertriglyceridaemia among Individuals with Atherosclerotic Cardiovascular Disease and Potential Eligibility for Emerging Therapies. Eur. Heart J. 2020, 41, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.G.; Abt, M.; Bao, W.A.; Demicco, D.; Kallend, D.; Miller, M.; Mundl, H.; Olsson, A.G. Fasting Triglycerides Predict Recurrent Ischemic Events in Patients with Acute Coronary Syndrome Treated with Statins. J. Am. Coll. Cardiol. 2015, 65, 2267–2275. [Google Scholar] [CrossRef] [Green Version]
- Ganda, O.P.; Bhatt, D.L.; Mason, R.P.; Miller, M.; Boden, W.E. Unmet Need for Adjunctive Dyslipidemia Therapy in Hypertri-Glyceridemia Management. J. Am. Coll. Cardiol. 2018, 72, 330–343. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langlois, M.R.; Langsted, A.; Chapman, M.J.; Aakre, K.M.; Baum, H.; Borén, J.; Bruckert, E.; Catapano, A.; Cobbaert, C.; et al. European Atherosclerosis Society (EAS) and the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Joint Consensus Initiative. Quantifying Atherogenic Lipoproteins for Lipid-Lowering Strategies: Consensus-Based Recommendations from EAS and EFLM. Atherosclerosis 2020, 294, 46–61. [Google Scholar] [PubMed] [Green Version]
- Clofibrate and Niacin in Coronary Heart Disease. JAMA 1975, 231, 360–381. [CrossRef]
- Rubins, H.B.; Robins, S.J.; Collins, D.; Fye, C.L.; Anderson, J.W.; Elam, M.B.; Faas, F.H.; Linares, E.; Schaefer, E.J.; Schectman, G.; et al. Gemfibrozil for the Secondary Prevention of Coronary Heart Disease in Men with Low Levels of High-Density Lipoprotein Choles-Terol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N. Engl. J Med. 1999, 341, 410–418. [Google Scholar] [CrossRef]
- Bezafibrate Infarction Prevention Study. Secondary Prevention by Raising HDL Cholesterol and Reducing Triglycerides in Patients with Coronary Artery Disease. Circulation 2000, 102, 21–27. [Google Scholar] [CrossRef]
- Keech, A.C.; Simes, R.J.; Barter, P.J.; Best, J.D.; Scott, R.A.P.; Taskinen, M.R.; Forder, P.M.; Pillai, A.; Davis, T.M.; Glasziou, P.; et al. Effects of Long-Term Fenofibrate Therapy on Cardiovascular Events in 9795 People with Type 2 Diabetes Mellitus (the FIELD Study): Randomised Controlled Trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
- Wang, D.; Liu, B.; Tao, W.; Hao, Z.; Liu, M. Fibrates for Secondary Prevention of Cardiovascular Disease and Stroke. Cochrane Database Syst. Rev. 2015, 2015, 009580. [Google Scholar] [CrossRef] [PubMed]
- Keene, D.; Price, C.; Shun-Shin, M.J.; Francis, D.P. Effect on Cardiovascular Risk of High Density Lipoprotein Targeted Drug Treatments Niacin, Fibrates, and CETP Inhibitors: Meta-Analysis of Randomised Controlled Trials Including 117 411 Patients. BMJ 2014, 349, g4379. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; et al. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar]
- Elam, M.B.; Ginsberg, H.N.; Lovato, L.C.; Corson, M.; Largay, J.; Leiter, L.A.; Lopez, C.; O’Connor, P.J.; Sweeney, M.E.; Weiss, D.; et al. Association of Fenofibrate Therapy with Long-Term Cardiovascular Risk in Statin-Treated Patients with Type 2 Diabetes. JAMA Cardiol. 2017, 2, 370–380. [Google Scholar] [CrossRef]
- Bruckert, E.; Labreuche, J.; Deplanque, D.; Touboul, P.J.; Amarenco, P. Fibrates Effect on Cardiovascular Risk Is Greater in Patients with High Triglyceride Levels or Atherogenic Dyslipidemia Profile: A Systematic Review and Meta-Analysis. J. Cardiovasc. Pharmacol. 2011, 57, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Omega-3 Treatment Trialists’ Collaboration. Associations of Omega-3 Fatty Acid Supplement Use with Cardiovascular Disease Risks: Metaanalysis of 10 Trials Involving 77917 Individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arca, M.; Borghi, C.; Pontremoli, R.; De Ferrari, G.; Colivicchi, F.; Desideri, G.; Temporelli, P. Hypertriglyceridemia and Omega-3 Fatty Acids: Their Often Overlooked Role in Cardiovascular Disease Prevention. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.J.R.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Bhatt, D.L.; Kinninger, A.; Lakshmanan, S.; Muhlestein, J.B.; Le, V.T.; May, H.T.; Shaikh, K.; Shekar, C.; Roy, S.K.; et al. Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients with Elevated Triglycerides on Statin Therapy: Final Results of the EVAPORATE Trial. Eur. Hear. J. 2020, 41, 3925–3932. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Lincoff, A.M.; Garcia, M.; Bash, D.; Ballantyne, C.M.; Barter, P.J.; Davidson, M.H.; Kastelein, J.J.P.; Koenig, W.; McGuire, D.K.; et al. Effect of High-Dose Omega-3 Fatty Acids vs Corn Oil on Major Adverse Cardiovascular Events in Patients at High Cardiovascular Risk: The STRENGHT Randomized Clinical Trial. JAMA 2020, 324, 2268–2280. [Google Scholar] [CrossRef] [PubMed]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297. [Google Scholar] [CrossRef] [Green Version]
- Amarenco, P.; Lavallée, P.; Touboul, P.-J. Stroke Prevention, Blood Cholesterol, and Statins. Lancet Neurol. 2004, 3, 271–278. [Google Scholar] [CrossRef]
- De Caterina, R.; Scarano, M.; Marfisi, R.; Lucisano, G.; Palma, F.; Tatasciore, A.; Marchioli, R. Cholesterol-Lowering Interventions and Stroke: Insights from a Meta-Analysis of Randomized Controlled Trials. J. Am. Coll. Cardiol. 2010, 55, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Caterina, R.; Salvatore, T.; Marchioli, R. Cholesterol-Lowering Interventions and Stroke: Insights from IMPROVE-IT. Athero-sclerosis 2016, 248, 216–218. [Google Scholar] [CrossRef]
- Ridker, P.M.; Revkin, J.; Amarenco, P.; Brunell, R.; Curto, M.; Civeira, F.; Flather, M.; Glynn, R.J.; Gregoire, J.; Jukema, J.W.; et al. Cardio-Vascular Efficacy and Safety of Bococizumab in High-Risk Patients. N. Engl. J. Med. 2017, 376, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Salvatore, T.; Morganti, R.; Marchioli, R.; De Caterina, R. Cholesterol Lowering and Stroke: No Longer Room for Pleiotropic Effects of Statins - Confirmation from PCSK9 Inhibitor Studies. Am. J. Med. 2020, 133, 95–99.e6. [Google Scholar] [CrossRef]
- Jukema, J.W.; Zijlstra, L.E.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Drexel, H.; Goodman, S.G.; Kim, Y.-U.; Pordy, R.; Reiner, Ž.; et al. Effect of Alirocumab on Stroke in ODYSSEY OUTCOMES. Circulation 2019, 140, 2054–2062. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Pedersen, T.R.; Saver, J.L.; Sever, P.S.; Keech, A.C.; Bohula, E.A.; Murphy, S.A.; Wasserman, S.M.; Honarpour, N.; Wang, H.; et al. Stroke Prevention with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) Inhibitor Evolocumab Added to Statin in High-Risk Patients with Stable Atherosclerosis. Stroke 2020, 51, 1546–1554. [Google Scholar] [CrossRef] [Green Version]
- Szarek, M.; Amarenco, P.; Callahan, A.; DeMicco, D.; Fayyad, R.; Goldstein, L.B.; Laskey, R.; Sillesen, H.; Welch, K.M. SPARCL Committees and Investigators. Atorvastatin Reduces First and Subsequent Vascular Events Across Vascular Territories: The SPARCL Trial. J. Am. Coll. Cardiol. 2020, 75, 2110–2118. [Google Scholar] [CrossRef]
- Saposnik, G.; Fonarow, G.C.; Pan, W.; Liang, L.; Hernandez, A.F.; Schwamm, L.H.; Smith, E.E. On Behalf of the AHA Get-with-the-Guidelines Stroke. Guideline-Directed Low-Density Lipoprotein Management in High-Risk Patients with Ischemic Stroke: Findings from Get with the Guidelines-Stroke 2003 to 2012. Stroke 2014, 45, 3343–3351. [Google Scholar] [CrossRef] [Green Version]
- Amarenco, P.; Kim, J.S.; Labreuche, J.; Charles, H.; Abtan, J.; Béjot, Y.; Cabrejo, L.; Cha, J.-K.; Ducrocq, G.; Giroud, M.; et al. A Comparison of Two LDL Cholesterol Targets after Ischemic Stroke. N. Engl. J. Med. 2020, 382, 9–19. [Google Scholar] [CrossRef]
- Hong, K.-S.; Lee, J.S. Statins in Acute Ischemic Stroke: A Systematic Review. J. Stroke 2015, 17, 282–301. [Google Scholar] [CrossRef]
- Saposnik, G.; Goodman, S.G.; Leiter, L.A.; Yan, R.T.; Fitchett, D.H.; Bayer, N.H.; Casanova, A.; Langer, A.; Yan, A.T. Vascular Protection. Guidelines-Oriented Approach to Lipid-Lowering Registries Investigators; Stroke Outcome Research Canada Working Group. Applying the Evidence: Do Patients with Stroke, Coronary Artery Disease, or Both Achieve Similar Treatment Goals? Stroke 2009, 40, 1417–1424. [Google Scholar] [CrossRef] [Green Version]
- Volis, I.; Saliba, W.; Jaffe, R.; Eitan, A.; Zafrir, B. Effect of Cerebrovascular and/or Peripheral Artery Disease with or without Attainment of Lipid Goals on Long-Term Outcomes in Patients with Coronary Artery Disease. Am. J. Cardiol. 2020, 128, 28–34. [Google Scholar] [CrossRef]
- Gencer, B.; Giugliano, R.P. Management of LDL-Cholesterol after an Acute Coronary Syndrome: Key Comparisons of the American and European Clinical Guidelines to the Attention of the Healthcare Providers. Clin. Cardiol. 2020, 43, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Bohula, E.A.; Wiviott, S.D.; Giugliano, R.P.; Blazing, M.A.; Park, J.-G.; Murphy, S.A.; White, J.A.; Mach, F.; Van De Werf, F.; Dalby, A.J.; et al. Prevention of Stroke with the Addition of Ezetimibe to Statin Therapy in Patients with Acute Coronary Syndrome in IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2017, 136, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
Trial | Mean Reduction in LDL Cholesterol; mmol/L (mg/dL) | Outcome | RR (95% CI) (per mmol/L) |
---|---|---|---|
CTT meta-analysis (high-intensity vs. standard statin; subgroup < 2.0 mmol/L) [17] | 1.71 (66) vs. 1.32 (50) | MI, CHD death, stroke, coronary revascularisation | 0.71 (0.56–0.91) |
IMPROVE-IT (ezetimibe plus simvastain vs. simvastatin) [12] | 1.55 (70) vs. 1.40 (54) | CV death, MI, stroke, UA, coronary revascularisation | 0.94 (0.89–0.99) |
FOURIER (evolocumab plus high-dose statin ± ezetimibe vs. high-dose statin ± ezetimibe) [19] | 2.37 (92) vs. 0.78 (30) | CV death, MI, stroke, UA, coronary revascularisation | 0.85 (0.79–0.92) |
ODYSSEY OUTCOMES (alirocumab plus high-dose statin ± ezetimibe vs. high-dose statin ± ezetimibe) [20] | 2.37 (92) vs. 1.37 (53) | MI, CHD death, stroke, UA | 0.85 (0.78–0.93) |
Trial | Population | Treatment | Primary Endpoints | Follow-Up | TG Reduction In all Partecipants | Risk Reduction for Partecipants with Previous CVD | Risk Reduction in Subgroup with Baseline HTG and/or Low HDL |
---|---|---|---|---|---|---|---|
Fibrates | |||||||
CDP (1975) [34] | 3892 patients with CHD | Clofibrate 1.8 g/day vs. placebo | Non fatal MI+ CHD death | 5.0 years | 22.3% (for clofibrate) | 38% | 38% |
VA-HIT (1999) [35] | 2531 patients with low HDL-C and CHD | Gemfibrozil 1200 mg/day vs. placebo | Non fatal MI + CHD death | 5.1 years | 31% | 27% | 28% |
BIP (2000) [36] | 3090 patients with previous MI or angina | Bezafibrate 400 m/day vs. placebo | MI+ sudden death | 6.2 years | 21% | 7.3% | 39.5% |
FIELD (2005) [37] | 2131 patients with DMT2 and CVD | Fenofibrate 200 mg/day vs. placebo | non fatal MI + CHD death | 5 years | 21.9% | + 2.0% | 27.0% |
ACCORD (2010) [40] | 2016 patients with DMT2 and CVD | Fenofibrate 160 mg/day + simvastatin 40 mg/day vs. simvastatin 40 mg/day | MI + stroke+ CV death | 4.7 years | 22.0% | 10.0% | 28% |
ACCORDION (2017) [41] | 1620 patients with DMT2 and CVD | Fenofibrate 160 mg/day + simvastatin 40 mg/day vs. simvastatin 40 mg/day | MI+ stroke+ CV death | 9.7 years | 14.4% | 7% | 27% |
High dose omega-3 fatty acids | |||||||
REDUCE-IT (2019) [45] | 5875 patients with CVD | EPA 4g vs. mineral oil | MI + stroke + coronary rivascularization-unstable angina + CV death | 4.9 years | 19.7% | 27% | 38% |
STRENGHT (2020) [47] | 7316 patients with CVD | EPA+ DHA 4 g vs. corn oil | MI + stroke + coronary rivascularization-unstable angina + CV death | 3.5 years | 19.9% | 6% | 1% |
American Guidelines | European Guidelines | |
---|---|---|
CHD patients | ||
Risk stratification | Patients with multiple major ASCVD events * OR multiple high-risk conditions § must be considered at very-high risk | All patients with CAD must be considered at very-high risk |
Treatment strategies | Initiate with high intensity or maximal statin therapy to lower LDL-C levels by ≥50% (Class I, Levels A) | Initiate with high-dose, high intensity statin therapy (Class I, Level A) |
If on maximal stain therapy LDL-C > 70 mg/dL add ezetimibe (Class IIa); If iPCSK9 is considered, add ezetimibe to maximal statin therapy before adding iPCSK9 (Class I, Levels B) | Revaluation after 4–6 weeks to determine whether a reduction of >50% from baseline and LDL-C goal < 55 mg/dL have been reached (Class I, Level A) (LDL-C goal < 40 mg/dL may be considered in patients with recurrent events (Class IIb, Level B)) | |
If on clinically judged maximal LDL-C lowering therapy and LDL-C > 70 mg/dL adding iPCSK9 is reasonable (Class IIa, Level A) | If not consider adding ezetimibe and eventually iPCSK9 (Class I, Levels B) | |
CeVD patients | ||
Risk stratification | Patients with multiple ASCVD events OR multiple high-risk conditions must be considered at very-high risk | All patients with ischemic stroke or TIA (particularly if recurrent) must be considered at very-high risk |
Treatment strategies | Initiate with high intensity or maximal statin therapy to lower LDL-C levels by ≥50% (Class I, Levels A) | Initiate with high dose statin therapy (Class I, Level A) |
If on maximal stain therapy LDL-C > 70 mg/dL add ezetimibe (Class IIa); If iPCSK9 is considered, add ezetimibe to maximal statin therapy before adding iPCSK9 (Class I, Levels B) | Revaluation safter 4–6 weeks to determine whether a reduction of >50% from baseline and LDL-C goal < 55 mg/dL have been reached (LDL-C goal < 40 mg/dL in patients with recurrent events (Class I, Level A) | |
If on clinically judged maximal LDL-C lowering therapy and LDL-C > 70 mg/dL adding iPCSK9 is reasonable (Class IIa, Level A) | If not consider adding ezetimibe and eventually iPCSK9 (Class I, Levels B) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temporelli, P.L.; Arca, M.; D’Erasmo, L.; De Caterina, R. Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible? J. Clin. Med. 2021, 10, 886. https://doi.org/10.3390/jcm10040886
Temporelli PL, Arca M, D’Erasmo L, De Caterina R. Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible? Journal of Clinical Medicine. 2021; 10(4):886. https://doi.org/10.3390/jcm10040886
Chicago/Turabian StyleTemporelli, Pier Luigi, Marcello Arca, Laura D’Erasmo, and Raffaele De Caterina. 2021. "Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible?" Journal of Clinical Medicine 10, no. 4: 886. https://doi.org/10.3390/jcm10040886
APA StyleTemporelli, P. L., Arca, M., D’Erasmo, L., & De Caterina, R. (2021). Lipid-Lowering Therapy in Patients with Coronary Heart Disease and Prior Stroke: Mission Impossible? Journal of Clinical Medicine, 10(4), 886. https://doi.org/10.3390/jcm10040886