The Role of Hip Joint Clearance Discrepancy as Other Clinical Predictor of Reinjury and Injury Severity in Hamstring Tears in Elite Athletes
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Participants
2.2. Procedure
2.3. Inclusion Criteria
2.4. Exclusion Criteria
2.5. Statistical Procedure
2.6. Ethical Considerations and Participant Involvement
2.7. Patient and Public Involvement
3. Results
3.1. Characteristics of the Study Sample and between Group Differences
3.2. Relationship of History of Injury with JCD
4. Discussion
4.1. The Role of the Hip
4.2. Relationship of Hip Flexion with the Hamstring Muscle
4.3. The Influence of Training
4.4. Running Biomechanics
4.5. The Age Factor
4.6. Muscular Mechanics
4.7. Theory on the Pathophysiological Correlation about HTI and JCD
5. Study Limitations
6. Implications for Practice
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foreman, T.K.; Addy, T.; Baker, S.; Burns, J.; Hill, N.; Madden, T. Prospective studies into the causation of hamstring injuries in sport: A systematic review. Phys. Ther. Sport 2006, 7, 101–109. [Google Scholar] [CrossRef]
- Prior, M.; Guerin, M.; Grimmer, K. An evidence-based approach to hamstring strain injury: A systematic review of the literature. Sports Health 2009, 1, 154–164. [Google Scholar] [CrossRef]
- Woods, C.; Hawkins, R.; Maltby, S.; Hulse, M.; Thomas, A.; Hodson, A.; Football Association Medical Research Programme. The Football Association Medical Research Programme: An audit of injuries in professional football- analysis of hamstring injuries. Br. J. Sports Med. 2004, 38, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Armfield, D.R.; Kim, D.H.; Towers, J.D.; Bradley, J.P.; Robertson, D.D. Sports-related muscle injury in the lower extremity. Clin. Sports Med. 2006, 25, 803–842. [Google Scholar] [CrossRef] [PubMed]
- Koulouris, G.; Connell, D.A.; Brukner, P.; Schneider-Kolsky, M. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am. J. Sports Med. 2007, 35, 1500–1506. [Google Scholar] [CrossRef]
- Behan, F.P.; Moody, R.; Patel, T.S.; Lattimore, E.; Maden-Wilkinson, T.M.; Balshaw, T.G. Biceps femoris long head muscle fascicle length does not differ between sexes. J. Sports Sci. 2019, 37, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Opar, D.A.; Williams, M.D.; Shield, A.J. Hamstring strain injuries: Factors that lead to injury and re-injury. Sports Med. 2012, 42, 209–226. [Google Scholar] [CrossRef] [PubMed]
- Edouard, P.; Depiesse, F.; Branco, P.; Alonso, J.M. Analyses of Helsinki 2012 European Athletics Championships injury and illness surveillance to discuss elite athletes risk factors. Clin. J. Sport Med. 2014, 24, 409–415. [Google Scholar] [CrossRef]
- Hägglund, M.; Waldén, M.; Ekstrand, J. Previous injury as a risk factor for injury in elite football: A prospective study over two consecutive seasons. Br. J. Sports Med. 2006, 40, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Engebretsen, A.H.; Myklebust, G.; Holme, I.; Engebretsen, L.; Bahr, R. Intrinsic risk factors for hamstring injuries among male soccer players: A prospective cohort study. Am. J. Sports Med. 2010, 38, 1147–1153. [Google Scholar] [CrossRef]
- Tokutake, G.; Kuramochi, R.; Murata, Y.; Enoki, S.; Koto, Y.; Shimizu, T. The risk factors of hamstring strain injury induced by high-speed running. J. Sports Sci. Med. 2018, 17, 650–655. [Google Scholar]
- Mendiguchia, J.; Alentorn-Geli, E.; Brughelli, M. Hamstring strain injuries: Are we heading in the right direction? Br. J. Sports Med. 2012, 46, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Askling, C.M.; Tengvar, M.; Saartok, T.; Thorstensson, A. Acute first-time hamstring strains during high-speed running: A longitudinal study including clinical and magnetic resonance imaging findings. Am. J. Sports Med. 2007, 35, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Freckleton, G.; Pizzari, T. Risk factors for hamstring muscle strain injury in sport: A systematic review and meta-analysis. Br. J. Sports Med. 2013, 47, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbe, B.J.; Finch, C.F.; Bennell, K.L.; Wajswelner, H. Risk factors for hamstring injuries in community level Australian football. Br. J. Sports Med. 2005, 39, 106–110. [Google Scholar] [CrossRef] [Green Version]
- Gabbe, B.J.; Bennell, K.L.; Finch, C.F.; Wajswelner, H.; Orchard, J.W. Predictors of hamstring injury at the elite level of Australian football. Scand. J. Med. Sci. Sports 2006, 16, 7–13. [Google Scholar] [CrossRef]
- Timmins, R.G.; Bourne, M.N.; Shield, A.J.; Williams, M.D.; Lorenzen, C.; Opar, D.A. Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer): A prospective cohort study. Br. J. Sports Med. 2016, 50, 1524–1535. [Google Scholar] [CrossRef] [PubMed]
- De Vos, R.J.; Reurink, G.; Goudswaard, G.J.; Moen, M.H.; Weir, A.; Tol, J.L. Clinical findings just after return to play predict hamstring re-injury, but baseline MRI findings do not. Br. J. Sports Med. 2014, 48, 1377–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, P.; Gabbe, B.J.; Schneider-Kolsky, M.; Bennell, K.L. Clinical predictors of time to return to competition and of recurrence following hamstring strain in elite Australian footballers. Br. J. Sports Med. 2010, 44, 415–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorborg, K. What are the most important risk factors for hamstring muscle injury? Clin. J. Sport Med. 2014, 24, 160–161. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.O.; Maher, C.G.; Saragiotto, B.T. Prevention programmes including Nordic exercises to prevent hamstring injuries in football players (PEDro synthesis). Br. J. Sports Med. 2018, 52, 877–878. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Alvares, J.B.; Marques, V.B.; Vaz, M.A.; Baroni, B.M. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J. Strength Cond. Res. 2018, 32, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Shield, A.J.; Bourne, M.N. Hamstring injury prevention practices in elite sport: Evidence for eccentric strength vs. lumbo-pelvic training. Sports Med. 2018, 48, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Van der Horst, N. Preventing hamstring injuries in football through enhanced exercise and RTP strategies. Br. J. Sports Med. 2018, 52, 684–685. [Google Scholar] [CrossRef] [PubMed]
- Bourne, M.N.; Duhig, S.J.; Timmins, R.G.; Williams, M.D.; Opar, D.A.; Al Najjar, A.; Kerr, G.K.; Shield, A.J. Impact of the Nordic hamstring and hip extension exercises on hamstring architecture and morphology: Implications for injury prevention. Br. J. Sports Med. 2017, 51, 469–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Attar, W.S.A.; Soomro, N.; Sinclair, P.J.; Pappas, E.; Sanders, R.H. Effect of injury prevention programs that include the Nordic hamstring exercise on hamstring injury rates in soccer players: A systematic review and meta-analysis. Sports Med. 2017, 47, 907–916. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Sakuma, K.; Sakuraba, K.; Sato, Y. Prevention of hamstring injuries in collegiate sprinters. Orthop. J. Sports Med. 2017, 5, 2325967116681524. [Google Scholar] [CrossRef] [PubMed]
- Cacchio, A.; Borra, F.; Severini, G.; Foglia, A.; Musarra, F.; Taddio, N.; De Paulis, F. Reliability and validity of three pain provocation tests used for the diagnosis of chronic proximal hamstring tendinopathy. Br. J. Sports Med. 2012, 46, 883–887. [Google Scholar] [CrossRef]
- Schneider-Kolsky, M.E.; Hoving, J.L.; Warren, P.; Connell, D.A. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am. J. Sports Med. 2006, 34, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- Zeren, B.; Oztekin, H.H. A new self-diagnostic test for biceps femoris muscle strains. Clin. J. Sport Med. 2006, 16, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Heiderscheit, B.C.; Sherry, M.A.; Silder, A.; Chumanov, E.S.; Thelen, D.G. Hamstring strain injuries: Recommendations for diagnosis, rehabilitation, and injury prevention. J. Orthop. Sports Phys. Ther. 2010, 40, 67–81. [Google Scholar] [CrossRef] [Green Version]
- Reiman, M.P.; Loudon, J.K.; Goode, A.P. Diagnostic accuracy of clinical tests for assessment of hamstring injury: A systematic review. J. Orthop. Sports Phys. Ther. 2013, 43, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Higashihara, A.; Ono, T.; Tokutake, G.; Kuramochi, R.; Kunita, Y.; Nagano, Y.; Hirose, N. Hamstring muscles’ function deficit during overground sprinting in track and field athletes with a history of strain injury. J. Sports Sci. 2019, 37, 2744–2750. [Google Scholar] [CrossRef]
- Mcdonald, B.; McAleer, S.; Kelly, S.; Chakraverty, R.; Johnston, M.; Pollock, N. Hamstring rehabilitation in elite track and field athletes: Applying the British Athletics Muscle Injury Classification in clinical practice. Br. J. Sports Med. 2019, 53, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Retailleau, M.; Colloud, F. New insights into lumbar flexion tests based on inverse and direct kinematic musculoskeletal modeling. J. Biomech. 2020, 105, 109782. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.-s.; Yoo, W.-g. The effect of sagittal hip angle on lumbar and hip coordination and pelvic posterior shift during forward bending. Eur. Spine J. 2020, 29, 438–445. [Google Scholar] [CrossRef]
- Ueno, R.; Navacchia, A.; DiCesare, C.A.; Ford, K.R.; Myer, G.D.; Ishida, T.; Tohyama, H.; Hewett, T.E. Knee abduction moment is predicted by lower gluteus medius force and larger vertical and lateral ground reaction forces during drop vertical jump in female athletes. J. Biomech. 2020, 103, 109669. [Google Scholar] [CrossRef]
- Ferenczi, A.; Moraux, A.; Le Gall, F.; Thevenon, A.; Wieczorek, V. Relationship between spinal-pelvic sagittal balance and pelvic-femoral injuries in professional soccer players. Orthop. J. Sports Med. 2020, 8, 2325967119894962. [Google Scholar] [CrossRef] [PubMed]
- Stokes, I.A.; Abery, J.M. Influence of the hamstring muscles on lumbar spine curvature in sitting. Spine (Phila Pa 1976) 1980, 5, 525–528. [Google Scholar] [CrossRef] [PubMed]
- Gajdosik, R.L.; Hatcher, C.K.; Whitsell, S. Influence of short hamstring muscles on the pelvis and lumbar spine in standing and during the toe-touch test. Clin. Biomech. 1992, 7, 38–42. [Google Scholar] [CrossRef]
- Goom, T.S.; Malliaras, P.; Reiman, M.P.; Purdam, C.R. Proximal Hamstring Tendinopathy: Clinical Aspects of Assessment and Management. J. Orthop. Sports Phys. Ther. 2016, 46, 483–493. [Google Scholar] [CrossRef] [Green Version]
- Pietrzak, J.R.; Kayani, B.; Tahmassebi, J.; Haddad, F.S. Proximal hamstring tendinopathy: Pathophysiology, diagnosis and treatment. Br. J. Hosp. Med. (Lond) 2018, 79, 389–394. [Google Scholar] [CrossRef]
- Debaere, S.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. From block clearance to sprint running: Characteristics underlying an effective transition. J. Sports Sci. 2013, 31, 137–149. [Google Scholar] [CrossRef]
- Debaere, S.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. Control of propulsion and body lift during the first two stances of sprint running: A simulation study. J. Sports Sci. 2015, 33, 2016–2024. [Google Scholar] [CrossRef]
- Debaere, S.; Vanwanseele, B.; Delecluse, C.; Aerenhouts, D.; Hagman, F.; Jonkers, I. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: A cross-sectional study. Sports Biomech. 2017, 16, 452–462. [Google Scholar] [CrossRef]
- Von Lieres Und Wilkau, H.C.; Irwin, G.; Bezodis, N.E.; Simpson, S.; Bezodis, I.N. Phase analysis in maximal sprinting: An investigation of step-to-step technical changes between the initial acceleration, transition and maximal velocity phases. Sports Biomech. 2020, 19, 141–156. [Google Scholar] [CrossRef] [Green Version]
- Bezodis, N.E.; Willwacher, S.; Salo, A.I.T. The Biomechanics of the Track and Field Sprint Start: A Narrative Review. Sports Med. 2019, 49, 1345–1364. [Google Scholar] [CrossRef] [Green Version]
- Handsfield, G.G.; Knaus, K.R.; Fiorentino, N.M.; Meyer, C.H.; Hart, J.M.; Blemker, S.S. Adding muscle where you need it: Non-uniform hypertrophy patterns in elite sprinters. Scand. J. Med. Sci. Sports 2017, 27, 1050–1060. [Google Scholar] [CrossRef] [PubMed]
- Brazil, A.; Exell, T.; Wilson, C.; Willwacher, S.; Bezodis, I.N.; Irwin, G. Joint kinetic determinants of starting block performance in athletic sprinting. J. Sports Sci. 2018, 36, 1656–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timpka, T.; Alonso, J.M.; Jacobsson, J.; Junge, A.; Branco, P.; Clarsen, B.; Kowalski, J.; Mountjoy, M.; Nilsson, S.; Pluim, B.; et al. Injury and illness definitions and data collection procedures for use in epidemiological studies in athletics (Track and Field): Consensus Statement. Br. J. Sports Med. 2014, 48, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller-Wohlfahrt, H.W.; Haensel, L.; Mithoefer, K.; Ekstrand, J.; English, B.; McNally, S.; Orchard, J.; van Dijk, C.N.; Kerkhoffs, G.M.; Schamasch, P.; et al. Terminology and classification of muscle injuries in sport: The Munich consensus statement. Br. J. Sports Med. 2013, 47, 342–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, N.; James, S.L.J.; Lee, J.C.; Chakraverty, R. British Athletics Muscle Injury Classification: A New Grading System. Br. J. Sports Med. 2014, 48, 1347–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannast, M.; Hanke, M.S.; Zheng, G.; Steppacher, S.D.; Siebenrock, K.A. What are the radiographic reference values for acetabular under- and overcoverage? Clin. Orthop. Relat. Res. 2015, 473, 1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tannast, M.; Siebenrock, K.A.; Anderson, S.E. Femoroacetabular impingement: Radiographic diagnosis-what the radiologist should know. AJR Am. J. Roentgenol. 2007, 188, 1540–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Ruan, M.; Li, L.; Chen, C.; Wu, X. Stretch could reduce hamstring injury risk during sprinting by right shifting the length-torque curve. J. Strength Cond. Res. 2018, 32, 2190–2198. [Google Scholar] [CrossRef] [PubMed]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J. Biomech. 2007, 40, 3555–3562. [Google Scholar] [CrossRef]
- Gore, S.J.; Franklyn-Miller, A.; Richter, C.; Falvey, E.C.; King, E.; Moran, K. Is stiffness related to athletic groin pain? Scand. J. Med. Sci. Sports 2018, 28, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- King, E.; Franklyn-Miller, A.; Richter, C.; O’Reilly, E.; Doolan, M.; Moran, K.; Strike, S.; Falvey, É. Clinical and Biomechanical Outcomes of Rehabilitation Targeting Intersegmental Control in Athletic Groin Pain: Prospective Cohort of 205 Patients. Br. J. Sports Med. 2018, 52, 1054–1062. [Google Scholar] [CrossRef] [PubMed]
- Hara, D.; Nakashima, Y.; Hamai, S.; Higaki, H.; Ikebe, S.; Shimoto, T.; Hirata, M.; Kanazawa, M.; Kohno, Y.; Iwamoto, Y. Kinematic analysis of healthy hips during weight-bearing activities by 3D-to-2D model-to-image registration technique. Biomed. Res. Int. 2014, 2014, 457573. [Google Scholar] [CrossRef]
- Hemmerich, A.; Brown, H.; Smith, S.; Marthandam, S.S.; Wyss, U.P. Hip, knee, and ankle kinematics of high range of motion activities of daily living. J. Orthop. Res. 2006, 24, 770–781. [Google Scholar] [CrossRef] [PubMed]
- Martin, H.D.; Khoury, A.; Schröder, R.; Palmer, I.J. Ischiofemoral Impingement and Hamstring Syndrome as Causes of Posterior Hip Pain: Where Do We Go Next? Clin. Sports Med. 2016, 35, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Little, V.L.; McGuirk, T.E.; Patten, C. Slower than normal walking speeds involve a pattern shift in joint and temporal coordination contributions. Exp. Brain Res. 2019, 237, 2973–2982. [Google Scholar] [CrossRef]
- Bedi, A.; Dolan, M.; Hetsroni, I.; Magennis, E.; Lipman, J.; Buly, R.; Kelly, B.T. Surgical treatment of femoroacetabular impingement improves hip kinematics: A computer-assisted model. Am. J. Sports Med. 2011, 39 (Suppl. 1), 43S–49S. [Google Scholar] [CrossRef]
- Griffin, D.R.; Dickenson, E.J.; O’Donnell, J.; Agricola, R.; Awan, T.; Beck, M.; Clohisy, J.C.; Dijkstra, H.P.; Falvey, E.; Gimpel, M.; et al. The Warwick agreement on femoroacetabular impingement syndrome (FAI syndrome): An international consensus statement. Br. J. Sports Med. 2016, 50, 1169–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, M.J.; Lamontagne, M.; Beaulé, P.E. Femoroacetabular impingement alters hip and pelvic biomechanics during gait walking biomechanics of FAI. Gait Posture 2009, 30, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Zebala, L.P.; Schoenecker, P.L.; Clohisy, J.C. Anterior femoroacetabular impingement: A diverse disease with evolving treatment options. Iowa Orthop. J. 2007, 27, 71–81. [Google Scholar]
- Bushnell, T.; Hunter, I. Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports Biomech. 2007, 6, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Askling, C.M.; Malliaropoulos, N.; Karlsson, J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br. J. Sports Med. 2012, 46, 86–87. [Google Scholar] [CrossRef] [PubMed]
- Van Houcke, J.; Pattyn, C.; Vanden Bossche, L.; Redant, C.; Maes, J.W.; Audenaert, E.A. The pelvifemoral rhythm in cam-type femoroacetabular impingement. Clin. Biomech. 2014, 29, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; Adams, R.; Maher, C. Motor control and strength as predictors of hamstring injury in elite players of Australian football. Phys. Ther. Sport 2003, 4, 159–166. [Google Scholar] [CrossRef]
- Cameron, M.L.; Adams, R.; Maher, C.; Misson, D. Effect of the HamSprint drills training programme on lower limb neuromuscular control in Australian football players. J. Sci. Med. Sport 2009, 12, 24–30. [Google Scholar] [CrossRef]
- Guex, K.; Millet, G.P. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med. 2013, 43, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.C.; Reid, S.L.; Elliott, B.C.; Lloyd, D.G. Running biomechanics and lower limb strength associated with prior hamstring injury. Med. Sci. Sports Exerc. 2009, 41, 1942–1951. [Google Scholar] [CrossRef] [PubMed]
- Daly, C.; Persson, U.M.; Twycross-Lewis, R.; Woledge, R.C.; Morrissey, D. The biomechanics of running in athletes with previous hamstring injury: A case-control study. Scand. J. Med. Sci. Sports 2016, 26, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P.; Lacour, J.R. Mechanical determinants of 100-m sprint running performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurst, O.; Kilduff, L.P.; Johnston, M.; Cronin, J.B.; Bezodis, N.E. Acute effects of wearable thigh and shank loading on spatiotemporal and kinematic variables during maximum velocity sprinting. Sports Biomech. 2020, 1–15. [Google Scholar] [CrossRef]
- Kenneally-Dabrowski, C.J.B.; Brown, N.A.T.; Lai, A.K.M.; Perriman, D.; Spratford, W.; Serpell, B.G. Late swing or early stance? A narrative review of hamstring injury mechanisms during high-speed running. Scand. J. Med. Sci. Sports 2019, 29, 1083–1091. [Google Scholar] [CrossRef]
- Aeles, J.; Jonkers, I.; Debaere, S.; Delecluse, C.; Vanwanseele, B. Muscle-tendon unit length changes differ between young and adult sprinters in the first stance phase of sprint running. R. Soc. Open Sci. 2018, 5, 180332. [Google Scholar] [CrossRef] [Green Version]
- Tidball, J.G. Mechanisms of muscle injury, repair, and regeneration. Compr. Physiol. 2011, 1, 2029–2062. [Google Scholar] [CrossRef] [PubMed]
- Lieber, R.L.; Friden, J. Muscle damage is not a function of muscle force but active muscle strain. J. Appl. Physiol. 1993, 74, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterfield, T.A.; Herzog, W. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage. J. Appl. Physiol. 2006, 100, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Fouasson-Chailloux, A.; Menu, P.; Mesland, O.; Guillodo, Y.; Crenn, V.; Dauty, M. Evolution of isokinetic strength and return to sport after proximal hamstring rupture without surgical repair: A retrospective series of cases. MLTJ 2019, 9, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Frizziero, A.; Trainito, S.; Oliva, F.; Nicoli Aldini, N.; Masiero, S.; Maffulli, N. The role of eccentric exercise in sport injuries rehabilitation. Br. Med. Bull. 2014, 110, 47–75. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.N.; Timmins, R.G.; Opar, D.A.; Pizzari, T.; Ruddy, J.D.; Sims, C.; Williams, M.D.; Shield, A.J. An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med. 2018, 48, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, L.; Derinov, A.; Glazkova, I. Hamstring Structural Injury in Futsal Players: The Effect of Active Range of Motion (AROM) Deficit on Rehabilitation Period. MLTJ 2020, 10, 645–650. [Google Scholar] [CrossRef]
- Erickson, L.N.; Sherry, M.A. Rehabilitation and return to sport after hamstring strain injury. J. Sport Health Sci. 2017, 6, 262–270. [Google Scholar] [CrossRef]
- Silder, A.; Heiderscheit, B.C.; Thelen, D.G.; Enright, T.; Tuite, M.J. MR observations of long-term musculotendon remodeling following a hamstring strain injury. Skeletal Radiol. 2008, 37, 1101–1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, N.; Yip, G.; Khanduja, V. Current concepts in the diagnosis and management of extra-articular hip impingement syndromes. Int. Orthop. 2017, 41, 1321–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maffulli, N.; Oliva, F.; Frizziero, A.; Nanni, G.; Barazzuol, M.; Via, A.G.; Ramponi, C.; Brancaccio, P.; Lisitano, G.; Rizzo, D.; et al. ISMuLT Guidelines for muscle injuries. Muscles Ligaments Tendons J. 2014, 3, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Maffulli, N.; Del Buono, A.; Oliva, F.; Giai Via, A.; Frizziero, A.; Barazzuol, M.; Brancaccio, P.; Freschi, M.; Galletti, S.; Lisitano, G.; et al. Muscle Injuries: A Brief Guide to Classification and Management. Transl. Med. UniSa 2014, 12, 14–18. [Google Scholar] [PubMed]
Variable | Injury (n = 50) | No Injury (n = 50) | p | ŋ2p |
---|---|---|---|---|
Age (years) | 26.4 ± 7.1 | 26.3 ± 6.5 | 0.930 | 0.001 |
Height (m) | 1.74 ± 0.09 | 1.74 ± 1.0 | 0.787 | 0.001 |
Body mass (kg) | 63.5 ± 10.7 | 61.8 ± 11.7 | 0.444 | 0.006 |
Body mass index (kg/m2) | 20.9 ± 2.6 | 20.4 ± 2.6 | 0.332 | 0.010 |
Upper body length (cm) | 83.5 ± 5.3 | 82.8 ± 5.6 | 0.508 | 0.004 |
Lower body length (cm) | 90.5 ± 5.5 | 90.7 ± 0.5 | 0.855 | <0.001 |
Joint clearance discrepancy (cm) | 0.88 ± 0.40 | 0.18 ± 0.47 | <0.001 | 0.549 |
Variable | Injury (n = 50) | No Injury (n = 50) | p | |
---|---|---|---|---|
Sex | Male | 35 (70.0%) | 25 (50%) | 0.041 |
Female | 15 (30.0%) | 25 (50%) | ||
Race | White | 40 (80.0%) | 36 (72.0%) | 0.603 |
Black | 8 (16.0%) | 12 (24.0%) | ||
Asian | 2 (4.0%) | 2 (4.0%) | ||
Track distance | 100–200 m | 19 (38.0%) | 17 (34.0%) | 0.826 |
>200 and ≤1500 m | 18 (36.0%) | 21 (42.0%) | ||
>1500 m | 13 (26.0%) | 12 (24.0%) | ||
Hurdling | No | 41 (83.7%) | 38 (76.0%) | 0.342 |
Yes | 9 (16.3%) | 12 (24.0%) |
JCD | p | ŋ2p | ||
---|---|---|---|---|
Sex | Males (n = 35) | 0.93 ± 0.45 | 0.177 | 0.038 |
Females (n = 15) | 0.76 ± 0.16 | |||
Race | Caucasian (n = 40) | 0.82 ± 0.33 | 0.017 | 0.158 |
Black (n = 8) | 1.22 ± 0.55 * | |||
Asian (n = 2) | 0.88 ± 0.40 | |||
Track distance | 100–200 m (n = 19) | 0.86 ± 0.33 | 0.095 | 0.095 |
>200 and ≤1500 m (n = 18) | 1.02 ± 0.48 | |||
>1500 m (n = 13) | 0.71 ± 0.30 | |||
Hurdling | No (n = 41) | 0.87 ± 0.41 | 0.703 | 0.003 |
Yes (n = 9) | 0.93 ± 0.32 | |||
Injury severity | Small-moderate (n = 13) | 0.68 ± 0.33 | 0.026 | 0.105 |
Extensive-complete (n = 34) | 0.93 ± 0.33 | |||
Number of Injuries | ≤2 injuries (n = 41) | 0.80 ± 0.32 | 0.003 | 0.172 |
>2 injuries (n = 9) | 1.22 ± 0.53 | |||
Leg injured | Right (n = 8) | 0.85 ± 0.48 | 0.842 | 0.001 |
Left (n = 42) | 0.88 ± 0.39 |
Model | Unstandardized Coefficients | Standardized Coefficients | t Value | p Value | 95% Confidence Interval | R2 | ||
---|---|---|---|---|---|---|---|---|
B | SE | ß | Lower Limit | Upper Limit | ||||
Number of Injuries | ||||||||
(Constant) | 0.092 | 0.115 | 0.795 | 0.429 | −0.137 | 0.320 | 0.601 | |
JCD | 1.945 | 0.164 | 0.770 | 11.893 | <0.001 | 1.620 | 2.269 | |
Injury Severity | ||||||||
(Constant) | 1.361 | 0.169 | 8.032 | <0.001 | 1.020 | 1.702 | 0.105 | |
JCD | 0.422 | 0.183 | 0.325 | 2.303 | 0.026 | 0.053 | 0.792 |
Variable | ≤2 Injuries (n = 41) | >2 Injuries (n = 9) | p | ŋ2p |
---|---|---|---|---|
Age (years) | 26.3 ± 7.5 | 26.7 ± 4.8 | 0.917 | 0.000 |
Height (m) | 1.73 ± 0.09 | 1.79 ± 0.10 | 0.065 | 0.069 |
Body mass (kg) | 63.1 ± 10.4 | 65.4 ± 12.1 | 0.551 | 0.007 |
BMI | 21.0 ± 2.6 | 20.3 ± 0.7 | 0.446 | 0.012 |
Upper body length (cm) | 83.4 ± 4.5 | 83.7 ± 8.2 | 0.908 | 0.000 |
Lower body length (cm) | 89.5 ± 5.2 | 95.4 ± 4.1 | 0.002 | 0.179 |
Joint clearance discrepancies (cm) | 0.80 ± 0.32 | 1.22 ± 0.53 | 0.003 | 0.172 |
Variable | Slight Injury (n = 16) | Serious Injury (n = 34) | p | ŋ2p |
---|---|---|---|---|
Age (years) | 30.2 ± 8.7 | 25.4 ± 6.1 | 0.040 | 0.091 |
Height (m) | 1.70 ± 0.08 | 175 ± 0.09 | 0.116 | 0.054 |
Body mass (kg) | 59.0 ± 8.0 | 64.9 ± 10.9 | 0.085 | 0.064 |
BMI | 20.3 ± 20.0 | 21.2 ± 2.7 | 0.337 | 0.021 |
Upper body length (cm) | 82.1 ± 4.9 | 83.5 ± 5.2 | 0.404 | 0.16 |
Lower body length (cm) | 88.1 ± 3.8 | 91.4 ± 6.0 | 0.074 | 0.069 |
Joint clearance discrepancies (cm) | 0.68 ± 0.33 | 0.93 ± 0.33 | 0.026 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seco-Calvo, J.; Palavicini, M.; Rodríguez-Pérez, V.; Sánchez-Herráez, S.; Abecia-Inchaurregui, L.C.; Mielgo-Ayuso, J. The Role of Hip Joint Clearance Discrepancy as Other Clinical Predictor of Reinjury and Injury Severity in Hamstring Tears in Elite Athletes. J. Clin. Med. 2021, 10, 1050. https://doi.org/10.3390/jcm10051050
Seco-Calvo J, Palavicini M, Rodríguez-Pérez V, Sánchez-Herráez S, Abecia-Inchaurregui LC, Mielgo-Ayuso J. The Role of Hip Joint Clearance Discrepancy as Other Clinical Predictor of Reinjury and Injury Severity in Hamstring Tears in Elite Athletes. Journal of Clinical Medicine. 2021; 10(5):1050. https://doi.org/10.3390/jcm10051050
Chicago/Turabian StyleSeco-Calvo, Jesus, Martin Palavicini, Vicente Rodríguez-Pérez, Sergio Sánchez-Herráez, Luis Carlos Abecia-Inchaurregui, and Juan Mielgo-Ayuso. 2021. "The Role of Hip Joint Clearance Discrepancy as Other Clinical Predictor of Reinjury and Injury Severity in Hamstring Tears in Elite Athletes" Journal of Clinical Medicine 10, no. 5: 1050. https://doi.org/10.3390/jcm10051050
APA StyleSeco-Calvo, J., Palavicini, M., Rodríguez-Pérez, V., Sánchez-Herráez, S., Abecia-Inchaurregui, L. C., & Mielgo-Ayuso, J. (2021). The Role of Hip Joint Clearance Discrepancy as Other Clinical Predictor of Reinjury and Injury Severity in Hamstring Tears in Elite Athletes. Journal of Clinical Medicine, 10(5), 1050. https://doi.org/10.3390/jcm10051050