COVID-19 and the Kidney: A Worrisome Scenario of Acute and Chronic Consequences
Abstract
:1. Introduction
Sars-CoV-2
2. Epidemiology of CoV-AKI
2.1. Mortality
2.2. Kidney Recovery
3. Pathogenic Mechanisms and Histopathology Findings of COVID-19-Related AKI
3.1. Indirect Mechanisms of SARS-CoV-2 Kidney Injury
3.2. Direct Mechanisms of SARS-CoV-2 Kidney Injury
4. Clinical Characteristics of CoV-AKI
4.1. Urine Abnormalities
4.2. Glomerular Injury
4.3. CoV-AKI Associated with Hypercatabolic State
5. COVID-19 and Pre-Existing Kidney Disease
5.1. COVID-19 in CKD Patients
5.2. COVID-19 in Patients Receiving Maintenance Dialysis
5.3. COVID-19 in Patients with Pre-Existing Glomerulonephritis
5.4. COVID-19 in Kidney Transplant Recipients
6. Kidney Replacement Therapy and COVID-19
6.1. Selection of KRT: Which Modality to Use and When to Start
6.2. Intrinsic Challenges of KRT in COVID-19 AKI
6.3. Anticoagulation
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- CDC. Cases, Data, and Surveillance. Centers for Disease Control and Prevention. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html (accessed on 14 January 2021).
- Elledge, S.J. 2.5 Million Person-Years of Life Have Been Lost Due to COVID-19 in the United States. medRxiv 2020. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Johns Hopkins Coronavirus Resource Center. Available online: https://coronavirus.jhu.edu/ (accessed on 14 January 2021).
- Weiss, S.R.; Leibowitz, J.L. Coronavirus Pathogenesis. Adv. Virus Res. 2011, 81, 85–164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Genet. 2020, 2020, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nadim, M.K.; Forni, L.G.; Mehta, R.L.; Connor, M.J.; Liu, K.D.; Ostermann, M.; Rimmelé, T.; Zarbock, A.; Bell, S.; Bihorac, A.; et al. COVID-19-associated acute kidney injury: Consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup. Nat. Rev. Nephrol. 2020, 16, 747–764. [Google Scholar] [CrossRef]
- Hirsch, J.S.; Ng, J.H.; Ross, D.W.; Sharma, P.; Shah, H.H.; Barnett, R.L.; Hazzan, A.D.; Fishbane, S.; Jhaveri, K.D.; Abate, M.; et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020, 98, 209–218. [Google Scholar] [CrossRef]
- Hassanein, M.; Radhakrishnan, Y.; Sedor, J.; Vachharajani, T.; Vachharajani, V.T.; Augustine, J.; Demirjian, S.; Thomas, G. COVID-19 and the kidney. Clevel. Clin. J. Med. 2020, 87, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, I.; Patella, G.; Michael, A.; Serra, R.; Provenzano, M.; Andreucci, M. COVID-19 and the Kidney: From Epidemiology to Clinical Practice. J. Clin. Med. 2020, 9, 2506. [Google Scholar] [CrossRef]
- Benedetti, C.; Waldman, M.; Zaza, G.; Riella, L.V.; Cravedi, P. COVID-19 and the Kidneys: An Update. Front. Med. 2020, 7, 423. [Google Scholar] [CrossRef]
- Siew, E.D.; Birkelo, B.C. COVID-19–Associated Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2020, 15, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Ronco, C.; Reis, T.; Husain-Syed, F. Management of acute kidney injury in patients with COVID-19. Lancet Respir. Med. 2020, 8, 738–742. [Google Scholar] [CrossRef]
- Yang, X.; Jin, Y.; Li, R.; Zhang, Z.; Sun, R.; Chen, D. Prevalence and impact of acute renal impairment on COVID-19: A systematic review and meta-analysis. Crit. Care 2020, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-T.; Shao, S.-C.; Hsu, C.-K.; Wu, I.-W.; Hung, M.-J.; Chen, Y.-C. Incidence of acute kidney injury in COVID-19 infection: A systematic review and meta-analysis. Crit. Care 2020, 24, 1–4. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Laukkanen, J.A. Renal complications in COVID-19: A systematic review and meta-analysis. Ann. Med. 2020, 52, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Hansrivijit, P.; Qian, C.; Boonpheng, B.; Thongprayoon, C.; Vallabhajosyula, S.; Cheungpasitporn, W.; Ghahramani, N. Incidence of acute kidney injury and its association with mortality in patients with COVID-19: A meta-analysis. J. Investig. Med. 2020, 68, 1261–1270. [Google Scholar] [CrossRef]
- Brienza, N.; Puntillo, F.; Romagnoli, S.; Tritapepe, L. Acute Kidney Injury in Coronavirus Disease 2019 Infected Patients: A Meta-Analytic Study. Blood Purif. 2021, 50, 35–41. [Google Scholar] [CrossRef]
- Naicker, S.; Yang, C.-W.; Hwang, S.-J.; Liu, B.-C.; Chen, J.-H.; Jha, V. The Novel Coronavirus 2019 epidemic and kidneys. Kidney Int. 2020, 97, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, R.; Wang, X.; Wang, K.; Zhang, N.; Zhang, M.; Wang, Z.; Dong, L.; Li, J.; Zeng, R.; et al. The Incidence, Risk Factors, and Prognosis of Acute Kidney Injury in Adult Patients with Coronavirus Disease 2019. Clin. J. Am. Soc. Nephrol. 2020, 15, 1394–1402. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, C.; Luo, L.; Fang, F.; Chen, Y.; Li, J.; Peng, Z.; Pan, H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. J. Clin. Virol. 2020, 127, 104364. [Google Scholar] [CrossRef]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Yu, X.; Wu, X.; Huang, L.; Tian, Y.; Huang, X.; Zhang, Z.; Cheng, Z.; Guo, Q.; Zhang, Y.; et al. Acute Kidney Injury in Patients with the Coronavirus Disease 2019: A Multicenter Study. Kidney Blood Press. Res. 2020, 45, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Xia, P.; Wen, Y.; Duan, Y.; Su, H.; Cao, W.; Xiao, M.; Ma, J.; Zhou, Y.; Chen, G.; Jiang, W.; et al. Clinicopathological Features and Outcomes of Acute Kidney Injury in Critically Ill COVID-19 with Prolonged Disease Course: A Retrospective Cohort. J. Am. Soc. Nephrol. 2020, 31, 2205–2221. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium. Presenting Characteristics, Comorbidities, and Outcomes among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Coca, S.G. Acute Kidney Injury in the Time of COVID-19. Kidney360 2020, 1, 588–590. [Google Scholar] [CrossRef]
- Aggarwal, S.; Garcia-Telles, N.; Aggarwal, G.; Lavie, C.; Lippi, G.; Henry, B.M. Clinical features, laboratory characteristics, and outcomes of patients hospitalized with coronavirus disease 2019 (COVID-19): Early report from the United States. Diagnosis 2020, 7, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Coca, S.G.; Chan, L.; Melamed, M.L.; Brenner, S.K.; Hayek, S.S.; Sutherland, A.; Puri, S.; Srivastava, A.; Leonberg-Yoo, A.; et al. AKI Treated with Renal Replacement Therapy in Critically Ill Patients with COVID-19. J. Am. Soc. Nephrol. 2021, 32, 161–176. [Google Scholar] [CrossRef]
- Diana, N.E.; Kalla, I.S.; Wearne, N.; Kariv, S.; Davidson, B.; Rusch, J.; Barday, Z.; Sheikh, A.M.; Reiche, S.; Mohamed, F.; et al. Acute Kidney Injury during the COVID-19 Pandemic—Experience from Two Tertiary Centres in South Africa. Wits J. Clin. Med. 2020, 2, 137–198. [Google Scholar] [CrossRef]
- El Aidaoui, K.; Haoudar, A.; Khalis, M.; Kantri, A.; Ziati, J.; El Ghanmi, A.; Bennis, G.; El Yamani, K.; Dini, N.; El Kettani, C. Predictors of Severity in Covid-19 Patients in Casablanca, Morocco. Cureus 2020, 12. [Google Scholar] [CrossRef]
- Rizo-Topete, L.M.; Granado, R.C.-D.; Ponce, D.; Lombardi, R. Acute kidney injury requiring renal replacement therapy during the COVID-19 pandemic: What are our options for treating it in Latin America? Kidney Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ñamendys-Silva, S.A.; Alvarado-Ávila, P.E.; Domínguez-Cherit, G.; Rivero-Sigarroa, E.; Sánchez-Hurtado, L.A.; Gutiérrez-Villaseñor, A.; Romero-González, J.P.; Rodríguez-Bautista, H.; García-Briones, A.; Garnica-Camacho, C.E.; et al. Outcomes of patients with COVID-19 in the intensive care unit in Mexico: A multicenter observational study. Hear. Lung 2021, 50, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.M.; Lukitsch, I.; Torres-Ortiz, A.E.; Walker, J.B.; Varghese, V.; Hernandez-Arroyo, C.F.; Alqudsi, M.; LeDoux, J.R.; Velez, J.C.Q. Acute Kidney Injury Associated with Coronavirus Disease 2019 in Urban New Orleans. Kidney360 2020, 1, 614–622. [Google Scholar] [CrossRef]
- Fisher, M.; Neugarten, J.; Bellin, E.; Yunes, M.; Stahl, L.; Johns, T.S.; Abramowitz, M.K.; Levy, R.; Kumar, N.; Mokrzycki, M.H.; et al. AKI in Hospitalized Patients with and without COVID-19: A Comparison Study. J. Am. Soc. Nephrol. 2020, 31, 2145–2157. [Google Scholar] [CrossRef]
- Chan, L.; Chaudhary, K.; Saha, A.; Chauhan, K.; Vaid, A.; Zhao, S.; Paranjpe, I.; Somani, S.; Richter, F.; Miotto, R.; et al. Acute Kidney Injury in Hospitalized Patients with COVID-19. MedRxiv Prepr. Serv. Health Sci. 2020. [Google Scholar] [CrossRef]
- Argenziano, M.G.; Bruce, S.L.; Slater, C.L.; Tiao, J.R.; Baldwin, M.R.; Barr, R.G.; Chang, B.P.; Chau, K.H.; Choi, J.J.; Gavin, N.; et al. Characterization and clinical course of 1000 patients with coronavirus disease 2019 in New York: Retrospective case series. BMJ 2020, 369, m1996. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Hazzan, A.; Wanchoo, R.; Shah, H.H.; Malieckal, D.A.; Ross, D.W.; Sharma, P.; Sakhiya, V.; Fishbane, S.; et al. Outcomes Among Patients Hospitalized With COVID-19 and Acute Kidney Injury. Am. J. Kidney Dis. 2021, 77, 204–215.e1. [Google Scholar] [CrossRef]
- Nasr, S.H.; Alexander, M.P.; Cornell, L.D.; Herrera, L.H.; Fidler, M.E.; Said, S.M.; Zhang, P.; Larsen, C.P.; Sethi, S. Kidney Biopsy Findings in Patients With COVID-19, Kidney Injury, and Proteinuria. Am. J. Kidney Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kudose, S.; Batal, I.; Santoriello, D.; Xu, K.; Barasch, J.; Peleg, Y.; Canetta, P.; Ratner, L.E.; Marasa, M.; Gharavi, A.G.; et al. Kidney Biopsy Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1959–1968. [Google Scholar] [CrossRef]
- Santoriello, D.; Khairallah, P.; Bomback, A.S.; Xu, K.; Kudose, S.; Batal, I.; Barasch, J.; Radhakrishnan, J.; D’Agati, V.; Markowitz, G. Postmortem Kidney Pathology Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 2158–2167. [Google Scholar] [CrossRef]
- Akilesh, S.; Nast, C.C.; Yamashita, M.; Henriksen, K.; Charu, V.; Troxell, M.L.; Kambham, N.; Bracamonte, E.; Houghton, D.; Ahmed, N.I.; et al. Multicenter Clinicopathologic Correlation of Kidney Biopsies Performed in COVID-19 Patients Presenting with Acute Kidney Injury or Proteinuria. Am. J. Kidney Dis. 2020, 77, 82–93. [Google Scholar] [CrossRef]
- Su, H.; Yang, M.; Wan, C.; Yi, L.-X.; Tang, F.; Zhu, H.-Y.; Yi, F.; Yang, H.-C.; Fogo, A.B.; Nie, X.; et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef]
- Wu, H.; Larsen, C.P.; Hernandez-Arroyo, C.F.; Mohamed, M.M.; Caza, T.; Sharshir, M.; Chughtai, A.; Xie, L.; Gimenez, J.M.; Sandow, T.A.; et al. AKI and Collapsing Glomerulopathy Associated with COVID-19 and APOL1 High-Risk Genotype. J. Am. Soc. Nephrol. 2020, 31, 1688–1695. [Google Scholar] [CrossRef] [PubMed]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef] [PubMed]
- Tisoncik, J.R.; Korth, M.J.; Simmons, C.P.; Farrar, J.; Martin, T.R.; Katze, M.G. Into the Eye of the Cytokine Storm. Microbiol. Mol. Biol. Rev. 2012, 76, 16–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017, 39, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Seino, K.-I. Macrophage activation syndrome and COVID-19. Inflamm. Regen. 2020, 40, 1–6. [Google Scholar] [CrossRef]
- Chander, P.; Soni, A.; Suri, A.; Bhagwat, R.; Yoo, J.; Treser, G. Renal ultrastructural markers in AIDS-associated nephropathy. Am. J. Pathol. 1987, 126, 513–526. [Google Scholar]
- Cravedi, P.; Mothi, S.S.; Azzi, Y.; Haverly, M.; Farouk, S.S.; Pérez-Sáez, M.J.; Redondo-Pachón, M.D.; Murphy, B.; Florman, S.; Cyrino, L.G.; et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Arab. Archaeol. Epigr. 2020, 20, 3140–3148. [Google Scholar] [CrossRef]
- Azzi, Y.; Parides, M.; Alani, O.; Loarte-Campos, P.; Bartash, R.; Forest, S.; Colovai, A.; Ajaimy, M.; Liriano-Ward, L.; Pynadath, C.; et al. COVID-19 infection in kidney transplant recipients at the epicenter of pandemics. Kidney Int. 2020, 98, 1559–1567. [Google Scholar] [CrossRef]
- Basu, R.K.; Wheeler, D.S. Kidney–lung cross-talk and acute kidney injury. Pediatr. Nephrol. 2013, 28, 2239–2248. [Google Scholar] [CrossRef] [Green Version]
- Koyner, J.L.; Murray, P.T. Mechanical Ventilation and the Kidney. Blood Purif. 2010, 29, 52–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faubel, S.; Edelstein, C.L. Mechanisms and mediators of lung injury after acute kidney injury. Nat. Rev. Nephrol. 2016, 12, 48–60. [Google Scholar] [CrossRef]
- Cao, W.; Li, T. COVID-19: Towards understanding of pathogenesis. Cell Res. 2020, 30, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, M.; Yao, J.; Guo, J.; Liao, X.; Song, S.; Li, J.; Duan, G.; Zhou, Y.; Wu, X.; et al. Caution on Kidney Dysfunctions of COVID-19 Patients. SSRN Electron. J. 2020, 25. [Google Scholar] [CrossRef]
- Wang, K.; Chen, W.; Zhou, Y.-S.; Lian, J.-Q.; Zhang, Z.; Du, P.; Gong, L.; Zhang, Y.; Cui, H.-Y.; Geng, J.-J.; et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Farkash, E.A.; Wilson, A.M.; Jentzen, J.M. Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. J. Am. Soc. Nephrol. 2020, 31, 1683–1687. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.; Humphreys, B.D. SARS-CoV-2 in the kidney: Bystander or culprit? Nat. Rev. Nephrol. 2020, 16, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Roufosse, C.; Curtis, E.; Moran, L.; Hollinshead, M.; Cook, T.; Hanley, B.; Horsfield, C.; Neil, D. Electron microscopic investigations in COVID-19: Not all crowns are coronas. Kidney Int. 2020, 98, 505–506. [Google Scholar] [CrossRef]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef]
- Braun, F.; Lütgehetmann, M.; Pfefferle, S.; Wong, M.N.; Carsten, A.; Lindenmeyer, M.T.; Nörz, D.; Heinrich, F.; Meißner, K.; Wichmann, D.; et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 2020, 396, 597–598. [Google Scholar] [CrossRef]
- Noris, M.; Benigni, A.; Remuzzi, G. The case of complement activation in COVID-19 multiorgan impact. Kidney Int. 2020, 98, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Ahmadian, E.; Khatibi, S.M.H.; Soofiyani, S.R.; Abediazar, S.; Shoja, M.M.; Ardalan, M.; Vahed, S.Z. Covid-19 and kidney injury: Pathophysiology and molecular mechanisms. Rev. Med Virol. 2020, 6, e2176. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, T.; Maeda, K.; Sato, W.; Maruyama, S.; Kadomatsu, K. CD147 (EMMPRIN/Basigin) in kidney diseases: From an inflammation and immune system viewpoint. Nephrol. Dial. Transplant. 2014, 30, 1097–1103. [Google Scholar] [CrossRef] [Green Version]
- Batlle, D.; Soler, M.J.; Sparks, M.A.; Hiremath, S.; South, A.M.; Welling, P.A.; Swaminathan, S. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020, 31, 1380–1383. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Uppal, N.N.; Wanchoo, R.; Shah, H.H.; Yang, Y.; Parikh, R.; Khanin, Y.; Madireddy, V.; Larsen, C.P.; Jhaveri, K.D.; et al. COVID-19–Associated Kidney Injury: A Case Series of Kidney Biopsy Findings. J. Am. Soc. Nephrol. 2020, 31, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Bijol, V.; Sparks, M.A.; Sise, M.E.; Izzedine, H.; Jhaveri, K.D. Pathophysiology and Pathology of Acute Kidney Injury in Patients With COVID-19. Adv. Chronic Kidney Dis. 2020, 27, 365–376. [Google Scholar] [CrossRef]
- Nichols, B.; Jog, P.; Lee, J.H.; Blackler, D.; Wilmot, M.; Dagati, V.D.; Markowitz, G.S.; Kopp, J.B.; Alper, S.L.; Pollak, M.R.; et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2015, 87, 332–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, C.P.; Bourne, T.D.; Wilson, J.D.; Saqqa, O.; Sharshir, M.A. Collapsing Glomerulopathy in a Patient With COVID-19. Kidney Int. Rep. 2020, 5, 935–939. [Google Scholar] [CrossRef]
- Markowitz, G.S.; Nasr, S.H.; Stokes, M.B.; D’Agati, V.D. Treatment with IFN-α, -β, or -γ Is Associated with Collapsing Focal Segmental Glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2010, 5, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Shin, E.-C. The type I interferon response in COVID-19: Implications for treatment. Nat. Rev. Immunol. 2020, 20, 585–586. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, A.C.; Deus, M.D.C.; Telles, J.P.; Wind, R.; Goes, M.; Ossoski, R.G.C.; De Padua, A.M.; De Noronha, L.; Moreno-Amaral, A.; Baena, C.P.; et al. IFN-γ is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020, 289, 198171. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.J.; Patel, B.M. TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 2017, 170, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.N. Interleukin-6 Induces Skeletal Muscle Protein Breakdown in Rats. Exp. Biol. Med. 1994, 205, 182–185. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19. Med. 2020, 99, e23315. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Rein, J.L.; Sanchez-Russo, L.; Winston, J.; Uribarri, J. COVID-19–Associated Acute Kidney Injury: A Case Series. Kidney Med. 2020, 2, 668–669. [Google Scholar] [CrossRef]
- Uribarri, J.; El Shamy, O.; Sharma, S.; Winston, J. COVID-19–Associated Acute Kidney Injury and Quantified Protein Catabolic Rate: A Likely Effect of Cytokine Storm on Muscle Protein Breakdown. Kidney Med. 2021, 3, 60–63. [Google Scholar] [CrossRef]
- Chan, L.; Hindi, J.; Nadkarni, G.N. COVID-19: The Kidneys Tell a Tale. Am. J. Kidney Dis. 2021, 77, 175–177. [Google Scholar] [CrossRef]
- Flythe, J.E.; Assimon, M.M.; Tugman, M.J.; Chang, E.H.; Gupta, S.; Shah, J.; Sosa, M.A.; Renaghan, A.D.; Melamed, M.L.; Wilson, F.P.; et al. Characteristics and Outcomes of Individuals with Pre-existing Kidney Disease and COVID-19 Admitted to Intensive Care Units in the United States. Am. J. Kidney Dis. 2020. [Google Scholar] [CrossRef]
- Hsu, C.M.; Weiner, D.E. COVID-19 in dialysis patients: Outlasting and outsmarting a pandemic. Kidney Int. 2020, 98, 1402–1404. [Google Scholar] [CrossRef]
- Couchoud, C.; Bayer, F.; Ayav, C.; Béchade, C.; Brunet, P.; Chantrel, F.; Frimat, L.; Galland, R.; Hourmant, M.; Laurain, E.; et al. Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients. Kidney Int. 2020, 98, 1519–1529. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Wanchoo, R.; Sachdeva, M.; Sakhiya, V.; Hong, S.; Jhaveri, K.D.; Fishbane, S.; Abate, M.; Andrade, H.P.; et al. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney Int. 2020, 98, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.; Jaladanki, S.K.; Somani, S.; Paranjpe, I.; Kumar, A.; Zhao, S.; Kaufman, L.; Leisman, S.; Sharma, S.; He, J.C.; et al. Outcomes of Patients on Maintenance Dialysis Hospitalized with COVID-19. Clin. J. Am. Soc. Nephrol. 2020, 30. [Google Scholar] [CrossRef]
- Jiang, H.-J.; Tang, H.; Xiong, F.; Chen, W.-L.; Tian, J.-B.; Sun, J.; Dong, J.-W.; Wang, X.-H.; Jin, X.-F.; Ding, Y.-Q.; et al. COVID-19 in Peritoneal Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2021, 16, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Rombolà, G.; Heidempergher, M.; Pedrini, L.; Farina, M.; Aucella, F.; Messa, P.; Brunori, G. Practical indications for the prevention and management of SARS-CoV-2 in ambulatory dialysis patients: Lessons from the first phase of the epidemics in Lombardy. J. Nephrol. 2020, 33, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Basile, C.; Combe, C.; Pizzarelli, F.; Covic, A.; Davenport, A.; Kanbay, M.; Kirmizis, D.; Schneditz, D.; van der Sande, F.; Mitra, S. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol. Dial. Transplant. 2020, 35, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Kliger, A.S.; Silberzweig, J. Mitigating Risk of COVID-19 in Dialysis Facilities. Clin. J. Am. Soc. Nephrol. 2020, 15, 707–709. [Google Scholar] [CrossRef]
- Waldman, M.; Soler, M.J.; García-Carro, C.; Lightstone, L.; Turner-Stokes, T.; Griffith, M.; Torras, J.; Valenzuela, L.M.; Bestard, O.; Geddes, C.; et al. Results from the IRoc-GN international registry of patients with COVID-19 and glomerular disease suggest close monitoring. Kidney Int. 2021, 99, 227–237. [Google Scholar] [CrossRef]
- Anders, H.-J.; Bruchfeld, A.; Juarez, G.M.F.; Floege, J.; Goumenos, D.; Turkmen, K.; Van Kooten, C.; Tesar, V.; Segelmark, M. Recommendations for the management of patients with immune-mediated kidney disease during the severe acute respiratory syndrome coronavirus 2 pandemic. Nephrol. Dial. Transplant. 2020, 35, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Akalin, E.; Azzi, Y.; Bartash, R.; Seethamraju, H.; Parides, M.; Hemmige, V.; Ross, M.; Forest, S.; Goldstein, Y.D.; Ajaimy, M.; et al. Covid-19 and Kidney Transplantation. N. Engl. J. Med. 2020, 382, 2475–2477. [Google Scholar] [CrossRef]
- Oltean, M.; Søfteland, J.M.; Bagge, J.; Ekelund, J.; Felldin, M.; Schult, A.; Magnusson, J.; Friman, V.; Karason, K. Covid-19 in kidney transplant recipients: A systematic review of the case series available three months into the pandemic. Infect. Dis. 2020, 52, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Hilbrands, L.B.; Duivenvoorden, R.; Vart, P.; Franssen, C.F.M.; Hemmelder, M.H.; Jager, K.J.; Kieneker, L.M.; Noordzij, M.; Pena, M.J.; De Vries, H.; et al. COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration. Nephrol. Dial. Transplant. 2020, 35, 1973–1983. [Google Scholar] [CrossRef]
- Barbar, S.D.; Clere-Jehl, R.; Bourredjem, A.; Hernu, R.; Montini, F.; Bruyère, R.; Lebert, C.; Bohé, J.; Badie, J.; Eraldi, J.-P.; et al. Timing of Renal-Replacement Therapy in Patients with Acute Kidney Injury and Sepsis. N. Engl. J. Med. 2018, 379, 1431–1442. [Google Scholar] [CrossRef] [PubMed]
- The STARRT-AKI Investigators Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury. N. Engl. J. Med. 2020, 383, 240–251. [CrossRef] [PubMed]
- El Shamy, O.; Patel, N.; Abdelbaset, M.H.; Chenet, L.; Tokita, J.; Lookstein, R.; Lee, D.S.; Cohen, N.A.; Sharma, S.; Uribarri, J. Acute Start Peritoneal Dialysis during the COVID-19 Pandemic: Outcomes and Experiences. J. Am. Soc. Nephrol. 2020, 31, 1680–1682. [Google Scholar] [CrossRef]
- Sourial, M.Y.; Sourial, M.H.; Dalsan, R.; Graham, J.; Ross, M.; Chen, W.; Golestaneh, L. Urgent Peritoneal Dialysis in Patients With COVID-19 and Acute Kidney Injury: A Single-Center Experience in a Time of Crisis in the United States. Am. J. Kidney Dis. 2020, 76, 401–406. [Google Scholar] [CrossRef]
- Adapa, S.; Aeddula, N.R.; Konala, V.M.; Chenna, A.; Naramala, S.; Madhira, B.R.; Gayam, V.; Balla, M.; Muppidi, V.; Bose, S. COVID-19 and Renal Failure: Challenges in the Delivery of Renal Replacement Therapy. J. Clin. Med. Res. 2020, 12, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Umemoto, G.M.; Vijayan, A. Management of Acute Kidney Injury in Coronavirus Disease 2019. Adv. Chronic Kidney Dis. 2020, 27, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Forni, L.G.; Laing, C.M.; Horne, K.L.; Evans, R.D.; Lucas, B.J.; Fluck, R.J. Covid-19 and acute kidney injury in hospital: Summary of NICE guidelines. BMJ 2020, 369, m1963. [Google Scholar] [CrossRef]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helms, J.; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis); Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensiv. Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Arnold, F.; Westermann, L.; Rieg, S.; Neumann-Haefelin, E.; Biever, P.M.; Walz, G.; Kalbhenn, J.; Tanriver, Y. Comparison of different anticoagulation strategies for renal replacement therapy in critically ill patients with COVID-19: A cohort study. BMC Nephrol. 2020, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shankaranarayanan, D.; Muthukumar, T.; Barbar, T.; Bhasin, A.; Gerardine, S.; Lamba, P.; Leuprecht, L.; Neupane, S.P.; Salinas, T.; Shimonov, D.; et al. Anticoagulation Strategies and Filter Life in COVID-19 Patients Receiving Continuous Renal Replacement Therapy. Clin. J. Am. Soc. Nephrol. 2021, 16, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Koyner, J.; Heung, M. Anticoagulation During Acute RRT in Patients with COVID-19: Heparin and Citrate. American Society of Nephrology COVID-19: Overcoming Challenges to the Provision of Acute Dialysis for COVID-19 Positive Patients Webinar. 2020. Available online: https://www.asn-online.org/g/blast/files/COVID19%20Overcoming_Challenges%2004.30.20%20Slide%20Handout.pdf (accessed on 30 April 2020).
- COVID-19 and AKI. NephJC. Available online: http://www.nephjc.com/news/covidaki (accessed on 29 January 2021).
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter. 2012, 2, 1–138. [Google Scholar]
- Vergori, A.; Pianura, E.; Lorenzini, P.; D’Abramo, A.; Di Stefano, F.; Grisetti, S.; Vita, S.; Pinnetti, C.; Donno, D.R.; Marini, M.C.; et al. Spontaneous ilio-psoas haematomas (IPHs): A warning for COVID-19 inpatients. Ann. Med. 2021, 53, 295–301. [Google Scholar] [CrossRef]
Author | Country | n = | ICU (%) + | AKI (%) | KRT (%) | Overall Mortality (%) | Mortality in AKI (%) | |
---|---|---|---|---|---|---|---|---|
1 | Cheng et al [21] | China | 1400 | 10% | 7% | 15% | 14% | 71% |
2 | Guan et al [23] | China | 1099 | 5% | 0.5% | N/A | 1.4% | N/A |
3 | Xia et al [26] | China | 81 | 100% | 51% | 9% | 74% | 82% |
4 | Yang et al [25] | China | 52 | 100% | 23% | 5% | 61% | N/A |
5 | Richardson et al [27] | USA | 5700 | 14% | 22% | 3% | 21% | N/A |
6 | Hirsch et al [9] | USA | 5449 | 26% | 37% | 14% | 16% | 35% |
7 | Fisher et al [36] | USA | 3345 | 4% | 57% | 5% | 9% | 34% |
8 | Chan et al [37] | USA | 3235 | 24% | 46% | 19% | 8% | 50% |
9 | Gupta et al [30] | USA | 3099 | 100% | 54% | 20% | N/A | 55% |
10 | Argenziano et al [38] | USA | 1000 | 23% | 33% | 14% | 21% | N/A |
11 | Mohamed et al [35] | USA | 575 | 30% | 28% | 15% | N/A | 50% |
12 | Diana et al [31] | South Africa | 1102 | 14% | 40% | 9% | 21% | 49%++ |
13 | El Aidaoui et al [32] | Morocco | 134 | 34% | 6% | 18% | 10.4% | N/A |
Author | n | Sample Collection | Clinical Findings | Histopathology Findings (n) | |
---|---|---|---|---|---|
1 | Santoriello et al [42] | 42 | Postmortem | AKI: 94% Proteinuria: 79% | ATI: 19 Fibrin Thrombi: 6 CG: 1 Kidney Tropism: Not detected |
2 | Su et al [44] | 26 | Postmortem | AKI: 35% Proteinuria: 26% | ATI: 26 Fibrin Thrombi: 3 Kidney Tropism: 8 |
3 | Nasr et al [40] | 13 | Native Kidney Biopsy | AKI: 100% Proteinuria: 100% CKD: 44% | Diffuse ATI: 11 CG: 8 Membranous Nephropathy: 1 Kidney Tropism: ISH performed for one patient only, found to be negative. |
4 | Kudose et al [41] | 17 | Native Kidney Biopsy: 14 Kidney allograft: 3 | AKI: 88% Nephrotic Range Proteinuria: 53% Median SCr: 5.7 mg/dL | CG: 5 Minimal Change Disease: 1 Membranous nephropathy: 2 Lupus Nephritis: 1 Anti-Glomerular Basement Membrane: 1 T cell-mediated rejection: 3 APOL1 Genotyping: 3 Kidney Tropism: Not detected |
5 | Akilesh et al [43] | 17 | Native Kidney Biopsy: 14 Kidney allograft: 3 | AKI: 88% Nephrotic Range Proteinuria: 65% | CG: 5 Minimal Change Disease: 1 Thrombotic Microangiopathy: 5 Post-infectious Glomerulonephritis: 1 Antibody-Mediated Rejection: 2 |
6 | Wu et al [45] | 6 | Native Kidney Biopsy | All patients were Black, had AKI and proteinuria. Nephrotic range proteinuria confirmed in 5/6 cases by UPCR. | CG: 6 APOL 1 high-risk genotype: 6 Kidney Tropism: Not detected |
Isolation of Sick Patients |
Designate isolation shifts |
If possible, use separate rooms for confirmed cases or cases under investigation |
Screening |
Screening personnel at a single entry to the facility |
Screen for symptoms and exposure |
Check body temperature prior to the start of dialysis |
Medical evaluation for patients with positive screenings and test when appropriate |
Patient Education |
Encourage Vaccination |
Provide information about vaccine alternatives |
Provide information about vaccination centers |
Assist with enrollment |
Proper use of Face masks |
Appropriate hand wash |
Patients should be encouraged to wash their dialysis access arm |
Use of individual transport to and from dialysis facilities |
Patients should alert beforehand if new symptoms appear, or if they are exposed to patients with COVID-19 |
Disinfection |
Disinfect dialysis machines, chair, dialysis stations, and all equipment (BP cuffs, stethoscopes, etc.) |
Communication with Health Department |
Detect cases and communicate to local health authorities |
Healthcare Teams |
Provide appropriate personal protective equipment including face shields, isolation gowns, and N-95 fitted masks for all dialysis staff. |
Anticoagulant | Dose | Remarks |
---|---|---|
Pre-filter Unfractionated Heparin | Loading dose: 2000–5000 units. Maintenance: 10–15 units/kg/hr Check PTT: 2–4 h after initiation, Target 5 sec increase. | Anticoagulation is intended for the circuit, not for the patient Higher risk of circuit clotting for high-risk patients |
Systemic Unfractionated Heparin | Loading dose: 50–80 units/kg Maintenance: Continuous drip at 18–20 units/kg/h Target PTT: 80–100 | Protocols may vary Higher risk of bleeding when comparted to pre-filter heparin Increased risk of HIT and heparin resistance Short half-life |
Systemic Low-Molecular-Weight Heparin | Dose may be variable, and single pre dialysis dose may be sufficient. | Risk of accumulation in kidney failure Monitoring requires anti-Factor Xa Reduce risk of HIT |
Regional Citrate Anticoagulation | No universal protocol. | Requires institutional commitment Better safety profile than heparin Risk for overdose, metabolic acidosis, and hypocalcemia Increased monitoring of iCa and titration of CaCl. |
Argatroban | 0.5 mcg/kg/min if normal liver function 0.2–0.25 mcg/kg/min in patients with liver dysfunction Target PTT: two times the normal value and titrate based on institutional protocol | Variable institutional protocols Dose differently for those with and without liver dysfunction Use if HIT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Russo, L.; Billah, M.; Chancay, J.; Hindi, J.; Cravedi, P. COVID-19 and the Kidney: A Worrisome Scenario of Acute and Chronic Consequences. J. Clin. Med. 2021, 10, 900. https://doi.org/10.3390/jcm10050900
Sanchez-Russo L, Billah M, Chancay J, Hindi J, Cravedi P. COVID-19 and the Kidney: A Worrisome Scenario of Acute and Chronic Consequences. Journal of Clinical Medicine. 2021; 10(5):900. https://doi.org/10.3390/jcm10050900
Chicago/Turabian StyleSanchez-Russo, Luis, Marzuq Billah, Jorge Chancay, Judy Hindi, and Paolo Cravedi. 2021. "COVID-19 and the Kidney: A Worrisome Scenario of Acute and Chronic Consequences" Journal of Clinical Medicine 10, no. 5: 900. https://doi.org/10.3390/jcm10050900
APA StyleSanchez-Russo, L., Billah, M., Chancay, J., Hindi, J., & Cravedi, P. (2021). COVID-19 and the Kidney: A Worrisome Scenario of Acute and Chronic Consequences. Journal of Clinical Medicine, 10(5), 900. https://doi.org/10.3390/jcm10050900