Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond
Abstract
:1. Introduction
2. Predictors of Renal Outcomes
2.1. Demographics and Co-Morbidities
2.1.1. Patient Demographics
2.1.2. Co-Morbidities
Severity of Acute Disease
Pre-Existing CKD
Prior AKI
Diabetes Mellitus
Cardio-Vascular Diseases
Volume Overload
COVID-19
Other Co-Morbidities
2.2. Laboratory Parameters
2.3. Medications
2.3.1. Renin Angiotensin Inhibitors (RASi)
2.3.2. Diuretics
2.3.3. Pressors
2.4. Outpatient Care of Patients with AKI-D
2.4.1. Dialysis-Related Factors
Renal Replacement Modality
Dose and Duration of RRT
Intradialytic Hypotensive Episodes
Biocompatible Membranes
2.4.2. Nephrology Follow Up Post AKI
2.5. Biomarkers
Author Contributions
Funding
Conflicts of Interest
References
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. 2012, 2, 1–138. [Google Scholar]
- Chawla, L.S.; Bellomo, R.; Bihorac, A.; Goldstein, S.L.; Siew, E.D.; Bagshaw, S.M.; Bittleman, D.; Cruz, D.; Endre, Z.; Fitzgerald, R.L.; et al. Acute kidney disease and renal recovery: Consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 2017, 13, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Cerdá, J.; Liu, K.D.; Cruz, D.N.; Jaber, B.L.; Koyner, J.L.; Heung, M.; Okusa, M.D.; Faubel, S. Promoting Kidney Function Recovery in Patients with AKI Requiring RRT. Clin. J. Am. Soc. Nephrol. 2015, 10, 1859–1867. [Google Scholar] [CrossRef]
- Hoste, E.A.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; et al. Epidemiology of acute kidney injury in critically ill patients: The multinational AKI-EPI study. Intensive Care Med. 2015, 41, 1411–1423. [Google Scholar] [CrossRef]
- Uchino, S.; Kellum, J.A.; Bellomo, R.; Doig, G.S.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; et al. Acute renal failure in critically ill patients: A multinational, multicenter study. JAMA 2005, 294, 813–818. [Google Scholar] [CrossRef] [Green Version]
- Hsu, R.K.; McCulloch, C.E.; Dudley, R.A.; Lo, L.J.; Hsu, C.Y. Temporal changes in incidence of dialysis-requiring AKI. J. Am. Soc. Nephrol. 2013, 24, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.C.; Brooks, C.H.; Balogun, R.A.; Xin, W.; Ma, J.Z.; Abdel-Rahman, E.M. Predictors and Outcomes of Post-Hospitalization Dialysis Dependent Acute Kidney Injury. Nephron 2015, 131, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Chertow, G.M.; McCulloch, C.E.; Fan, D.; Ordoñez, J.D.; Go, A.S. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin. J. Am. Soc. Nephrol. 2009, 4, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coca, S.G.; Singanamala, S.; Parikh, C.R. Chronic kidney disease after acute kidney injury: A systematic review and meta-analysis. Kidney Int. 2012, 81, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, V.C.; Wu, C.H.; Huang, T.M.; Wang, C.Y.; Lai, C.F.; Shiao, C.C.; Chang, C.H.; Lin, S.L.; Chen, Y.Y.; Chen, Y.M.; et al. Long-term risk of coronary events after AKI. J Am Soc Nephrol. 2014, 25, 595–605. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, E.M.; Okusa, M.D. Recovery from acute kidney injury: Predicting outcomes. Am. J. Kidney Dis. 2015, 65, 528–529. [Google Scholar] [CrossRef]
- Shah, S.; Leonard, A.C.; Harrison, K.; Meganathan, K.; Christianson, A.L.; Thakar, C.V. Mortality and Recovery Associated with Kidney Failure due to Acute Kidney Injury. Clin. J. Am. Soc. Nephrol. 2020, 15, 995–1006. [Google Scholar] [CrossRef]
- Foley, R.N.; Sexton, D.J.; Reule, S.; Solid, C.; Chen, S.C.; Collins, A.J. End-stage renal disease attributed to acute tubular necrosis in the United States, 2001–2010. Am. J. Nephrol. 2015, 41, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Garnier, F.; Couchoud, C.; Landais, P.; Moranne, O. Increased incidence of acute kidney injury requiring dialysis in metropolitan France. PLoS ONE 2019, 14, e0211541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolhe, N.V.; Stevens, P.E.; Crowe, A.V.; Lipkin, G.W.; Harrison, D.A. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 hours after admission to an adult, general critical care unit: Application of predictive models from a secondary analysis of the ICNARC Case Mix Programme database. Crit. Care 2008, 12 (Suppl. 1), S2. [Google Scholar]
- Lee, B.J.; Hsu, C.Y.; Parikh, R.; McCulloch, C.E.; Tan, T.C.; Liu, K.D.; Hsu, R.K.; Pravoverov, L.; Zheng, S.; Go, A.S. Predicting Renal Recovery After Dialysis-Requiring Acute Kidney Injury. Kidney Int. Rep. 2019, 4, 571–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabbay, E.; Zangi, Y.; Bnayah, A.; Atrash, J.; Slotki, I.; Shavit, L. Outcomes of very elderly treated with dialysis for acute kidney injury. Clin. Nephrol. 2018, 90, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Hansrivijit, P.P.M.; Ghahramani, N.; Thongprayoon, C.; Cheungpasitporn, W. A meta-analysis of clinical predictors for renal recovery and mortality in AKI requiring continuous renal replacement therapy. J. Crit. Care 2020, 60, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Mortis, G.; Godinez-Luna, T.; Doig, C.J.; Laupland, K.B. Renal recovery after severe acute renal failure. Int. J. Artif. Organs. 2006, 29, 1023–1030. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Laupland, K.B.; Doig, C.J.; Mortis, G.; Fick, G.H.; Mucenski, M.; Godinez-Luna, T.; Svenson, L.W.; Rosenal, T. Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: A population-based study. Crit. Care 2005, 9, R700–R709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickson, L.J.; Chaudhary, S.; Williams, A.W.; Dillon, J.J.; Norby, S.M.; Gregoire, J.R.; Albright, R.C.; McCarthy, J.T.; Thorsteinsdottir, B.; Rule, A.D. Predictors of outpatient kidney function recovery among patients who initiate hemodialysis in the hospital. Am. J. Kidney Dis. 2015, 65, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Srisawat, N.; Wen, X.; Lee, M.; Kong, L.; Elder, M.; Carter, M.; Unruh, M.; Finkel, K.; Vijayan, A.; Ramkumar, M.; et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin. J. Am. Soc. Nephrol. 2011, 6, 1815–1823. [Google Scholar] [CrossRef]
- Schiffl, H. Renal recovery from acute tubular necrosis requiring renal replacement therapy: A prospective study in critically ill patients. Nephrol. Dial. Transplant. 2006, 21, 1248–1252. [Google Scholar] [CrossRef]
- González Sanchidrián, S.; Deira Lorenzo, J.L.; Muciño Bermejo, M.J.; Labrador Gómez, P.J.; Gómez-Martino Arroyo, J.R.; Aresu, S.; Tonini, E.; Armignacco, P.; Ronco, C. Survival and renal recovery after acute kidney injury requiring dialysis outside of intensive care units. Int. Urol. Nephrol. 2020, 52, 2367–2377. [Google Scholar] [CrossRef] [PubMed]
- Rathore, A.S.; Chopra, T.; Ma, J.Z.; Xin, W.; Abdel-Rahman, E.M. Long-Term Outcomes and Associated Risk Factors of Post-Hospitalization Dialysis-Dependent Acute Kidney Injury Patients. Nephron 2017, 137, 105–112. [Google Scholar] [CrossRef]
- O’Hare, A.M.; Batten, A.; Burrows, N.R.; Pavkov, M.E.; Taylor, L.; Gupta, I.; Todd-Stenberg, J.; Maynard, C.; Rodriguez, R.A.; Murtagh, F.E.; et al. Trajectories of kidney function decline in the 2 years before initiation of long-term dialysis. Am. J. Kidney Dis. 2012, 59, 513–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.; Arias-Cabrales, C.; Bermejo, S.; Sierra, A.; Burballa, C.; Soler, M.J.; Barrios, C.; Pascual, J. Impact of Recurrent Acute Kidney Injury on Patient Outcomes. Kidney Blood Press Res. 2018, 43, 34–44. [Google Scholar] [CrossRef]
- Hapca, S.; Siddiqui, M.K.; Kwan, R.S.Y.; Lim, M.; Matthew, S.; Doney, A.S.F.; Pearson, E.R.; Palmer, C.A.N.; Bell, S.; Consortium , B.-D. The Relationship between AKI and CKD in Patients with Type 2 Diabetes: An Observational Cohort Study. J. Am. Soc. Nephrol. 2021, 32, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.L.; Li, Y.; Burrows, N.R.; Bullard, K.M.; Pavkov, M.E. US Trends in Hospitalizations for Dialysis-Requiring Acute Kidney Injury in People With Versus Without Diabetes. Am. J. Kidney Dis. 2020, 75, 897–907. [Google Scholar] [CrossRef]
- James, M.T.; Grams, M.E.; Woodward, M.; Elley, C.R.; Green, J.A.; Wheeler, D.C.; de Jong, P.; Gansevoort, R.T.; Levey, A.S.; Warnock, D.G.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 602–612. [Google Scholar] [CrossRef] [Green Version]
- Lindner, G.; Doberer, E.; Vychytil, A.; Sengölge, G.; Wakounig, S.; Moertl, D.; Hörl, W.H.; Druml, W. Prognosis in patients with congestive heart failure and subacute renal failure treated with hemodialysis. Wien Klin. Wochenschr. 2009, 121, 391–397. [Google Scholar] [CrossRef]
- Bouchard, J.; Soroko, S.B.; Chertow, G.M.; Himmelfarb, J.; Ikizler, T.A.; Paganini, E.P.; Mehta, R.L. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009, 76, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Hayes, L.W.; Oster, R.A.; Tofil, N.M.; Tolwani, A.J. Outcomes of critically ill children requiring continuous renal replacement therapy. J. Crit. Care 2009, 24, 394–400. [Google Scholar] [CrossRef]
- Heung, M.; Wolfgram, D.F.; Kommareddi, M.; Hu, Y.; Song, P.X.; Ojo, A.O. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol. Dial. Transplant. 2012, 27, 956–961. [Google Scholar] [CrossRef] [PubMed]
- Seguin, J.; Albright, B.; Vertullo, L.; Lai, P.; Dancea, A.; Bernier, P.L.; Tchervenkov, C.I.; Calaritis, C.; Drullinsky, D.; Gottesman, R.; et al. Extent, risk factors, and outcome of fluid overload after pediatric heart surgery. Crit. Care Med. 2014, 42, 2591–2599. [Google Scholar] [CrossRef] [PubMed]
- Chua, H.R.; Wong, W.K.; Ong, V.H.; Agrawal, D.; Vathsala, A.; Tay, H.M.; Mukhopadhyay, A. Extended Mortality and Chronic Kidney Disease After Septic Acute Kidney Injury. J. Intensive Care Med. 2020, 35, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Sinitsky, L.; Walls, D.; Nadel, S.; Inwald, D.P. Fluid overload at 48 hours is associated with respiratory morbidity but not mortality in a general PICU: Retrospective cohort study. Pediatr. Crit. Care Med. 2015, 16, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Selewski, D.T.; Cornell, T.T.; Blatt, N.B.; Han, Y.Y.; Mottes, T.; Kommareddi, M.; Gaies, M.G.; Annich, G.M.; Kershaw, D.B.; Shanley, T.P.; et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit. Care Med. 2012, 40, 2694–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Rojas, M.A.; Vega-Vega, O.; Bobadilla, N.A. Is the kidney a target of SARS-CoV-2? Am. J. Physiol. Renal Physiol. 2020, 318, F1454–F1462. [Google Scholar] [CrossRef]
- Batlle, D.; Soler, M.J.; Sparks, M.A.; Hiremath, S.; South, A.M.; Welling, P.A.; Swaminathan, S. COVID-19 and ACE2 in Cardiovascular, Lung, and Kidney Working Group. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020, 31, 1380–1383. [Google Scholar] [CrossRef]
- Moledina, D.G.; Simonov, M.; Yamamoto, Y.; Alausa, J.; Arora, T.; Biswas, A.; Cantley, L.G.; Ghazi, L.; Greenberg, J.H.; Hinchcliff, M.; et al. The Association of COVID-19 With Acute Kidney Injury Independent of Severity of Illness: A Multicenter Cohort Study. Am. J. Kidney Dis. 2021. [Google Scholar] [CrossRef]
- Su, H.; Yang, M.; Wan, C.; Yi, L.X.; Tang, F.; Zhu, H.Y.; Yi, F.; Yang, H.C.; Fogo, A.B.; Nie, X.; et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020, 98, 219–227. [Google Scholar] [CrossRef]
- Jhaveri, K.D.; Meir, L.R.; Flores Chang, B.S.; Parikh, R.; Wanchoo, R.; Barilla-LaBarca, M.L.; Bijol, V.; Hajizadeh, N. Thrombotic microangiopathy in a patient with COVID-19. Kidney Int. 2020, 98, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, R.; Liu, C.; Liang, W.; Guan, W.; Tang, R.; Tang, C.; Zhang, N.; Zhong, N.; Li, S. Attention should be paid to venous thromboembolism prophylaxis in the management of COVID-19. Lancet Haematol. 2020, 7, e362–e363. [Google Scholar] [CrossRef]
- Xiong, J.; Pu, L.; Xiong, H.; Xiang, P.; Zhang, M.; Liu, J.; Li, A. Evaluation of the criteria of hepatorenal syndrome type of acute kidney injury in patients with cirrhosis admitted to ICU. Scand. J. Gastroenterol. 2018, 53, 1590–1596. [Google Scholar] [CrossRef]
- Rosner, M.H.; Perazella, M.A. Acute Kidney Injury in Patients with Cancer. N. Engl. J. Med. 2017, 376, 1770–1781. [Google Scholar] [CrossRef]
- Salahudeen, A.K.; Doshi, S.M.; Pawar, T.; Nowshad, G.; Lahoti, A.; Shah, P. Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin. J. Am. Soc. Nephrol. 2013, 8, 347–354. [Google Scholar] [CrossRef]
- Salahudeen, A.K.; Kumar, V.; Madan, N.; Xiao, L.; Lahoti, A.; Samuels, J.; Nates, J.; Price, K. Sustained low efficiency dialysis in the continuous mode (C-SLED): Dialysis efficacy, clinical outcomes, and survival predictors in critically ill cancer patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; McCulloch, C.E.; Powe, N.R.; Heung, M.; Saran, R.; Pavkov, M.E.; Burrows, N.R.; Hsu, R.K.; Hsu, C.Y. Exploring reasons for state-level variation in incidence of dialysis-requiring acute kidney injury (AKI-D) in the United States. BMC Nephrol. 2020, 21, 336. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, A.; Song, J.; Abdelrahim, M.; Dahbour, I.; Page, V.D.; Zhou, S.; Shen, C.; Zhao, B.; Pai, R.N.; Amaram-Davila, J. Renal Replacement Therapy in Patients With Stage IV Cancer Admitted to the Intensive Care Unit With Acute Kidney Injury at a Comprehensive Cancer Center Was Not Associated With Survival. Am. J. Hosp. Palliat. Care 2020, 37, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, G.N.; Chauhan, K.; Patel, A.; Saha, A.; Poojary, P.; Kamat, S.; Patel, S.; Ferrandino, R.; Konstantinidis, I.; Garimella, P.S. Temporal trends of dialysis requiring acute kidney injury after orthotopic cardiac and liver transplant hospitalizations. BMC Nephrol. 2017, 18, 244. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.J.; Lin, C.H.; Wei, H.J.; Wu, M.J. Long-Term Outcomes and Risk Factors of Renal Failure Requiring Dialysis after Heart Transplantation: A Nationwide Cohort Study. J. Clin. Med. 2020, 9, 2455. [Google Scholar] [CrossRef]
- Lee, S.; Ban, T.H.; Park, H.S.; Seo, S.M.; Chung, B.H.; Lim, J.; Oh, E.J.; Choi, B.; Park, C.W.; Yang, C.W.; et al. Role of Renal Replacement Therapy During the Peri-Transplant Period of Heart Transplantation. Ann. Transplant. 2020, 25, e925648. [Google Scholar] [CrossRef] [PubMed]
- Saly, D.; Yang, A.; Triebwasser, C.; Oh, J.; Sun, Q.; Testani, J.; Parikh, C.R.; Bia, J.; Biswas, A.; Stetson, C.; et al. Approaches to Predicting Outcomes in Patients with Acute Kidney Injury. PLoS ONE 2017, 12, e0169305. [Google Scholar] [CrossRef] [PubMed]
- Coca, S.G.; Jammalamadaka, D.; Sint, K.; Thiessen Philbrook, H.; Shlipak, M.G.; Zappitelli, M.; Devarajan, P.; Hashim, S.; Garg, A.X.; Parikh, C.R.; et al. Preoperative proteinuria predicts acute kidney injury in patients undergoing cardiac surgery. J. Thorac. Cardiovasc. Surg. 2012, 143, 495–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, C.Y.; Joo, Y.S.; Kim, H.W.; Han, S.H.; Yoo, T.H.; Kang, S.W.; Park, J.T. Creatinine-Cystatin C Ratio and Mortality in Patients Receiving Intensive Care and Continuous Kidney Replacement Therapy: A Retrospective Cohort Study. Am. J. Kidney Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.P.; Zheng, C.F.; Liao, M.Q.; He, H.; Liu, Y.H.; Jing, C.X.; Zeng, F.F.; Chen, Q.S. Admission serum sodium and potassium levels predict survival among critically ill patients with acute kidney injury: A cohort study. BMC Nephrol. 2019, 20, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Takemoto, S.; Wallace, A.W. Association between Withholding Angiotensin Receptor Blockers in the Early Postoperative Period and 30-day Mortality: A Cohort Study of the Veterans Affairs Healthcare System. Anesthesiology 2015, 123, 288–306. [Google Scholar] [CrossRef]
- Mudumbai, S.C.; Takemoto, S.; Cason, B.A.; Au, S.; Upadhyay, A.; Wallace, A.W. Thirty-day mortality risk associated with the postoperative nonresumption of angiotensin-converting enzyme inhibitors: A retrospective study of the Veterans Affairs Healthcare System. J. Hosp. Med. 2014, 9, 289–296. [Google Scholar] [CrossRef]
- Brar, S.; Ye, F.; James, M.T.; Hemmelgarn, B.; Klarenbach, S.; Pannu, N.; Interdisciplinary Chronic Disease Collaboration. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use With Outcomes After Acute Kidney Injury. JAMA Intern Med. 2018, 178, 1681–1690. [Google Scholar] [CrossRef] [Green Version]
- Siew, E.D.; Parr, S.K.; Abdel-Kader, K.; Perkins, A.M.; Greevy, R.A.; Vincz, A.J.; Denton, J.; Wilson, O.D.; Hung, A.M.; Ikizler, T.A.; et al. Renin-angiotensin aldosterone inhibitor use at hospital discharge among patients with moderate to severe acute kidney injury and its association with recurrent acute kidney injury and mortality. Kidney Int. 2020. [Google Scholar] [CrossRef]
- Chou, Y.H.; Huang, T.M.; Pan, S.Y.; Chang, C.H.; Lai, C.F.; Wu, V.C.; Wu, M.S.; Wu, K.D.; Chu, T.S.; Lin, S.L. Renin-Angiotensin System Inhibitor is Associated with Lower Risk of Ensuing Chronic Kidney Disease after Functional Recovery from Acute Kidney Injury. Sci. Rep. 2017, 7, 46518. [Google Scholar] [CrossRef] [PubMed]
- Hines, A.; Li, X.; Ortiz-Soriano, V.; Saleh, S.; Litteral, J.; Ruiz-Conejo, M.; Wald, R.; Silver, S.A.; Neyra, J.A. Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers and Acute Kidney Disease after an Episode of AKI: A Multicenter Prospective Cohort Study. Am. J. Nephrol. 2020, 51, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.Y.; Liu, K.D.; Yang, J.; Glidden, D.V.; Tan, T.C.; Pravoverov, L.; Zheng, S.; Go, A.S. Renin-Angiotensin System Blockade after Acute Kidney Injury (AKI) and Risk of Recurrent AKI. Clin. J. Am. Soc. Nephrol. 2020, 15, 26–34. [Google Scholar] [CrossRef]
- Bidulka, P.; Fu, E.L.; Leyrat, C.; Kalogirou, F.; McAllister, K.S.L.; Kingdon, E.J.; Mansfield, K.E.; Iwagami, M.; Smeeth, L.; Clase, C.M.; et al. Stopping renin-angiotensin system blockers after acute kidney injury and risk of adverse outcomes: Parallel population-based cohort studies in English and Swedish routine care. BMC Med. 2020, 18, 195. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, A.A.; Mohandas, R. Are diuretics harmful in the management of acute kidney injury? Curr. Opin. Nephrol. Hypertens. 2014, 23, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.J.; Xu, C.; Ying, J.C.; Lü, W.B.; Hong, G.L.; Li, M.F.; Wu, B.; Yao, Y.M.; Lu, Z.Q. Association between furosemide administration and outcomes in critically ill patients with acute kidney injury. Crit. Care 2020, 24, 75. [Google Scholar] [CrossRef] [Green Version]
- Katayama, S.; Uchino, S.; Uji, M.; Ohnuma, T.; Namba, Y.; Kawarazaki, H.; Toki, N.; Takeda, K.; Yasuda, H.; Izawa, J.; et al. Factors predicting successful discontinuation of continuous renal replacement therapy. Anaesth. Intensive Care 2016, 44, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Sileanu, F.E.; Murugan, R.; Lucko, N.; Shaw, A.D.; Clermont, G. Classifying AKI by Urine Output versus Serum Creatinine Level. J. Am. Soc. Nephrol. 2015, 26, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Pajewski, R.; Gipson, P.; Heung, M. Predictors of post-hospitalization recovery of renal function among patients with acute kidney injury requiring dialysis. Hemodial. Int. 2018, 22, 66–73. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Wu, V.C.; Huang, W.C.; Yeh, Y.C.; Wu, M.S.; Huang, C.C.; Wu, K.D.; Fang, J.T.; Wu, C.J. Norepinephrine Administration Is Associated with Higher Mortality in Dialysis Requiring Acute Kidney Injury Patients with Septic Shock. J. Clin. Med. 2018, 7, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, B.; Dusang, B.; Annane, D.; Gibot, S.; Bollaert, P.E.; College Interregional des Réanimateurs du Nord-Est. Cardiovascular response to dopamine and early prediction of outcome in septic shock: A prospective multiple-center study. Crit. Care Med. 2005, 33, 2172–2177. [Google Scholar] [CrossRef] [PubMed]
- da Hora Passos, R.; Ramos, J.G.; Mendonça, E.J.; Miranda, E.A.; Dutra, F.R.; Coelho, M.F.; Pedroza, A.C.; Correia, L.C.; Batista, P.B.; Macedo, E.; et al. A clinical score to predict mortality in septic acute kidney injury patients requiring continuous renal replacement therapy: The HELENICC score. BMC Anesthesiol. 2017, 17, 21. [Google Scholar] [CrossRef] [Green Version]
- Tumlin, J.A.; Murugan, R.; Deane, A.M.; Ostermann, M.; Busse, L.W.; Ham, K.R.; Kashani, K.; Szerlip, H.M.; Prowle, J.R.; Bihorac, A.; et al. Outcomes in Patients with Vasodilatory Shock and Renal Replacement Therapy Treated with Intravenous Angiotensin II. Crit. Care Med. 2018, 46, 949–957. [Google Scholar] [CrossRef]
- Bellomo, R.; Forni, L.G.; Busse, L.W.; McCurdy, M.T.; Ham, K.R.; Boldt, D.W.; Hästbacka, J.; Khanna, A.K.; Albertson, T.E.; Tumlin, J.; et al. Renin and Survival in Patients Given Angiotensin II for Catecholamine-Resistant Vasodilatory Shock. A Clinical Trial. Am. J. Respir. Crit. Care Med. 2020, 202, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Jacka, M.J.; Ivancinova, X.; Gibney, R.T. Continuous renal replacement therapy improves renal recovery from acute renal failure. Can. J. Anaesth. 2005, 52, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.; Granath, F.; Schön, S.; Ekbom, A.; Martling, C.R. Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med. 2007, 33, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Shariff, S.Z.; Adhikari, N.K.; Bagshaw, S.M.; Burns, K.E.; Friedrich, J.O.; Garg, A.X.; Harel, Z.; Kitchlu, A.; Ray, J.G. The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: A retrospective cohort study. Crit. Care Med. 2014, 42, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.G.; Bellomo, R.; Bagshaw, S.M.; Glassford, N.J.; Lo, S.; Jun, M.; Cass, A.; Gallagher, M. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: A systematic review and meta-analysis. Intensive Care Med. 2013, 39, 987–997. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; Berthiaume, L.R.; Delaney, A.; Bellomo, R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: A meta-analysis. Crit. Care Med. 2008, 36, 610–617. [Google Scholar] [CrossRef]
- Conger, J.D.; Schrier, R.W. Renal hemodynamics in acute renal failure. Annu. Rev. Physiol. 1980, 42, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, Y. Effect of renal replacement therapy modalities on renal recovery and mortality for acute kidney injury: A PRISMA-compliant systematic review and meta-analysis. Semin. Dial. 2020, 33, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Bellomo, R. Renal replacement therapy in the ICU: Intermittent hemodialysis, sustained low-efficiency dialysis or continuous renal replacement therapy? Curr. Opin. Crit. Care 2018, 24, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Eastwood, G.M.; Zhu, G.; Tanaka, A.; Bellomo, R. Extended Daily Dialysis Versus Continuous Renal Replacement Therapy for Acute Kidney Injury: A Meta-analysis. Am. J. Kidney Dis. 2015, 66, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Truche, A.S.; Darmon, M.; Bailly, S.; Clec’h, C.; Dupuis, C.; Misset, B.; Azoulay, E.; Schwebel, C.; Bouadma, L.; Kallel, H.; et al. Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: Impact on mortality and renal recovery. Intensive Care Med. 2016, 42, 1408–1417. [Google Scholar] [CrossRef]
- Schneider, A.G.; Bagshaw, S.M. Effects of renal replacement therapy on renal recovery after acute kidney injury. Nephron Clin. Pract. 2014, 127, 35–41. [Google Scholar] [CrossRef]
- Liang, K.V.; Sileanu, F.E.; Clermont, G.; Murugan, R.; Pike, F.; Palevsky, P.M.; Kellum, J.A. Modality of RRT and Recovery of Kidney Function after AKI in Patients Surviving to Hospital Discharge. Clin. J. Am. Soc. Nephrol. 2016, 11, 30–38. [Google Scholar] [CrossRef]
- Moist, L.M.; Port, F.K.; Orzol, S.M.; Young, E.W.; Ostbye, T.; Wolfe, R.A.; Hulbert-Shearon, T.; Jones, C.A.; Bloembergen, W.E. Predictors of loss of residual renal function among new dialysis patients. J. Am. Soc. Nephrol. 2000, 11, 556–564. [Google Scholar]
- Gabriel, D.P.; Caramori, J.T.; Martim, L.C.; Barretti, P.; Balbi, A.L. High volume peritoneal dialysis vs daily hemodialysis: A randomized, controlled trial in patients with acute kidney injury. Kidney Int. 2008, 73, S87–S93. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Varma, S.; Kumar, S.; Thomas, J.; Gopi, S.; Pisharody, R. Comparing continuous venovenous hemodiafiltration and peritoneal dialysis in critically ill patients with acute kidney injury: A pilot study. Perit. Dial. Int. 2011, 31, 422–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Zhang, L.; Liu, G.J.; Fu, P. Peritoneal dialysis for acute kidney injury. Cochrane Database Syst. Rev. 2017, 12, CD011457. [Google Scholar] [CrossRef]
- Vijayan, A.; Delos Santos, R.B.; Li, T.; Goss, C.W.; Palevsky, P.M. Effect of Frequent Dialysis on Renal Recovery: Results From the Acute Renal Failure Trial Network Study. Kidney Int. Rep. 2018, 3, 456–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakim, R.M.; Wingard, R.L.; Parker, R.A. Effect of the dialysis membrane in the treatment of patients with acute renal failure. N. Engl. J. Med. 1994, 331, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Schiffl, H.; Lang, S.M.; König, A.; Strasser, T.; Haider, M.C.; Held, E. Biocompatible membranes in acute renal failure: Prospective case-controlled study. Lancet 1994, 344, 570–572. [Google Scholar] [CrossRef]
- Alonso, A.; Lau, J.; Jaber, B.L. Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst. Rev. 2008, CD005283. [Google Scholar] [CrossRef]
- Wu, V.C.; Chueh, J.S.; Chen, L.; Huang, T.M.; Lai, T.S.; Wang, C.Y.; Chen, Y.M.; Chu, T.S.; Chawla, L.S. Nephrologist Follow-Up Care of Patients With Acute Kidney Disease Improves Outcomes: Taiwan Experience. Value Health 2020, 23, 1225–1234. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Parikh, C.R.; Himmelfarb, J.; Chinchilli, V.M.; Liu, K.D.; Coca, S.G.; Garg, A.X.; Hsu, C.Y.; Siew, E.D.; Wurfel, M.M.; et al. A prospective cohort study that examined acute kidney injury and kidney outcomes, cardiovascular events and death informs on long-term clinical outcomes. Kidney Int. 2021, 99, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Cavalier, E.; Morel, J.; Mehdi, M.; Maillard, N.; Claisse, G.; Lambermont, B.; Dubois, B.E.; Damas, P.; Krzesinski, J.M.; et al. Detection of decreased glomerular filtration rate in intensive care units: Serum cystatin C versus serum creatinine. BMC Nephrol. 2014, 15, 9. [Google Scholar] [CrossRef]
- Oh, D.J. A long journey for acute kidney injury biomarkers. Ren. Fail. 2020, 42, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Pryor, R.R.; Pryor, J.L.; Vandermark, L.W.; Adams, E.L.; Brodeur, R.M.; Schlader, Z.J.; Armstrong, L.E.; Lee, E.C.; Maresh, C.M.; Casa, D.J. Acute Kidney Injury Biomarker Responses to Short-Term Heat Acclimation. Int. J. Environ. Res. Public Health 2020, 17, 1325. [Google Scholar] [CrossRef] [Green Version]
- Koyner, J.L.; Vaidya, V.S.; Bennett, M.R.; Ma, Q.; Worcester, E.; Akhter, S.A.; Raman, J.; Jeevanandam, V.; O’Connor, M.F.; Devarajan, P.; et al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol. 2010, 5, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Kovalčíková, A.G.; Pavlov, K.; Lipták, R.; Hladová, M.; Renczés, E.; Boor, P.; Podracká, Ľ.; Šebeková, K.; Hodosy, J.; Tóthová, Ľ.; et al. Dynamics of salivary markers of kidney functions in acute and chronic kidney diseases. Sci. Rep. 2020, 10, 21260. [Google Scholar] [CrossRef]
- Wołyniec, W.; Ratkowski, W.; Renke, J.; Renke, M. Changes in Novel AKI Biomarkers after Exercise. A Systematic Review. Int. J. Mol. Sci. 2020, 21, 5673. [Google Scholar] [CrossRef]
- Bhosale, S.J.; Kulkarni, A.P. Biomarkers in Acute Kidney Injury. Indian J. Crit. Care Med. 2020, 24 (Suppl. 3), S90–S93. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, E.A.; McCullough, P.A.; Kashani, K.; Chawla, L.S.; Joannidis, M.; Shaw, A.D.; Feldkamp, T.; Uettwiller-Geiger, D.L.; McCarthy, P.; Shi, J.; et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol. Dial. Transplant. 2014, 29, 2054–2061. [Google Scholar] [CrossRef] [PubMed]
- Bihorac, A.; Chawla, L.S.; Shaw, A.D.; Al-Khafaji, A.; Davison, D.L.; Demuth, G.E.; Fitzgerald, R.; Gong, M.N.; Graham, D.D.; Gunnerson, K.; et al. Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am. J. Respir. Crit. Care Med. 2014, 189, 932–939. [Google Scholar] [CrossRef]
- Vijayan, A.; Faubel, S.; Askenazi, D.J.; Cerda, J.; Fissell, W.H.; Heung, M.; Humphreys, B.D.; Koyner, J.L.; Liu, K.D.; Mour, G.; et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment. Am. J. Kidney Dis. 2016, 68, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.F.; Li, J.M.; Tan, Y.; Wang, Z.F.; He, Y.; Chang, J.; Zhang, H.; Zhao, H.; Bai, X.; Xie, F.; et al. Performance of urinary NGAL and L-FABP in predicting acute kidney injury and subsequent renal recovery: A cohort study based on major surgeries. Clin. Chem. Lab. Med. 2014, 52, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Dewitte, A.; Joannès-Boyau, O.; Sidobre, C.; Fleureau, C.; Bats, M.L.; Derache, P.; Leuillet, S.; Ripoche, J.; Combe, C.; Ouattara, A. Kinetic eGFR and Novel AKI Biomarkers to Predict Renal Recovery. Clin. J. Am. Soc. Nephrol. 2015, 10, 1900–1910. [Google Scholar] [CrossRef] [Green Version]
- Hoste, E.; Bihorac, A.; Al-Khafaji, A.; Ortega, L.M.; Ostermann, M.; Haase, M.; Zacharowski, K.; Wunderink, R.; Heung, M.; Lissauer, M.; et al. Identification and validation of biomarkers of persistent acute kidney injury: The RUBY study. Intensive Care Med. 2020, 46, 943–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-Gozalo, V.; Casanova, A.G.; Sancho-Martínez, S.M.; Prieto, M.; Quiros, Y.; Morales, A.I.; Martínez-Salgado, C.; Agüeros-Blanco, C.; Benito-Hernández, A.; Ramos-Barron, M.A.; et al. Combined use of GM2AP and TCP1-eta urinary levels predicts recovery from intrinsic acute kidney injury. Sci. Rep. 2020, 10, 11599. [Google Scholar] [CrossRef] [PubMed]
Determinants of AKI-D Outcomes |
---|
• Demographics and Co-morbidities |
• Patient demographics |
• Co-morbidities |
• Severity of acute disease |
• Pre-existing CKD |
• Prior AKI |
• Diabetes Mellitus |
• Cardio-vascular diseases |
• Volume overload |
• Other co-morbidities: Chronic liver diseases, cancer, surgeries. |
• Laboratory parameters |
• Medications |
• Renin Angiotensin Inhibitors (RASi): |
• Diuretics |
• Pressors |
• Outpatient care of Patients with AKI-D |
• Dialysis-Related Factors |
• Renal Replacement Modality |
• Dose and Duration of RRT |
• Intradialytic Hypotensive Episodes |
• Nephrology follow up post AKI |
• Biomarkers |
• uCCL-14 |
• uNGAL/Creatinine ratio |
• uGM2AP |
• uTCP1-eta |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Rahman, E.M.; Turgut, F.; Gautam, J.K.; Gautam, S.C. Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond. J. Clin. Med. 2021, 10, 1175. https://doi.org/10.3390/jcm10061175
Abdel-Rahman EM, Turgut F, Gautam JK, Gautam SC. Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond. Journal of Clinical Medicine. 2021; 10(6):1175. https://doi.org/10.3390/jcm10061175
Chicago/Turabian StyleAbdel-Rahman, Emaad M., Faruk Turgut, Jitendra K. Gautam, and Samir C. Gautam. 2021. "Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond" Journal of Clinical Medicine 10, no. 6: 1175. https://doi.org/10.3390/jcm10061175
APA StyleAbdel-Rahman, E. M., Turgut, F., Gautam, J. K., & Gautam, S. C. (2021). Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond. Journal of Clinical Medicine, 10(6), 1175. https://doi.org/10.3390/jcm10061175