Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
Protocol and Registration
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Lin, L.M.; Skribner, J.E.; Gaengler, P. Factors associated with endodontic treatment failures. J. Endod. 1992, 18, 625–627. [Google Scholar] [CrossRef]
- Tabassum, S.; Khan, F.R. Failure of endodontic treatment: The usual suspects. Eur. J. Dent. 2016, 10, 144–147. [Google Scholar] [CrossRef]
- Nair, P.N.R.; Henry, S.; Cano, V.; Vera, J. Microbial status of apical root canal system of human mandibular first molars with primary apical periodontitis after “one-visit” endodontic treatment. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 99, 231–252. [Google Scholar] [CrossRef]
- Palma, P.J.; Messias, A.; Cerqueira, A.R.; Tavares, L.D.; Caramelo, F.; Roseiro, L.; Santos, J.M. Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology 2019, 107, 324–332. [Google Scholar] [CrossRef]
- Tzanetakis, G.N.; Azcarate-Peril, M.A.; Zachaki, S.; Panopoulos, P.; Kontakiotis, E.G.; Madianos, P.N.; Divaris, K. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing. J. Endod. 2015, 41, 1226–1233. [Google Scholar] [CrossRef] [Green Version]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in Endodontics. Dent. Clin. 2010, 54, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D.; Day, M.J. Antibacterial activity of chlorhexidine. J. Hosp. Infect. 1993, 25, 229–238. [Google Scholar] [CrossRef]
- Haapasalo, M.; Shen, Y.; Wang, Z.; Gao, Y. Irrigation in endodontics. Br. Dent. J. 2014, 216, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Ghasemi, N.; Divband, B.; Balaei, E.; Hosien Soroush Barhaghi, M.; Divband, A. Antibacterial efficacy of polymer containing nanoparticles in comparison with sodium hypochlorite in infected root canals. Minerva Stomatol. 2015, 64, 275–281. [Google Scholar]
- Diogo, P.; Faustino, M.A.F.; Neves, M.G.P.M.S.; Palma, P.J.; Baptista, I.P.; Gonçalves, T.; Santos, J.M. An Insight into Advanced Approaches for Photosensitizer Optimization in Endodontics—A Critical Review. J. Funct. Biomater. 2019, 10, 44. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, A.; Kishen, A. Antibacterial Nanoparticles in Endodontics: A Review. J. Endod. 2016, 42, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Farjami, A.; Dizaj, S.M.; Lotfipour, F. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater. Sci. Eng. C 2016, 58, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Raura, N.; Garg, A.; Arora, A.; Roma, M. Nanoparticle technology and its implications in endodontics: A review. Biomater. Res. 2020, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Altman, D.G.; Booth, A.; et al. Preferred reporting items for systematic review and meta-analysis protocols (prisma-p) 2015: Elaboration and explanation. BMJ 2015, 349, g7647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkis-Onofre, R.; Skupien, J.; Cenci, M.; Moraes, R.; Pereira-Cenci, T. The Role of Resin Cement on Bond Strength of Glass-fiber Posts Luted Into Root Canals: A Systematic Review and Meta-analysis of In Vitro Studies. Oper. Dent. 2014, 39, E31–E44. [Google Scholar] [CrossRef] [PubMed]
- AlShwaimi, E.; Bogari, D.; Ajaj, R.; Al-Shahrani, S.; Almas, K.; Majeed, A. In Vitro Antimicrobial Effectiveness of Root Canal Sealers against Enterococcus faecalis: A Systematic Review. J. Endod. 2016, 42, 1588–1597. [Google Scholar] [CrossRef]
- Afkhami, F.; Akbari, S.; Chiniforush, N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles, Photodynamic Therapy, Diode Laser, or Laser-activated Nanoparticles: An In Vitro Study. J. Endod. 2017, 43, 279–282. [Google Scholar] [CrossRef]
- Kushwaha, V.; Yadav, R.-K.; Tikku, A.-P.; Chandra, A.; Verma, P.; Gupta, P.; Shakya, V.-K. Comparative evaluation of antibacterial effect of nanoparticles and lasers against Endodontic Microbiota: An in vitro study. J. Clin. Exp. Dent. 2018, 10, e1155–e1160. [Google Scholar] [CrossRef]
- Wu, D.; Fan, W.; Kishen, A.; Gutmann, J.L.; Fan, B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J. Endod. 2014, 40, 285–290. [Google Scholar] [CrossRef]
- de Almeida, J.; Cechella, B.C.; Bernardi, A.V.; de Lima Pimenta, A.; Felippe, W.T. Effectiveness of nanoparticles solutions and conventional endodontic irrigants against Enterococcus faecalis biofilm. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2018, 29, 347–351. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.T.; de Andrade, F.B.; de Vasconcelos, L.R.S.M.; Midena, R.Z.; Pereira, T.C.; Kuga, M.C.; Duarte, M.A.H.; Bernardineli, N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int. Endod. J. 2018, 51, 901–911. [Google Scholar] [CrossRef] [PubMed]
- Freitas, R.A. Nanodentistry. J. Am. Dent. Assoc. 2000, 131, 1559–1565. [Google Scholar] [CrossRef]
- Abiodun-Solanke, I.M.F.; Ajayi, D.M.; Arigbede, A.O. Nanotechnology and its Application in Dentistry. Ann. Med. Health Sci. Res. 2014, 4, S171–S177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, C.; Li, Y.; Tjong, S.C. Bactericidal and Cytotoxic Properties of Silver Nanoparticles. Int. J. Mol. Sci. 2019, 20, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapasalo, M.; Udnæs, T.; Endal, U. Persistent, recurrent, and acquired infection of the root canal system post-treatment. Endod. Top. 2003, 6, 29–56. [Google Scholar] [CrossRef]
- Molander, A.; Reit, C.; Dahlén, G.; Kvist, T. Microbiological status of root-filled teeth with apical periodontitis. Int. Endod. J. 1998, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peciuliene, V.; Balciuniene, I.; Eriksen, H.M.; Haapasalo, M. Isolation of Enterococcus faecalis in previously root-filled canals in a Lithuanian population. J. Endod. 2000, 26, 593–595. [Google Scholar] [CrossRef]
- Hancock, H.H.; Sigurdsson, A.; Trope, M.; Moiseiwitsch, J. Bacteria isolated after unsuccessful endodontic treatment in a North American population. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; Antunes, H.S.; Rôças, I.N.; Rachid, C.T.C.C.; Alves, F.R.F. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis. PLoS ONE 2016, 11, e0162887. [Google Scholar] [CrossRef] [Green Version]
- Schirrmeister, J.F.; Liebenow, A.L.; Pelz, K.; Wittmer, A.; Serr, A.; Hellwig, E.; Al-Ahmad, A. New Bacterial Compositions in Root-filled Teeth with Periradicular Lesions. J. Endod. 2009, 35, 169–174. [Google Scholar] [CrossRef]
- Sathyanarayanan, M.B.; Balachandranath, R.; Genji Srinivasulu, Y.; Kannaiyan, S.K.; Subbiahdoss, G. The effect of gold and iron-oxide nanoparticles on biofilm-forming pathogens. ISRN Microbiol. 2013, 2013, 272086. [Google Scholar] [CrossRef] [Green Version]
- Maleki Dizaj, S.; Mennati, A.; Jafari, S.; Khezri, K.; Adibkia, K. Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 2015, 5, 19–23. [Google Scholar] [CrossRef]
- Foster, H.A.; Ditta, I.B.; Varghese, S.; Steele, A. Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 2011, 90, 1847–1868. [Google Scholar] [CrossRef]
- Hill, T.J.; Arnold, F.A. The Effect of Silver Nitrate in the Prevention of Dental Caries: I. the Effect of Silver Nitrate Upon the Decalcification of Enamel. J. Dent. Res. 1937, 16, 23–28. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Zhou, X.; Yu, Y.; Li, Z.; Zuo, D.; Wu, Y. Silver nanoparticles induce protective autophagy via Ca 2+/CaMKKβ/AMPK/mTOR pathway in SH-SY5Y cells and rat brains. Nanotoxicology 2019, 13, 369–391. [Google Scholar] [CrossRef] [PubMed]
- Sawai, J.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Effect of Particle Size and Heating Temperature of Ceramic Powders on Antibacterial Activity of Their Slurries. J. Chem. Eng. Jpn. 1996, 29, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Stebounova, L.V.; Adamcakova-Dodd, A.; Kim, J.S.; Park, H.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre Toxicol. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.G.; O’Claonadh, N.; Casey, A.; Chambers, G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 2012, 26, 238–251. [Google Scholar] [CrossRef] [Green Version]
- Besinis, A.; De Peralta, T.; Handy, R.D. The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 2014, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, K.; Niazi, S.; Mylonas, P.; Mannocci, F.; Deb, S. The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model. Dent. Mater. 2019, 35, 1614–1629. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Huo, P.; Zhang, R.; Liu, B. Antibacterial properties of graphene-based nanomaterials. Nanomaterials 2019, 9, 737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. No. | Author/Year/Country | Type of Study | Specimens Used | Bacterial Inoculation Was Done with | Experimental Group/Group of Interest | Control Group | Other Groups Studied | Method of Detection | Results | Inference | Conclusion |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Afkhami/2017/Iran [18] | in vitro | Extracted human teeth | E. faecalis | AgNP suspension (100 ppm, particle size 30 nm) for 5 min | 2.5% NaOCl for 5 min | Diode laser, Indocyanine green with a diode laser, AgNPs with a diode laser, and Indocyanine green | Bacterial culture | 94.42% reduction in colony count | 100 ppm solution of AgNp and 2.5% NaOCl showed similar antimicrobial efficacy | AgNPs are effective antimicrobials for root canal irrigation. |
2 | Kushwaha/2018/India [13] | in vitro | Extracted human teeth | E. faecalis | AgNP suspension (100 ppm, particle size 20 nm) for 3 min | 2% CHX | Gold NPs, AgNP with Nd: YAG laser, GoldNPs with Nd: YAG laser | Bacterial culture | Significant reduction in colony-forming units | AgNPs with Nd: YAG irradiation is a better irrigant than the other groups | AgNPs alone are effective but combined with Nd: YAG has a better effect than all other groups |
3 | de Almeida/2018/Brazil, France [15] | in vitro | Extracted human teeth | E. faecalis | 1% AgNP solution (particle size 5–20 nm) activated ultrasonically for 1 min | 0.85% saline ultrasonically activated for 1 min | 2% CHX, 1% NaOCl, 5% NaOCl, 26% ZnNP (all solutions ultrasonically activated for 1 min) | Bacterial culture | 57.28% reduction in colony-forming units | AgNPs significantly decrease the number of viable CFUs in the biofilm | 1% AgNP was able to reduce E. faecalis biofilm in root canals similar to conventional irrigants |
4 | Rodrigues/2018/Brazil [16] | in vitro | Bovine central incisors | E. faecalis | 1 mL AgNP solution (particle size 94 ppm) for 5, 15, 30 min | 1 mL saline solution with contact times of 5, 15, and 30 min) | 1 mL each of 2% CHX and 2.5% NaOCl with the same contact time as the control | Staining with live/dead technique and evaluation with a confocal laser scanning microscope | Ag NP used for 5 min had bacteria present in the biofilm while the 30 min group had bacteria in the dentinal tubules | AgNP solution was significantly less effective than NaOCl | AgNPs were not effective in dissolving the biofilm or eliminating the bacteria |
5 | Wu/2014/China [14] | in vitro | Vertically sectioned extracted human teeth | E. faecalis | 6 mL of 0.1% AgNP solution for 2 min | No irrigation | 2% NaOCl, sterile saline | Staining with live/dead technique and evaluation with a confocal laser scanning microscope | Most biofilms were intact after irrigation with the 0.1% AgNP solution | A 2 min irrigation with 0.1% Ag NP solution provides a limited antibacterial effect | 0.1% AgNP solution does not significantly kill bacteria or alter the biofilm structure |
S. No. | Author/Year/Country | Were Human Teeth Used as Specimens? | Was the Sample Size Statistically Calculated? | Was Bacterial Inoculation Verified? | Was Particle Size Mentioned? | Was a Control Group Present? | Were the Teeth Cleaned and Shaped before Irrigation? | Was the Irrigation Time the Same for Experimental and Control Groups? | Was the Observer/Evaluator Blind to the Groups? | Was There Any Conflict of Interest? | Risk of Bias |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Afkhami/2016/Iran [18] | Yes | Not reported | Yes | Yes | Yes | Yes | Yes | Not reported | None | Low |
2 | Kushwaha/2018/India [13] | Yes | Not reported | No | Yes | Yes | Yes | Yes | Not reported | Not reported | Medium |
3 | de Almeida/2018/Brazil, France [15] | Yes | Not reported | Yes | Yes | Yes | Yes | Yes | Not reported | None | Low |
4 | Rodrigues/2018/Brazil [16] | No | Not reported | Yes | Not mentioned | Yes | Yes | Yes | Not reported | None | Medium |
5 | Wu/2014/China [14] | Yes | Not reported | Yes | Not mentioned | Yes | Not reported | Yes | Not reported | None | Medium |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhandi, S.; Mehta, D.; Mashyakhy, M.; Chohan, H.; Testarelli, L.; Thomas, J.; Dhillon, H.; Raj, A.T.; Madapusi Balaji, T.; Varadarajan, S.; et al. Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review. J. Clin. Med. 2021, 10, 1152. https://doi.org/10.3390/jcm10061152
Bhandi S, Mehta D, Mashyakhy M, Chohan H, Testarelli L, Thomas J, Dhillon H, Raj AT, Madapusi Balaji T, Varadarajan S, et al. Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review. Journal of Clinical Medicine. 2021; 10(6):1152. https://doi.org/10.3390/jcm10061152
Chicago/Turabian StyleBhandi, Shilpa, Deepak Mehta, Mohammed Mashyakhy, Hitesh Chohan, Luca Testarelli, Jacob Thomas, Harnoor Dhillon, A. Thirumal Raj, Thodur Madapusi Balaji, Saranya Varadarajan, and et al. 2021. "Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review" Journal of Clinical Medicine 10, no. 6: 1152. https://doi.org/10.3390/jcm10061152
APA StyleBhandi, S., Mehta, D., Mashyakhy, M., Chohan, H., Testarelli, L., Thomas, J., Dhillon, H., Raj, A. T., Madapusi Balaji, T., Varadarajan, S., & Patil, S. (2021). Antimicrobial Efficacy of Silver Nanoparticles as Root Canal Irrigant’s: A Systematic Review. Journal of Clinical Medicine, 10(6), 1152. https://doi.org/10.3390/jcm10061152