Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images
Abstract
:1. Introduction
- The model built with P3, P6, and P7 concatenated as the last convolutional layer achieves better classification performance than other models.
- The heatmaps from both CRM and CAM shows that the most relevant image pixels for making correct classification are those in or around the os and T-Zone.
- Compared to CAM, the CRM (1) visualizes and focuses more on the area around the os and T-zone; and (2) generates fewer heatmaps that the human expert disagrees with.
- In the review, the expert has opposite opinions about ground truth of several images, and observes incompleteness of cervix display in some images samples. These issues need further attention since they can lead to misclassifications leading to incorrect treatment decisions.
- Good image/object quality is a key factor to ensure correct classification, and quality degradation can be a huge distractor for capturing significant features and for making correct classifications.
2. Image Data
3. Methods
3.1. Network Architecture
3.2. Class Activation Map (CAM)
3.3. Class-Selective Relevance Map (CRM)
4. Experiments
4.1. Classification Performance
4.2. Pyramidal Feature Comparison
4.2.1. Single vs. Concatenated Pyramidal Features
4.2.2. Concatenated vs. Concatenated Pyramidal Features
4.3. Expert Evaluation of Heatmaps
4.3.1. CAM vs. CRM Heatmaps
4.3.2. Out of Region of Interest (RoI) and Insufficient Coverage
4.3.3. Inaccurate Ground Truth Label and Bad Image
4.4. Quality Degradation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/en/news-room/fact-sheets/detail/human-papillomavirus-(hpv)-and-cervical-cancer (accessed on 1 November 2020).
- Jeronimo, J.; Schiffman, M. Colposcopy at a crossroads. Am. J. Obstet. Gynecol. 2006, 195, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Self-Sampling for Human Papillomavirus Testing. Available online: https://www.who.int/reproductivehealth/self-care-interventions/human-papillomavirus-testing/en/ (accessed on 1 November 2020).
- WHO Guidelines for the Use of Thermal Ablation for Cervical Pre-Cancer Lesions. Available online: https://www.who.int/reproductivehealth/publications/thermal-ablation-for-cervical-pre-cancer-lesions/en/ (accessed on 1 November 2020).
- Hu, L.; Bell, D.; Antani, S.; Xue, Z.; Yu, K.; Horning, M.P.; Gachuhi, N.; Wilson, B.; Jaiswal, M.S.; Befano, B.; et al. An observational study of deep learning and automated evaluation of cervical images for cancer screening. J. Natl. Cancer Inst. 2019, 111, 923–932. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Xue, Z.; Novetsky, A.P.; Einstein, M.H.; Marcus, J.Z.; Befano, B.; Guo, P.; Demarco, M.; Wentzensen, N.; Long, L.R.; Schiffman, M.; et al. A demonstration of automated visual evaluation of cervical images taken with a smartphone camera. Int. J. Cancer 2020, 147, 2416–2423. [Google Scholar] [CrossRef] [PubMed]
- Sellors, J.W.; Sankaranarayanan, R. Colposcopy and Treatment of Cervical Intraepithelial Neoplasia: A Beginner’s Manual; International Agency for Research on Cancer: Lyon, France, 2003. [Google Scholar]
- Jordan, J.; Singer, A.; Jones, H.; Shafi, M. The Cervix; Wiley: Hoboken, NJ, USA, 2009; pp. 23–29. [Google Scholar]
- Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Wang, L.; Huang, C.; Xu, W.; et al. Look and think twice: Capturing top-down visual attention with feedback convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2956–2964. [Google Scholar]
- Noh, H.; Hong, S.; Hana, B. Learning deep features for discriminative localization. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1520–1528. [Google Scholar]
- Zintgraf, L.M.; Cohen, T.; Adel, T.; Welling, M. Visualizing deep neural network decisions: Prediction difference analysis. arXiv 2017, arXiv:1702.04595. [Google Scholar]
- Ribeiro, M.T.; Singh, S.; Guestrin, C. Why should i trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1135–1144. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Jetley, S.; Lord, N.A.; Lee, N.; Torr, P.H.S. Learn to pay attention. arXiv 2018, arXiv:1804.02391. [Google Scholar]
- Mahendran, A.; Vedaldi, A. Salient deconvolutional networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Guidotti, R.; Monreale, A.; Turini, F.; Pedreschi, D.; Giannotti, F. A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 2018, 51, 1–42. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, M.; Taly, A.; Yan, Q. Axiomatic attribution for deep networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Zhan, Q.; Zhu, S.-C. Visual interpretability for deep learning: A survey. Front. Inf. Technol. Electron. Eng. 2018, 19, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Rajaraman, S.; Antani, S. Visual Interpretation of Convolutional Neural Network Predictions in Classifying Medical Image Modalities. Diagnostics 2019, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Schneider, D.L.; Herrero, R.; Bratti, C.; Greenberg, M.D.; Hildesheim, A.; Sherman, M.E.; Morales, J.; Hutchinson, M.L.; Sedlacek, T.V.; Lorincz, A.; et al. Cervicography screening for cervical cancer among 8460 women in a high-risk population. Am. J. Obstet. Gynecol. 1999, 180, 290–298. [Google Scholar] [CrossRef]
- Schneider, D.L.; Burke, L.; Wright, T.C.; Spitzer, M.; Chatterjee, N.; Wacholder, S.; Herrero, R.; Bratti, M.C.; Greenberg, M.D.; Hildesheim, A.; et al. Can cervicography be improved? An evaluation with arbitrated cervicography interpretations. Am. J. Obstet. Gynecol. 2002, 187, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Gage, J.C.; Rodriguez, A.C.; Schiffman, M.; García, F.A.; Long, L.R.; Budihas, S.; Herrero, R.; Burk, R.D.; Jeronimo, J. Treatability by cryotherapy in a screen-and-treat strategy. J. Low. Genit. Tract Dis. 2009, 13, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Mozer, M.C.; Smolensky, P. Using relevance to reduce network size automatically. Connect. Sci. 1989, 1, 3–16. [Google Scholar] [CrossRef]
- Guo, P.; Xue, Z.; Long, L.R.; Antani, S. Deep learning for assessing image focus for automated cervical cancer screening. In Proceedings of the IEEE International Conference on Biomedical and Health Informatics, Chicago, IL, USA, 19–22 May 2019. [Google Scholar]
Eligibility | Description | Guideline |
---|---|---|
treatable | i. screen positive ii. without suspicion of invasive or glandular disease (i.e., adenocarcinoma or adenocarcinoma in situ) |
|
not treatable | i. screen positive ii. with suspicion of invasive or glandular disease (i.e., adenocarcinoma or adenocarcinoma in situ) |
|
Last Convolutional Layer | Accuracy | F1-Score | Last Convolutional Layer | Accuracy | F1-Score |
---|---|---|---|---|---|
0.7440 | 0.6241 | 0.7573 | 0.6212 | ||
0.6748 | 0.5315 | , , | 0.8647 | 0.7586 | |
0.7184 | 0.5672 | , , , , | 0.8495 | 0.7156 | |
0.8116 | 0.7111 |
Referral Criteria |
---|
Reasons related to lesions |
|
|
|
|
Reasons not related to lesion characteristics |
|
|
|
|
|
|
Last Convolutional Layer | Filter Size/Classification Accuracy | |
---|---|---|
P3, P6, P7 | (19, 19)/67.15% | (49, 49)/36.32% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Xue, Z.; Jeronimo, J.; Gage, J.C.; Desai, K.T.; Befano, B.; García, F.; Long, L.R.; Schiffman, M.; Antani, S. Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images. J. Clin. Med. 2021, 10, 953. https://doi.org/10.3390/jcm10050953
Guo P, Xue Z, Jeronimo J, Gage JC, Desai KT, Befano B, García F, Long LR, Schiffman M, Antani S. Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images. Journal of Clinical Medicine. 2021; 10(5):953. https://doi.org/10.3390/jcm10050953
Chicago/Turabian StyleGuo, Peng, Zhiyun Xue, Jose Jeronimo, Julia C. Gage, Kanan T. Desai, Brian Befano, Francisco García, L. Rodney Long, Mark Schiffman, and Sameer Antani. 2021. "Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images" Journal of Clinical Medicine 10, no. 5: 953. https://doi.org/10.3390/jcm10050953
APA StyleGuo, P., Xue, Z., Jeronimo, J., Gage, J. C., Desai, K. T., Befano, B., García, F., Long, L. R., Schiffman, M., & Antani, S. (2021). Network Visualization and Pyramidal Feature Comparison for Ablative Treatability Classification Using Digitized Cervix Images. Journal of Clinical Medicine, 10(5), 953. https://doi.org/10.3390/jcm10050953