Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease?
Author Contributions
Funding
Conflicts of Interest
References
- Thongprayoon, C.; Kaewput, W.; Kovvuru, K.; Hansrivijit, P.; Kanduri, S.R.; Bathini, T.; Chewcharat, A.; Leeaphorn, N.; Gonzalez-Suarez, M.L.; Cheungpasitporn, W. Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation. J. Clin. Med. 2020, 9, 1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosyula, S.; Ya’Qoub, L.; Kumar, V.; Verghese, D.; Subramaniam, A.V.; Patlolla, S.H.; Desai, V.K.; Sundaragiri, P.R.; Cheungpasitporn, W.; Deshmukh, A.J.; et al. Contemporary National Outcomes of Acute Myocardial Infarction-Cardiogenic Shock in Patients with Prior Chronic Kidney Disease and End-Stage Renal Disease. J. Clin. Med. 2020, 9, 3702. [Google Scholar] [CrossRef] [PubMed]
- Tangri, N.; Grams, M.E.; Levey, A.S.; Coresh, J.; Appel, L.J.; Astor, B.C.; Chodick, G.; Collins, A.J.; Djurdjev, O.; Elley, C.R.; et al. Multinational Assessment of Accuracy of Equations for Predicting Risk of Kidney Failure: A Meta-analysis. JAMA 2016, 315, 164–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangri, N.; Stevens, L.A.; Griffith, J.; Tighiouart, H.; Djurdjev, O.; Naimark, D.; Levin, A.; Levey, A.S. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011, 305, 1553–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, M.J.; van Zuilen, A.D.; van den Brand, J.A.; Bots, M.L.; Blankestijn, P.J.; Wetzels, J.F. Validation of the kidney failure risk equation in European CKD patients. Nephrol. Dial. Transplant. 2013, 28, 1773–1779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elley, C.R.; Robinson, T.; Moyes, S.A.; Kenealy, T.; Collins, J.; Robinson, E.; Orr-Walker, B.; Drury, P.L. Derivation and validation of a renal risk score for people with type 2 diabetes. Diabetes Care 2013, 36, 3113–3120. [Google Scholar] [CrossRef] [Green Version]
- Marks, A.; Fluck, N.; Prescott, G.J.; Robertson, L.; Simpson, W.G.; Cairns Smith, W.; Black, C. Looking to the future: Predicting renal replacement outcomes in a large community cohort with chronic kidney disease. Nephrol. Dial. Transplant. 2015, 30, 1507–1517. [Google Scholar] [CrossRef] [Green Version]
- Lennartz, C.S.; Pickering, J.W.; Seiler-Mußler, S.; Bauer, L.; Untersteller, K.; Emrich, I.E.; Zawada, A.M.; Radermacher, J.; Tangri, N.; Fliser, D.; et al. External Validation of the Kidney Failure Risk Equation and Re-Calibration with Addition of Ultrasound Parameters. Clin. J. Am. Soc. Nephrol. 2016, 11, 609–615. [Google Scholar] [CrossRef]
- Whitlock, R.H.; Chartier, M.; Komenda, P.; Hingwala, J.; Rigatto, C.; Walld, R.; Dart, A.; Tangri, N. Validation of the Kidney Failure Risk Equation in Manitoba. Can. J. Kidney Health Dis. 2017, 4, 2054358117705372. [Google Scholar] [CrossRef] [PubMed]
- Hallan, S.I.; Rifkin, D.E.; Potok, O.A.; Katz, R.; Langlo, K.A.; Bansal, N.; Ix, J.H. Implementing the European Renal Best Practice Guidelines suggests that prediction equations work well to differentiate risk of end-stage renal disease vs. death in older patients with low estimated glomerular filtration rate. Kidney Int. 2019, 96, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Major, R.W.; Shepherd, D.; Medcalf, J.F.; Xu, G.; Gray, L.J.; Brunskill, N.J. The Kidney Failure Risk Equation for prediction of end stage renal disease in UK primary care: An external validation and clinical impact projection cohort study. PLoS Med. 2019, 16, e1002955. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, J.H.; Moon, Y.R.; Jo, S.Y.; Yoon, D.; Park, R.W.; Jeong, J.C.; Park, I.; Shin, G.T.; Kim, H. Can we predict when to start renal replacement therapy in patients with chronic kidney disease using 6 months of clinical data? PLoS ONE 2018, 13, e0204586. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakamaki, K.; Koiwa, F.; Akizawa, T.; Hishida, A. Clinical prediction models for progression of chronic kidney disease to end-stage kidney failure under pre-dialysis nephrology care: Results from the Chronic Kidney Disease Japan Cohort Study. Clin. Exp. Nephrol. 2019, 23, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.C.; Chee, M.L.; Cheng, C.Y.; Kwek, J.L.; Foo, M.; Wong, T.Y.; Sabanayagam, C. Simplified end stage renal failure risk prediction model for the low-risk general population with chronic kidney disease. PLoS ONE 2019, 14, e0212590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.; Kwon, S.; Moon, J.J.; Han, K.; Paik, N.J.; Kim, W.S. The Effect of Health-Related Behaviors on Disease Progression and Mortality in Early Stages of Chronic Kidney Disease: A Korean Nationwide Population-Based Study. J. Clin. Med. 2019, 8, 1100. [Google Scholar] [CrossRef] [Green Version]
- Hundemer, G.L.; Tangri, N.; Sood, M.M.; Ramsay, T.; Bugeja, A.; Brown, P.A.; Clark, E.G.; Biyani, M.; White, C.A.; Akbari, A. Performance of the Kidney Failure Risk Equation by Disease Etiology in Advanced CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 1424–1432. [Google Scholar] [CrossRef]
- Akbari, A.; Tangri, N.; Brown, P.A.; Biyani, M.; Rhodes, E.; Kumar, T.; Shabana, W.; Sood, M.M. Prediction of Progression in Polycystic Kidney Disease Using the Kidney Failure Risk Equation and Ultrasound Parameters. Can. J. Kidney Health Dis. 2020, 7, 2054358120911274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, J.S.; Jang, K.M.; Hyun, H.; Cho, M.H.; Lee, J.H.; Park, Y.S.; Oh, J.H.; Kim, J.H.; Yoo, K.H.; Chung, W.Y.; et al. Remission of Proteinuria May Protect against Progression to Chronic Kidney Disease in Pediatric-Onset IgA Nephropathy. J. Clin. Med. 2020, 9, 2058. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.D.; Ku, E.; Fallahzadeh, M.K.; McCulloch, C.E.; Tuot, D.S. The Kidney Failure Risk Equation for Prediction of Allograft Loss in Kidney Transplant Recipients. Kidney Med. 2020, 2, 753–761. [Google Scholar] [CrossRef]
- Yang, C.; Kong, G.; Wang, L.; Zhang, L.; Zhao, M.H. Big data in nephrology: Are we ready for the change? Nephrology 2019, 24, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Waikar, S.S.; Schmidt, I.M.; Landis, J.R.; Hsu, C.Y.; Shafi, T.; Feldman, H.I.; Anderson, A.H.; Wilson, F.P.; Chen, J.; et al. Subtyping CKD Patients by Consensus Clustering: The Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thongprayoon, C.; Kaewput, W.; Choudhury, A.; Hansrivijit, P.; Mao, M.A.; Cheungpasitporn, W. Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease? J. Clin. Med. 2021, 10, 1121. https://doi.org/10.3390/jcm10051121
Thongprayoon C, Kaewput W, Choudhury A, Hansrivijit P, Mao MA, Cheungpasitporn W. Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease? Journal of Clinical Medicine. 2021; 10(5):1121. https://doi.org/10.3390/jcm10051121
Chicago/Turabian StyleThongprayoon, Charat, Wisit Kaewput, Avishek Choudhury, Panupong Hansrivijit, Michael A. Mao, and Wisit Cheungpasitporn. 2021. "Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease?" Journal of Clinical Medicine 10, no. 5: 1121. https://doi.org/10.3390/jcm10051121
APA StyleThongprayoon, C., Kaewput, W., Choudhury, A., Hansrivijit, P., Mao, M. A., & Cheungpasitporn, W. (2021). Is It Time for Machine Learning Algorithms to Predict the Risk of Kidney Failure in Patients with Chronic Kidney Disease? Journal of Clinical Medicine, 10(5), 1121. https://doi.org/10.3390/jcm10051121