Effectiveness of Non-Presential Individualized Exercise Training PrOgram(NIETO) in Lower Limb Physical Performance in Advanced COPD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
- -
- Advanced COPD: all the patients included had severe respiratory functional impairment: FEV1≤ 50% or very severe: ≤30%; of the reference values; according to the recommendations of the Global COPD Initiative (GOLD), a postbronchodilator ratio of forced expiratory volume in one second (FEV1)/forced vital capacity postbronchodilator <70% and FEV1 <50% predicted [7].
- -
- Stable COPD: all the patients when they were included in the study were COPD in a situation of clinical stability, outside a period of exacerbation or hospitalization (six weeks prior to inclusion)
2.2. Non-Presential Individualized Exercise Training PrOgram Description
2.3. Primary Outcome Measurement
2.4. Other Variables
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Implications for Practice and Research
4.2. Strengths and Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watz, H.; Waschki, B.; Meyer, T.; Magnussen, H. Physical activity in patients with COPD. Eur. Respir. J. 2008, 33, 262–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievi, N.A.; Brack, T.; Brutsche, M.H.; Frey, M.; Irani, S.; Leuppi, J.D.; Thurnheer, R.; Kohler, M.; Clarenbach, C.F. Physical activity declines in COPD while exercise capacity remains stable: A longitudinal study over 5 years. Respir. Med. 2018, 141, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Aymerich, J.; Lange, P.; Benet, M.; Schnohr, P.; Anto, J.M. Regular physical activity reduces hospital admission and mortality in chronic obstructive pulmonary disease: A population based cohort study. Thorax 2006, 61, 772–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimeno-Santos, E.; Frei, A.; Steurer-Stey, C.; De Batlle, J.; Rabinovich, R.A.; Raste, Y.; Hopkinson, N.S.; Polkey, M.I.; Van Remoortel, H.; Troosters, T.; et al. Determinants and outcomes of physical activity in patients with COPD: A systematic review. Thorax 2014, 69, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Moy, M.L.; Gould, M.K.; Liu, I.-L.A.; Lee, J.S.; Nguyen, H.Q. Physical activity assessed in routine care predicts mortality after a COPD hospitalisation. ERJ Open Res. 2016, 2, 62. [Google Scholar] [CrossRef] [Green Version]
- Waschki, B.; Kirsten, A.; Holz, O.; Müller, K.-C.; Meyer, T.; Watz, H.; Magnussen, H. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study. Chest 2011, 140, 331–423. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for Diagnosis, Management, and Prevention of COPD. 2010. Available online: http://www.goldcopd.org/.
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.-C.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Key Concepts and Advances in Pulmonary Rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Lacasse, Y.; Goldstein, R.; Lasserson, T.J.; Martin, S. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2006, 4, CD003793. [Google Scholar]
- Nici, L.; ZuWallack, R. An Official American Thoracic Society Workshop Report: The Integrated Care of the COPD Patient. Proc. Am. Thorac. Soc. 2012, 9, 9–18. [Google Scholar] [CrossRef]
- O’Shea, S.D.; Taylor, N.F.; Paratz, J. Peripheral muscle strength training in chronic obstructive pulmonary disease: A systematic review. Chest 2004, 126, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Eisner, M.D.; Iribarren, C.; Blanc, P.D.; Yelin, E.H.; Ackerson, L.; Byl, N.; Omachi, T.A.; Sidney, S.; Katz, P.P. Development of disability in chronic obstructive pulmonary disease: Beyond lung function. Thorax 2010, 66, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; Decramer, M.; Casaburi, R.; Barreiro, E.; Burelle, Y.; Debigaré, R.; Dekhuijzen, P.N.R.; Franssen, F.; Gayan-Ramirez, G.; Gea, J.; et al. An Official American Thoracic Society/European Respiratory Society Statement: Update on Limb Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2014, 189, e15–e62. [Google Scholar] [CrossRef] [Green Version]
- Fermont, J.M.; Masconi, K.L.; Jensen, M.T.; Ferrari, R.; Lorenzo, V.A.P.D.; Marott, J.M.; Schuetz, P.; Watz, H.; Waschki, B.; Müllerova, H.; et al. Biomarkers and clinical outcomes in COPD: A systematic review and meta-analysis. Thorax 2019, 74, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Seymour, J.; Spruit, M.; Hopkinson, N.; Sathyapala, A.; Man, W.; Jackson, A.; Gosker, H.; Schols, A.; Moxham, J.; Polkey, M.; et al. The Prevalence of Quadriceps Weakness in COPD and the Relationship with Disease Severity. Eur. Respir. J. 2010, 36, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Man, W.D.C.; Soliman, M.G.G.; Nikoletou, D.; Harris, M.L.; Rafferty, G.F.; Mustfa, N.; Polkey, M.I.; Moxham, J. Non-volitional assessment of skeletal muscle strength in patients with chronic obstructive pulmonary disease. Thorax 2003, 58, 665–669. [Google Scholar] [CrossRef] [Green Version]
- Moy, M.L.; Martinez, C.H.; Kadri, R.; Roman, P.; Holleman, R.G.; Kim, H.M.; Nguyen, H.Q.; Cohen, M.D.; Goodrich, D.E.; Giardino, N.D.; et al. Long-Term Effects of an Internet-Mediated Pedometer-Based Walking Program for Chronic Obstructive Pulmonary Disease: Randomized Controlled Trial. J. Med. Internet Res. 2016, 18, e215. [Google Scholar] [CrossRef] [Green Version]
- Troosters, T.; Casaburi, R.; Gosselink, R.; Decramer, M. Pulmonary Rehabilitation in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2005, 172, 19–38. [Google Scholar] [CrossRef]
- Corhay, J.L.; Nguyen, D.; Van Cauwenberge, H.; Louis, R. Pulmonary rehabilitation and COPD: Providing patients a good environment for optimizing therapy. Int. J. Chronic Obstr. Pulm. Dis. 2013, 9, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, A.; Lee, A.; Holland, A.E. What prevents people with chronic obstructive pulmonary disease from attending pulmonary rehabilitation? A systematic review. Chronic Respir. Dis. 2011, 8, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Pulmonary Rehabilitation in the Home Versus Other Settings for Individuals with Chronic Obstructive Pulmonary Disease (COPD): A Rapid Review; Health Quality Ontario: Toronto, ON, Canada, 2015; 23p. [Google Scholar]
- Burge, A.T.; Holland, A.E.; McDonald, C.F.; Abramson, M.J.; Hill, C.J.; Lee, A.L.; Cox, N.S.; Moore, R.; Nicolson, C.; O’Halloran, P.; et al. Home-based pulmonary rehabilitation for COPD using minimal resources: An economic analysis. Respirology 2019, 25, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.E.; Spruit, M.A.; Troosters, T.; Puhan, M.A.; Pepin, V.; Saey, D.; McCormack, M.C.; Carlin, B.W.; Sciurba, F.C.; Pitta, F.; et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014, 44, 1428–1446. [Google Scholar] [CrossRef]
- Guralnik, J.M. Assessing Physical Performance in the Older Patient [CDROM]. Bethesda, MD: National Institutes of Aging. Available online: http://www.grc.nia.nih.gov/branches/leps/sppb/ (accessed on 8 June 2020).
- Benzo, R.; Karpman, C. Gait speed as a measure of functional status in COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 2014, 9, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Ozalevli, S.; Ozden, A.; Itil, O.; Akkoclu, A. Comparison of the Sit-to-Stand Test with 6min walk test in patients with chronic obstructive pulmonary disease. Respir. Med. 2007, 101, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpman, C.; Depew, Z.S.; Lebrasseur, N.K.; Novotny, P.J.; Benzo, R.P. Determinants of gait speed in chronic obstructive lung disease. Chest 2014, 146, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu-Mora, R.; Medina-Mirapeix, F.; Llamazares-Herrán, E.; Oliveira-Sousa, S.L.; Sánchez-Martinez, M.P.; Escolar-Reina, P. The accuracy with which the 5 times sit-to-stand test, versus gait speed, can identify poor exercise tolerance in patients with COPD: A cross-sectional study. Medicine 2016, 95, 35. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.S.; Mohan, D.; Andersson, Y.M.; Baz, M.; Kon, S.S.; Canavan, J.L.; Jackson, S.G.; Clark, A.L.; Hopkinson, N.S.; Natanek, S.A.; et al. Phenotypic Characteristics Associated with Reduced Short Physical Performance Battery Score in COPD. Chest 2014, 145, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Eisner, M.D.; Iribarren, C.; Yelin, E.H.; Sidney, S.; Katz, P.P.; Ackerson, L.; Lathon, P.; Tolstykh, I.; Omachi, T.; Byl, N.; et al. Pulmonary Function and the Risk of Functional Limitation in Chronic Obstructive Pulmonary Disease. Am. J. Epidemiol. 2008, 167, 1090–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernabeu-Mora, R.; Medina-Mirapeix, F.; Llamazares-Herrán, E.; García-Guillamón, G.; Giménez- Giménez, L.M.; Sánchez-Nieto, J.M. The short physical performance battery is a discriminative tool for identifying patients with COPD at risk of disability. Int. J. Chron. Obs. Pulmon. Dis. 2015, 10, 2619–2626. [Google Scholar] [CrossRef] [Green Version]
- Larsson, P.; Borge, C.R.; Nygren-Bonnier, M.; Lerdal, A.; Edvardsen, A. An evaluation of the short physical performance battery following pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. BMC Res. Notes 2018, 11, 348. [Google Scholar] [CrossRef] [Green Version]
- Kendall, F.P.; McCreary, E.K.; Provance, P.G. Muscles Testing and Function, 4th ed.; Lippincott, Williams and Wilkins: Philadelphia, PA, USA, 1993. [Google Scholar]
- O’Shea, S.D.; Taylor, N.F.; Paratz, J.D. Measuring Muscle Strength for People with Chronic Obstructive Pulmonary Disease: Retest Reliability of Hand-Held Dynamometry. Arch. Phys. Med. Rehabil. 2007, 88, 32–36. [Google Scholar] [CrossRef]
- Divo, M.; Cote, C.; De Torres, J.P.; Casanova, C.; Marin, J.M.; Pinto-Plata, V.; Zulueta, J.; Cabrera, C.; Zagaceta, J.; Hunninghake, G.; et al. Comorbidities and Risk of Mortality in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2012, 186, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Herrero, M.J.; Blanch, J.; Peri, J.M.; De Pablo, J.; Pintor, L.; Bulbena, A. A validation study of the hospital anxiety and depression scale (HADS) in a Spanish population. Gen. Hosp. Psychiatry 2003, 25, 277–283. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of Clinical Methods for Rating Dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Dunlap, W.P.; Cortina, J.M.; Vaslow, J.B.; Burke, M.J. Meta-analysis of experiments with matched groups or repeated measures designs. Psychol. Methods 1996, 1, 170–177. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Lenhard, W.; Lenhard, A. Calculation of Effect Sizes. Psychometrica. Available online: https://www.psychometrica.de/effect_size (accessed on 8 June 2020).
- Bolton, C.E.; Bevan-Smith, E.F.; Blakey, J.D.; Crowe, P.; Elkin, S.L.; Garrod, R.; Greening, N.J.; Heslop, K.; Hull, J.H.; Man, W.D.-C.; et al. British Thoracic Society guideline on pulmonary rehabilitation in adults: Accredited by NICE. Thorax 2013, 68, ii1–ii30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, C.; Paternostro Bayles, M.; Hamm, L.F.; Hill, K.; Holland, A.; Limberg, T.M.; Spruit, M.A. Pulmonary Rehabilitation Exercise Prescription in Chronic Obstructive Pulmonary Disease: Review of Selected Guidelines: An official statement from the American Association of Cardiovascular and Pulmonary rehabilitation. J. Cardiopulm. Rehabil. Prev. 2016, 36, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Maltais, F.; Bourbeau, J.; Shapiro, S.; Lacasse, Y.; Perrault, H.; Baltzan, M.; Hernandez, P.; Rouleau, M.; Julien, M.; Parenteau, S.; et al. Effects of home-based pulmonary rehabilitation in patients with chronic obstructive pulmonary disease: A randomized trial. Ann. Intern. Med. 2008, 149, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Wang, C.H.; Lin, H.C. Efficacy of a cell-phone-based exercise program for chronic obstructive pulmonary disease. Eur. Respir. J. 2008, 32, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Whelan, M.E.; Armitage, L.C.; Roberts, N.; Farmer, A.J. Are COPD self-management mobile applications effective? A systematic review and meta-analysis. npj Prim. Care Respir. Med. 2020, 30, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güell, M.R.; De Lucas, P.; Gáldiz, J.B.; Montemayor, T.; González-Moro, J.M.R.; Gorostiza, A.; Ortega, F.; Bellón, J.M.; Guyatt, G. Home vs. hospital-based pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: A Spanish multicenter trial. Arch. Bronconeumol. 2008, 44, 512–518. [Google Scholar] [CrossRef]
- Chen, Y.; Niu, M.; Zhang, X.; Qian, H.; Xie, A.; Wang, X. Effects of home-based lower limb resistance training on muscle strength and functional status in stable Chronic obstructive pulmonary disease patients. J. Clin. Nurs. 2018, 27, e1022–e1037. [Google Scholar] [CrossRef] [PubMed]
- Puente-Maestu, L.; Sánz, M.; Sánz, P.; Cubillo, J.; Mayol, J.; Casaburi, R. Comparison of effects of supervised versus self-monitored training programmes in patients with chronic obstructive pulmonarydisease. Eur. Respir. J. 2000, 15, 517–525. [Google Scholar] [CrossRef]
- Candemir, I.; Ergun, P.; Kaymaz, D.; Demir, N.; McCurdy, S.A. Comparison of unsupervised home-based pulmonary rehabilitation versus supervised hospital outpatient pulmonary rehabilitation in patients with chronic obstructive pulmonary disease. Expert Rev. Respir. Med. 2019, 13, 1195–1203. [Google Scholar] [CrossRef]
- Barthuly, A.M.; Bohannon, R.W.; Gorack, W. Gait speed is a responsive measure of physical performance for patients undergoing short-term rehabilitation. Gait Posture 2012, 36, 61–64. [Google Scholar] [CrossRef]
- Lexell, J.; Flansbjer, U.-B.; Holmbäck, A.M.; Downham, D.; Patten, C. Reliability of gait performance tests in men and women with hemiparesis after stroke. J. Rehabil. Med. 2005, 37, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kon, S.S.C.; Canavan, J.L.; Nolan, C.M.; Clark, A.L.; Jones, S.E.; Cullinan, P.; Polkey, M.I.; Man, W.D.-C. The 4-metre gait speed in COPD: Responsiveness and minimal clinically important diference. Eur. Respir. J. 2014, 43, 1298–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, S.E.; Kon, S.S.C.; Canavan, J.L.; Patel, M.S.; Clark, A.L.; Nolan, C.M.; Polkey, M.I.; Man, W.D.-C. The five-repetition sit-to-stand test as a functional outcome measure in COPD. Thorax 2013, 68, 1015–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swallow, E.B.; Reyes, D.; Hopkinson, N.S.; Man, W.D.-C.; Porcher, R.; Cetti, E.J.; Moore, A.J.; Moxham, J.; Polkey, M.I. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax 2007, 62, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Bernabeu-Mora, R.; Giménez-Giménez, L.; Montilla-Herrador, J.; García-Guillamón, G.; García Vidal, J.A.; Medina-Mirapeix, F. Determinants of each domain of the Short Physical Performance Battery in COPD. Int. J. COPD 2017, 12, 2539–2544. [Google Scholar] [CrossRef] [Green Version]
- Kon, S.S.; Patel, M.S.; Canavan, J.L.; Clark, A.L.; Jones, S.E.; Nolan, C.M.; Cullinan, P.; Polkey, M.I.; Man, W.D.-C. Reliability and validity of 4-metre gait speed in COPD. Eur. Respir. J. 2012, 42, 333–340. [Google Scholar] [CrossRef]
- Holland, A.E.; Mahal, A.; Hill, C.J.; Lee, A.L.; Burge, A.T.; Cox, N.S.; Moore, R.; Nicolson, C.; O’Halloran, P.; Lahham, A.; et al. Home-based rehabilitation for COPD using minimal resources: A randomised, controlled equivalence trial. Thorax 2017, 72, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, B.; Casey, D.; DeVane, D.; Murphy, K.; Murphy, E.; Lacasse, Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2015, 2, CD003793. [Google Scholar] [CrossRef]
- Gardiner, L.; Graham, L.; Harvey-Dunstan, T.; Mcnaughton, A.; Nolan, C.; Nannette Spain, N.; Sewell, L.; Vogiatzis, J. Pulmonary Rehabilitation Remote Assessment. British Thoracic Society. Available online: https://brit-thoracic.org.uk/about-us/covid-19-information-for-the-respiratory-community/ (accessed on 15 May 2020).
- Garvey, C.; Holland, A.E.; Corn, J. Pulmonary Rehabilitation Resources in a Complex and Rapidly Changing World. Available online: https://www.thoracic.org/members/assemblies/ (accessed on 25 September 2020).
- Holland, A.E.; Malaguti, C.; Hoffman, M.; Lahham, A.; Burge, A.T.; Dowman, L.; May, A.K.; Bondarenko, J.; Graco, M.; Tikellis, G.; et al. Home-based or remote exercise testing in chronic respiratory disease, during the COVID-19 pandemic and beyond: A rapid review. Chronic Respir. Dis. 2020, 17. [Google Scholar] [CrossRef] [PubMed]
- Wallaert, B.; Grosbois, J.-M.; Gicquello, A.; Langlois, C.; Le Rouzic, O.; Chenivesse, C.; Bart, F. Long-term evaluation of home-based pulmonary rehabilitation in patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 2037–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosbois, J.-M.; Robiquet, J.H.; Machuron, F.; Terce, G.; Chenivesse, C.; Wallaert, B.; Le Rouzic, O. Influence of Socioeconomic Deprivation On Short- And Long-Term Outcomes Of Home-Based Pulmonary Rehabilitation In Patients With Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2441–2449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gephine, S.; Le Rouzic, O.; Machuron, F.; Wallaert, B.; Chenivesse, C.; Saey, D.; Maltais, F.; Mucci, P.; Grosbois, J.-M. Long-Term Effectiveness of a Home-Based Pulmonary Rehabilitation in Older People with Chronic Obstructive Pulmonary Disease: A Retrospective Study. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 2505–2514. [Google Scholar] [CrossRef]
Characteristics | Intervention Group (IG) n = 43 | Control Group (CG) n = 43 | p-Value |
---|---|---|---|
Sociodemographic variables | |||
Age (years), mean (SD) | 67.83 (9.49) | 67.04 (9.32) | 0.698 |
Female, n (%) | 9 (20.9) | 9 (20.9) | 1.000 |
Clinical and Pulmonary variables | |||
BMI (kg/m2), mean (SD) | 27.47 (4.65) | 28.89 (4.80) | 0.167 |
COTE, mean (SD) Depression (HAD-D), mean (SD) FEV1 (% predicted), mean (SD) Current smoker, n (%) Dyspnea (mMRC), mean (SD) | 1.5 (2) 11.46 (7.82) 40.34 (11.89) 7 (16.3) 2.83 (0.68) | 0.8 (1.6) 13 (8) 44.09 (13.09) 10 (23.3) 2.51 (0.85) | 0.383 0.169 0.417 0.678 |
Non-pulmonary variables | |||
Quadriceps strength (kg), mean (SD) | 17.35 (4.03) | 15.83 (2.92) | 0.188 |
4MGS (seconds), mean (SD) | 4.73 (1.20) | 4.39 (1.00) | 0.329 |
5STS (seconds), media (SD) | 17.24 (4.33) | 14.30 (2.73) | 0.139 |
Outcome Measure | Intervention Group (IG) n = 43 | Control Group (CG) n = 43 | p−Value | Effect Size (95% CI) |
---|---|---|---|---|
Quadriceps strength (kg), mean (SD) | 2.44 (4.07) | 0.05 (4.26) | 0.009 * | 0.57 (0.142, 1.005) |
4MGS (seconds), mean (SD) | −0.39 (0.86) | 0.37 (0.96) | 0.001 * | 0.02 (−0.401, 0.445) |
5STS (seconds), mean (SD) | −1.55 (2.83) | 0.60 (2.06) | 0.001 * | 0.38 (−0.043, 0.810) |
Baseline | Mean Change at 1 Year | Mean Difference (95% CI) | |||
IG | CG | IG | CG | ||
Quadriceps Muscle Strength (Kg) | |||||
Gender | |||||
Male | 20.21 (4.99) | 15.64 (3.23) | 2.47 (3.86) | −0.45 (4.21) | −2.92 (−4.886, −0.970) * |
Female | 18.25 (5.54) | 16.93 (3.15) | 2.32 (5.02) | 1.95 (4.13) | −0.370 (−4.969, 4.229) |
Smoking | |||||
Current | 15.15 (4.12) | 18.12 (2.34) | 0.44 (3.99) | 2.21 (3.79) | 1.76 (−2.300, 5.836) |
No current | 20.70 (4.81) | 15.21 (3.17) | 2.83(4.02) | −0.60(4.23) | −3.43 (−5.421, −1.452) * |
Dyspnea (mMRC) | |||||
≤2 | 21.56 (4.56) | 15.97 (3.16) | 4.31 (3.74) | −0.25 (4.19) | −4.572 (−7.300, −1.843) * |
>2 | 19.11 (5.20) | 15.59 (4.01) | 1.72 (4.01) | 2.41 (4.46) | 0.689 (−3.299, 4.678) |
FEV1 (% pred) | |||||
<30% | 17.01 (4.78) | 17.66 (3.23) | 2.755 (4.12) | −0.279 (4.39) | −3.034 (−5.013, −1.055) * |
≥30% | 20.34 (5.04) | 15.73 (3.21) | 0.842 (3.62) | 2.560 (1.76) | −0.569 (−1.739, 0.601) |
HAD−D | |||||
<11 | 18.70 (1.65) | 18.70 (0.67) | 2.815 (4.78) | −2.800 (0) | −5.615 (−15.789, 4.557) |
≥11 | 19.82 (5.16) | 15.96 (3.44) | 2.053 (3.23) | 0.118 (4.29) | −1.935 (−4.060, 0.189) |
Baseline | Mean Change at 1 year | Mean Difference (95% CI) | |||
IG | CG | IG | CG | ||
4MGS (Seconds) | |||||
Gender | |||||
Male | 4.45 (1.17) | 4.70 (1.36) | −0.45 (0.87) | 0.44 (0.97) | 0.899 (0.451, 1.347) |
Female | 3.95 (1.12) | 4.40 (1.18) | −0.19 (0.85) | 0.07 (0.91) | 0.270 (−0.614, 1.154) |
Smoking | |||||
Current | 4.68 (0.82) | 4.68 (1.03) | −0.16 (1.18) | 0.25 (0.59) | 0.419 (−0.504, 1.342) |
No current | 4.28 (1.22) | 4.62 (1.41) | −0.44 (0.80) | 0.40 (1.05) | 0.848 (0.399, 1.296) |
Dyspnea (mMRC) | |||||
≤2 | 4.23 (1.41) | 4.58 (1.37) | −0.32 (0.82) | 0.29 (0.96) | 0.623 (0.001, 1.244) |
>2 | 4.39 (1.09) | 5.15 (0.35) | −0.42 (0.89) | 0.92 (0.84) | 1.351 (0.481, 2.221) |
FEV1 (% pred) | |||||
<30% | 5.38 (1.58) | 4.60 (0.41) | −0.41 (0.88) | 0.33 (1.00) | 0.751 (0.313, 1.189) |
≥30% | 4.14 (0.97) | 4.63 (1.36) | −0.29 (0.84) | 0.65 (0.58) | 0.942 (−0.036, 1.922) |
HAD−D | |||||
<11 | 4.57 (2.60) | 5.73 (1.06) | −0.38 (0.66) | −0.05 (0) | 0.337 (−1.079, 1.753) |
≥11 | 4.34 (1.18) | 4.44 (0.89) | −0.40 (1.05) | 0.37 (0.97) | 0.788 (0.254, 1.323) |
Baseline | Mean Change at 1 year | Mean Difference (95% CI) | |||
IG | CG | IG | CG | ||
5STS (Seconds) | |||||
Gender | |||||
Male | 17.31 (4.39) | 14.01 (2.33) | −1.66 (3.07) | 0.67 (2.20) | 2.340 (1.046, 3.633) |
Female | 15.53 (4.31) | 13.88 (3.85) | −1.12 (1.75) | 0.34 (1.48) | 1.466 (−0.155, 3.089) |
Smoking | |||||
Current | 18.30 (3.71) | 14.77 (2.91) | −0.30 (1.06) | 0.68 (1.77) | 0.981 (−0.625, 2.587) |
No current | 16.91 (4.46) | 13.69 (2.63) | −1.79 (3.01) | 0.58 (2.16) | 2.377 (1.107, 3.648) |
Dyspnea (mMRC) | |||||
≤2 | 14.99 (2.22) | 13.90 (2.77) | −1.59 (2.26) | 0.45 (2.09) | 2.058 (0.637, 3.479) |
>2 | 18.01 (4.69) | 15.38 (0.72) | −1.53 (3.06) | 1.71 (1.50) | 3.244 (0.382, 6.106) |
FEV1 (% pred) | |||||
<30% | 17.58 (6.60) | 13.63 (1.97) | −1.86 (2.81) | 0.44 (1.95) | 2.304 (1.185, 3.423) |
≥30% | 17.07 (3.97) | 14.01 (2.79) | 0.04 (2.53) | 1.84 (2.66) | 1.801 (−1.572, 5.174) |
HAD−D | |||||
<11 | 17.01 (1.97) | 13.78 (0.80) | −1.09 (2.51) | −3.94 (0) | −2.841 (−8.195, 2.512) |
≥11 | 17.15 (4.39) | 14.02 (2.86) | −2.02 (3.12) | 0.71 (1.95) | 2.741 (1.457, 4.026) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Nieto, J.M.; Fernández-Muñoz, I.; Carrillo-Alcaraz, A.; Bernabeu-Mora, R. Effectiveness of Non-Presential Individualized Exercise Training PrOgram(NIETO) in Lower Limb Physical Performance in Advanced COPD. J. Clin. Med. 2021, 10, 1010. https://doi.org/10.3390/jcm10051010
Sánchez-Nieto JM, Fernández-Muñoz I, Carrillo-Alcaraz A, Bernabeu-Mora R. Effectiveness of Non-Presential Individualized Exercise Training PrOgram(NIETO) in Lower Limb Physical Performance in Advanced COPD. Journal of Clinical Medicine. 2021; 10(5):1010. https://doi.org/10.3390/jcm10051010
Chicago/Turabian StyleSánchez-Nieto, Juan Miguel, Irene Fernández-Muñoz, Andrés Carrillo-Alcaraz, and Roberto Bernabeu-Mora. 2021. "Effectiveness of Non-Presential Individualized Exercise Training PrOgram(NIETO) in Lower Limb Physical Performance in Advanced COPD" Journal of Clinical Medicine 10, no. 5: 1010. https://doi.org/10.3390/jcm10051010
APA StyleSánchez-Nieto, J. M., Fernández-Muñoz, I., Carrillo-Alcaraz, A., & Bernabeu-Mora, R. (2021). Effectiveness of Non-Presential Individualized Exercise Training PrOgram(NIETO) in Lower Limb Physical Performance in Advanced COPD. Journal of Clinical Medicine, 10(5), 1010. https://doi.org/10.3390/jcm10051010