The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease
Abstract
:1. Introduction
1.1. Patients
1.2. Endovascular Treatment and CBCT Acquisition
1.3. Definitions
1.4. Image Analysis
1.5. Statistical Analysis
2. Results
2.1. Treatment Outcome after Endovascualr Treatment
2.2. Diagnostic Performance of Clinical Outcome Evaluation
2.3. Quantitative Analysis of Perfusion Factors before and after Angioplasty
2.4. Ability to Predict Clinical Outcome According to Imaging Type and Perfusion Parameter
2.5. Consistency of Visual Assessment
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fowkes, F.G.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Diehm, C.; Schuster, A.; Allenberg, J.R.; Darius, H.; Haberl, R.; Lange, S.; Pittrow, D.; von Stritzky, B.; Tepohl, G.; Trampisch, H.J. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: Cross-sectional study. Atherosclerosis 2004, 172, 95–105. [Google Scholar] [CrossRef]
- Norgren, L.; Hiatt, W.R.; Dormandy, J.A.; Nehler, M.R.; Harris, K.A.; Fowkes, F.G.; Rutherford, R.B.; TASC II Working Group. Inter-society consensus for the management of peripheral arterial disease. Int. Angiol. 2007, 26, 81–157. [Google Scholar]
- Constans, J.; Bura-Riviere, A.; Visona, A.; Brodmann, M.; Abraham, P.; Olinic, D.M.; Madaric, J.; Steiner, S.; Quere, I.; Mazzolai, L.; et al. Urgent need to clarify the definition of chronic critical limb ischemia—A position paper from the European Society for Vascular Medicine. Vasa 2019, 48, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Frank, U.; Nikol, S.; Belch, J.; Boc, V.; Brodmann, M.; Carpentier, P.H.; Chraim, A.; Canning, C.; Dimakakos, E.; Gottsater, A.; et al. ESVM Guideline on peripheral arterial disease. Vasa 2019, 48, 1–79. [Google Scholar] [CrossRef] [Green Version]
- Olinic, D.M.; Spinu, M.; Olinic, M.; Homorodean, C.; Tataru, D.A.; Liew, A.; Schernthaner, G.H.; Stanek, A.; Fowkes, G.; Catalano, M. Epidemiology of peripheral artery disease in Europe: VAS Educational Paper. Int. Angiol. 2018, 37, 327–334. [Google Scholar] [CrossRef]
- Wojtasik-Bakalarz, J.; Ruzsa, Z.; Rakowski, T.; Nyerges, A.; Bartus, K.; Stanek, A.; Dudek, D.; Surdacki, A.; Kleczynski, P.; Bartus, S. Impact of Coronary Artery Disease and Diabetes Mellitus on the Long-Term Follow-Up in Patients after Retrograde Recanalization of the Femoropopliteal Arterial Region. J. Diabetes Res. 2019, 2019, 6036359. [Google Scholar] [CrossRef] [PubMed]
- Adam, D.J.; Beard, J.D.; Cleveland, T.; Bell, J.; Bradbury, A.W.; Forbes, J.F.; Fowkes, F.G.; Gillepsie, I.; Ruckley, C.V.; Raab, G.; et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005, 366, 1925–1934. [Google Scholar] [CrossRef]
- Soderstrom, M.I.; Arvela, E.M.; Korhonen, M.; Halmesmaki, K.H.; Alback, A.N.; Biancari, F.; Lepantalo, M.J.; Venermo, M.A. Infrapopliteal percutaneous transluminal angioplasty versus bypass surgery as first-line strategies in critical leg ischemia: A propensity score analysis. Ann. Surg. 2010, 252, 765–773. [Google Scholar] [CrossRef]
- Tepe, G.; Schmehl, J.; Heller, S.; Wiesinger, B.; Claussen, C.D.; Duda, S.H. Superficial femoral artery: Current treatment options. Eur. Radiol. 2006, 16, 1316–1322. [Google Scholar] [CrossRef]
- Egorova, N.N.; Guillerme, S.; Gelijns, A.; Morrissey, N.; Dayal, R.; McKinsey, J.F.; Nowygrod, R. An analysis of the outcomes of a decade of experience with lower extremity revascularization including limb salvage, lengths of stay, and safety. J. Vasc. Surg. 2010, 51, 878–885.e1. [Google Scholar] [CrossRef] [Green Version]
- Kudo, T.; Chandra, F.A.; Ahn, S.S. The effectiveness of percutaneous transluminal angioplasty for the treatment of critical limb ischemia: A 10-year experience. J. Vasc. Surg. 2005, 41, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, R.O.; Hinchliffe, R.J. Assessment of foot perfusion in patients with a diabetic foot ulcer. Diabetes Metab. Res. Rev. 2016, 32 (Suppl. 1), 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benitez, E.; Sumpio, B.J.; Chin, J.; Sumpio, B.E. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin. Vasc. Surg. 2014, 27, 3–15. [Google Scholar] [CrossRef]
- Grozinger, G.; Pohmann, R.; Schick, F.; Grosse, U.; Syha, R.; Brechtel, K.; Rittig, K.; Martirosian, P. Perfusion measurements of the calf in patients with peripheral arterial occlusive disease before and after percutaneous transluminal angioplasty using MR arterial spin labeling. J. Magn. Reson. Imaging 2014, 40, 980–987. [Google Scholar] [CrossRef]
- Cindil, E.; Erbas, G.; Akkan, K.; Cerit, M.N.; Sendur, H.N.; Zor, M.H.; Ilgit, E. Dynamic Volume Perfusion CT of the Foot in Critical Limb Ischemia: Response to Percutaneous Revascularization. AJR Am. J. Roentgenol. 2020, 214, 1398–1408. [Google Scholar] [CrossRef]
- Orth, R.C.; Wallace, M.J.; Kuo, M.D. Technology Assessment Committee of the Society of Interventional, Radiology. C-arm cone-beam CT: General principles and technical considerations for use in interventional radiology. J. Vasc. Interv. Radiol. 2008, 19, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Virmani, S.; Ryu, R.K.; Sato, K.T.; Lewandowski, R.J.; Kulik, L.; Mulcahy, M.F.; Larson, A.C.; Salem, R.; Omary, R.A. Effect of C-arm angiographic CT on transcatheter arterial chemoembolization of liver tumors. J. Vasc. Interv. Radiol. 2007, 18, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.A.; Choi, S.Y.; Kim, M.U.; Baek, S.Y.; Park, S.H.; Yoo, K.; Kim, T.H.; Kim, H.Y. The Efficacy of Cone-Beam CT-Based Liver Perfusion Mapping to Predict Initial Response of Hepatocellular Carcinoma to Transarterial Chemoembolization. J. Vasc. Interv. Radiol. 2019, 30, 358–369. [Google Scholar] [CrossRef]
- Syha, R.; Grozinger, G.; Grosse, U.; Maurer, M.; Zender, L.; Horger, M.; Nikolaou, K.; Ketelsen, D. Parenchymal Blood Volume Assessed by C-Arm-Based Computed Tomography in Immediate Posttreatment Evaluation of Drug-Eluting Bead Transarterial Chemoembolization in Hepatocellular Carcinoma. Investig. Radiol. 2016, 51, 121–126. [Google Scholar] [CrossRef]
- Bley, T.; Strother, C.M.; Pulfer, K.; Royalty, K.; Zellerhoff, M.; Deuerling-Zheng, Y.; Bender, F.; Consigny, D.; Yasuda, R.; Niemann, D. C-arm CT measurement of cerebral blood volume in ischemic stroke: An experimental study in canines. AJNR Am. J. Neuroradiol. 2010, 31, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubiak, G.K.; Pawlas, N.; Cieslar, G.; Stanek, A. Chronic Lower Extremity Ischemia and Its Association with the Frailty Syndrome in Patients with Diabetes. Int. J. Environ. Res. Public Health 2020, 17, 9339. [Google Scholar] [CrossRef]
- Pawlik, A.; Januszek, R.; Ruzsa, Z.; Orias, V.; Kleczynski, P.; Wojtasik-Bakalarz, J.; Arif, S.; Nyerges, A.; Chyrchel, M.; Stanek, A.; et al. Gender differences and long-term clinical outcomes in patients with chronic total occlusions of infrainguinal lower limb arteries treated from retrograde access with peripheral vascular interventions. Adv. Med. Sci. 2020, 65, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, N.; Maris, T.G.; Kontopodis, N.; Ioannou, C.V.; Kehagias, E.; Matthaiou, N.; Papadakis, A.E.; Hatzidakis, A.; Perisinakis, K.; Tsetis, D. CT Foot Perfusion Examination for Evaluation of Percutaneous Transluminal Angioplasty Outcome in Patients with Critical Limb Ischemia: A Feasibility Study. J. Vasc. Interv. Radiol. 2019, 30, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Jens, S.; Marquering, H.A.; Koelemay, M.J.; Reekers, J.A. Perfusion angiography of the foot in patients with critical limb ischemia: Description of the technique. Cardiovasc. Intervent. Radiol. 2015, 38, 201–205. [Google Scholar] [CrossRef]
- Parsson, H.N.; Lundin, N.; Lindgren, H. 2D perfusion-angiography during endovascular intervention for critical limb threatening ischemia—A feasibility study. JRSM Cardiovasc. Dis. 2020, 9, 2048004020915392. [Google Scholar] [CrossRef] [PubMed]
- Reekers, J.A.; Koelemay, M.J.; Marquering, H.A.; van Bavel, E.T. Functional Imaging of the Foot with Perfusion Angiography in Critical Limb Ischemia. Cardiovasc. Intervent. Radiol. 2016, 39, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Characteristics | N | |
---|---|---|
Sex | Male | 28 |
Female | 15 | |
Age (year) | 68.6 (28–91) * | |
Underlying disease | Diabetes mellitus | 32 |
Hypertension | 29 | |
Hyperlipidemia | 3 | |
Smoking | 4 | |
Coronary arterial disease | 9 | |
Hemodialysis | 9 | |
Indication | Claudication | 17 |
Resting pain | 1 | |
Wound | 26 | |
Others | 7 |
Modality | Reviewer | Clinical Outcome | Visual Scoring | |||
---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | |||
Angiography | 1 | Improved | 4 | 25 | 5 | 1 |
Not improved | 1 | 10 | 3 | 2 | ||
2 | Improved | 5 | 14 | 15 | 1 | |
Not improved | 2 | 6 | 8 | 0 | ||
Perfusion mapping | 1 | Improved | 2 | 3 | 16 | 14 |
Not improved | 0 | 7 | 2 | 7 | ||
2 | Improved | 1 | 3 | 16 | 15 | |
Not improved | 1 | 6 | 5 | 4 |
POBA | DCB | Bare Metal Stent | DES | Atherectomy | |
---|---|---|---|---|---|
Iliac artery | 2 | ||||
CFA | 1 | 1 | |||
SFA | 27 | 8 | 2 | ||
Popliteal artery | 6 | 23 | |||
BTK arteries | 124 |
Modality | Reviewer | Sensitivity (95% CI) | Specificity (95% CI) | PPV (95% CI) | NPV (95% CI) | Accuracy (95% CI) |
---|---|---|---|---|---|---|
Angiography | 1 | 17.1 (4.7–29.6) | 68.8 (46.0–91.5) | 54.6 (25.1–84.) | 27.5 (13.7–41.3) | 33.3 (20.4–46.3) |
2 | 45.7 (29.2–62.2) | 50 (25.5–74.5) | 66.7 (47.8–85.5) | 29.6 (12.4–46.9) | 47.1 (33.4–60.8) | |
Perfusion mapping | 1 | 85.7 (74.1–97.3) | 43.8 (19.4–68.1) | 76.9 (63.7–90.2) | 58.3 (30.4–86.2) | 72.6 (60.3–84.8) |
2 | 88.6 (78.0–99.1) | 43.8 (19.4–68.1) | 77.5 (64.6–90.4) | 63.6 (35.2–92.1) | 74.5 (62.6–86.5) |
Model | OR (95% CI) | p Value | C-Statistic |
---|---|---|---|
Angiography | 0.56 (0.15–2.12) | 0.390 | 0.75 |
Cone-beam CT Perfusion mapping | 6.54 (1.24–34.38) | 0.027 | 0.81 |
PBVmax, before PTA | 1.01 (1–1.01) | 0.045 | 0.82 |
PBVmean, before PTA | 0.99 (0.96–1.02) | 0.625 | 0.65 |
PBVmax, after PTA | 1.01 (1.00–1.01) | 0.030 | 0.84 |
PBVmean, after PTA | 1.00 (0.98–1.02) | 0.701 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, R.; Choi, S.Y.; Kim, Y.J. The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease. J. Clin. Med. 2021, 10, 947. https://doi.org/10.3390/jcm10050947
Kim R, Choi SY, Kim YJ. The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease. Journal of Clinical Medicine. 2021; 10(5):947. https://doi.org/10.3390/jcm10050947
Chicago/Turabian StyleKim, Ran, Sun Young Choi, and Yeo Ju Kim. 2021. "The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease" Journal of Clinical Medicine 10, no. 5: 947. https://doi.org/10.3390/jcm10050947
APA StyleKim, R., Choi, S. Y., & Kim, Y. J. (2021). The Efficacy of Cone-Beam CT-Based Perfusion Mapping in Evaluation of Tissue Perfusion in Peripheral Arterial Disease. Journal of Clinical Medicine, 10(5), 947. https://doi.org/10.3390/jcm10050947