Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Group Analysis of Indicators of Orthostatic Changes in System Hemodynamics and Vascular Stiffness in a Healthy Young Population
3.2. Personalized ΔSBP Analysis for Evaluating OSD
4. Discussion
4.1. Key Requirement for Implementing New Protocol
- Maximum reduction in the risk of orthostatic disorders with development of clinical signs.
- Eliminates orthostatic stress related to vertical positions.
- Sets the standard hydrostatic column height during HUTT for different height persons.
- Extends the HUTT interval to 10 min so that it includes a period of rapid changes and a period of relative stabilization [21]. The choice of test exposure time was related to the need to orthostatic hemodynamics changes analyze in relative steady state.
- Applies new criteria for orthostatic disorders adapted to preclinical diagnosis.
- Includes the mandatory assessment of pulse-wave velocity in monitored parameters during HUTT.
4.2. Physiological Background of the New HUTT Protocol
- Pressor adaptive systems are not activated simultaneously for 0 to 5–15 min after body position changes.
- Orthostatic stabilization (steady state) of hydrostatic pressure occurs within 5 min after a body position change.
- The amount of hydrostatic pressure directly depends on the HUTT angle of the test person and reaches its maximum in the vertical position.
- Degree of orthostatic activation of adaptive neuro-humoral systems is directly dependent on the HUTT tilt angle and exposure time.
- The optimal HUTT exposure time, which was 10 min. This exposure is the minimum required to achieve a steady state with orthostatic changes in hydrostatic pressure and the activation of adaptive systems.
- The need to establish standard values for the height of the hydrostatic column for all test subjects. The application of traditional passive and active orthostatic test protocols does not allow this to be achieved, as differences in test persons height determine differences in the hydrostatic column height.
4.3. Orthostatic Changes Cause Transitory Arteries Stiffening
4.4. New HUTT Standardization Principle on the Hydrostatic Column Height
4.5. New Criteria for Orthostatic Disorders in the New HUTT Protocol
4.6. Results of the Practical Application of the New HUTT Protocol on of Young Healthy Persons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kenny, R.A.; Ingram, A.; Bayliss, J.; Sutton, R. Head-up tilt: A useful test for investigating unexplained syncope. Lancet 1986, 1, 1352–1355. [Google Scholar] [CrossRef]
- Benditt, D.G.; Ferguson, D.W.; Grubb, B.P.; Kapoor, W.N.; Kugler, J.; Lerman, B.B.; Maloney, J.D.; Raviele, A.; Ross, B.; Sutton, R.; et al. Tilt table testing for assessing syncope. American College of Cardiology. J. Am. Coll. Cardiol. 1996, 28, 263–275. [Google Scholar] [CrossRef]
- Brignole, M.; Alboni, P.; Benditt, D.; Bergfeldt, L.; Blanc, J.J.; Thomsen, P.E.B.; Fitzpatrick, A.; Hohnloser, S.; Kapoor, W.; Kenny, R.A.; et al. Task force on syncope, European Society of Cardiology. Part 1. The initial evaluation of patients with syncope. Europace 2001, 3, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Schatz, I.J.; Bannister, R.; Freeman, R.L.; Goetz, C.G.; Jankovic, J.; Kaufmann, H.C.; Koller, W.C.; Low, P.A.; Mathias, C.J.; Polinsky, R.J.; et al. Consensus statement on the definition of orthostatic hypotension, pure autonomic failure, and multiple system atrophy. Neurology 1996, 46, 1470. [Google Scholar]
- Weiss, A.; Grossman, E.; Beloosesky, Y.; Grinblat, J. Orthostatic hypotension in acute geriatric ward: Is it a consistent finding? Arch. Intern. Med. 2002, 162, 2369–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, M.E.; Williams, T.R.; Gordon, C.; Chamberlain-Webber, R.; Sutton, R. The normal response to prolonged passive head up tilt testing. Heart 2000, 84, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Theodorakis, G.N.; Livanis, E.G.; Leftheriotis, D.; Flevari, P.; Markianos, M.; Kremastinos, D.T. Head-up tilt test with clomipramine challenge in vasovagal syndrome—A new tilt testing protocol. Eur. Heart J. 2003, 24, 658–663. [Google Scholar] [CrossRef] [Green Version]
- Shen, W.K.; Jahangir, A.; Beinborn, D.; Lohse, C.M.; Hodge, D.O.; Rea, R.F.; Hammill, S.C. Utility of a single-stage isoproterenol tilt table test in adults: A randomized comparison with passive head-up tilt. J. Am. Coll. Cardiol. 1999, 33, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Bartoletti, A.; Alboni, P.; Ammirati, F.; Brignole, M.; Del Rosso, A.; Manzillo, G.F.; Menozzi, C.; Raviele, A.; Sutton, R. ’The Italian Protocol’: A simplified head-up tilt testing potentiated with oral nitroglycerin to assess patients with unexplained syncope. Europace 2000, 2, 339–342. [Google Scholar] [CrossRef]
- Fitzpatrick, A.P.; Theodorakis, G.; Vardas, P.; Sutton, R. Methodology of head-up tilt testing in patients with unexplained syncope. J. Am. Coll. Cardiol. 1991, 17, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Kenny, R.A.; O’Shea, D.; Parry, S.W. The Newcastle protocols for head-up tilt table testing in the diagnosis of vasovagal syncope, carotid sinus hypersensitivity, and related disorders. Heart 2000, 83, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 2011, 21, 69–72. [Google Scholar] [CrossRef]
- Kario, K. Orthostatic hypertension: A measure of blood pressure variation for predicting cardiovascular risk. Circ. J. 2009, 73, 1002–1007. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.D.; Loehr, L.; Franceschini, N.; Rosamond, W.D.; Chang, P.P.; Shahar, E.; Couper, D.J.; Rose, K.M. Orthostatic hypotension as a risk factor for incident heart failure: The atherosclerosis risk in communities study. Hypertension 2012, 59, 913–918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kario, K. Orthostatic hypertension-a new haemodynamic cardiovascular risk factor. Nat. Rev. Nephrol. 2013, 9, 726–738. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Dhala, A. Syncope in the pediatric patient. The cardiologist’s perspective. Pediatr. Clin. N. Am. 1999, 46, 205–219. [Google Scholar] [CrossRef]
- Ricci, F.; De Caterina, R.; Fedorowski, A. Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J. Am. Coll. Cardiol. 2015, 66, 848–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brignole, M.; Moya, A.; de Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.J.; Liu, K.; Jacobs, D.R., Jr.; Bild, D.E.; Kiefe, C.I.; Hulley, S.B. Positional change in blood pressure and 8-year risk of hypertension: The CARDIA Study. Mayo Clin. Proc. 2003, 78, 951–958. [Google Scholar] [CrossRef]
- Sundblad, P.; Spaak, J.; Kaijser, L. Time courses of central hemodynamics during rapid changes in posture. J. Appl. Physiol. 2014, 116, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Groothuis, J.T.; Poelkens, F.; Wouters, C.W.; Kooijman, M.; Hopman, M.T. Leg intravenous pressure during head-up tilt. J. Appl. Physiol. 2008, 105, 811–815. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Rodbard, S. Effect of posture on arterial pressures, timing of the arterial sounds and pulse wave velocities in the extremities. Cardiology 1979, 64, 122–132. [Google Scholar] [CrossRef]
- Munoz, A.C.; Vohra, S.; Gupta, M. Orthostasis. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2020. [Google Scholar]
- O’Leary, D.D.; Kimmerly, D.S.; Cechetto, A.D.; Shoemaker, J.K. Differential effect of head-up tilt on cardiovagal and sympathetic baroreflex sensitivity in humans. Exp. Physiol. 2003, 88, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, A.; Kawada, T.; Sugimachi, M. Systems physiology of the baroreflex during orthostatic stress: From animals to humans. Front. Physiol. 2014, 5, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamiya, A.; Kawada, T.; Shimizu, S.; Iwase, S.; Sugimachi, M.; Mano, T. Slow head-up tilt causes lower activation of muscle sympathetic nerve activity: Loading speed dependence of orthostatic sympathetic activation in humans. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H53–H58. [Google Scholar] [CrossRef] [PubMed]
- László, Z.; Rössler, A.; Hinghofer-Szalkay, H.G. Cardiovascular and hormonal changes with different angles of head-up tilt in men. Physiol. Res. 2001, 50, 71–82. [Google Scholar]
- Lavi, S.; Nevo, O.; Rosenfeld, R.; Dayan, L.; Hirshoren, N.; Gepstein, L.; Jacob, G. Effect of aging on the cardiovascular regulatory systems in healthy women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R788–R793. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, S.; Shibata, S.; Okada, Y.; Levine, B.; Fu, Q. Neural-humoral responses during head-up tilt in healthy young white and black women. Front. Physiol. 2014, 5, 86. [Google Scholar] [CrossRef]
- Gordon, R.D.; Küchel, O.; Liddle, G.W.; Island, D.P. Role of the sympathetic nervous system in regulating renin and aldosterone production in man. J. Clin. Investig. 1967, 46, 599–605. [Google Scholar] [CrossRef]
- Pucci, G.; Spronck, B.; Avolio, A.P.; Tap, L.; Vaudo, G.; Anastasio, F.; Van Den Meiracker, A.; Mattace-Raso, F. Age-specific acute changes in carotid-femoral pulse wave velocity with head-up tilt. Am. J. Hypertens. 2020, 33, 1112–1118. [Google Scholar] [CrossRef]
- Patel, K.; Rössler, A.; Lackner, H.K.; Trozic, I.; Laing, C.; Lorr, D.; Green, D.A.; Hinghofer-Szalkay, H.; Goswami, N. Effect of postural changes on cardiovascular parameters across gender. Medicine 2016, 95, e4149. [Google Scholar] [CrossRef] [PubMed]
- Huijben, A.M.; Mattace-Raso, F.U.; Deinum, J.; Lenders, J.; van den Meiracker, A.H. Aortic augmentation index and pulse wave velocity in response to head-up tilting: Effect of autonomic failure. J. Hypertens. 2012, 30, 307–314. [Google Scholar] [CrossRef]
- Zimmermann, M.; Wurster, I.; Lerche, S.; Roeben, B.; Machetanz, G.; Sünkel, U.; von Thaler, A.K.; Eschweiler, G.; Fallgatter, A.J.; Maetzler, W.; et al. Orthostatic hypotension as a risk factor for longitudinal deterioration of cognitive function in the elderly. Eur. J. Neurol. 2020, 27, 160–167. [Google Scholar] [CrossRef]
- Hoshide, S.; Matsui, Y.; Shibasaki, S.; Eguchi, K.; Ishikawa, J.; Ishikawa, S.; Kabutoya, T.; Schwartz, J.E.; Pickering, T.G.; Shimada, K.; et al. Orthostatic hypertension detected by self-measured home blood pressure monitoring: A new cardiovascular risk factor for elderly hypertensives. Hypertens. Res. 2008, 31, 1509–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grassi, G.; Ram, V.S. Evidence for a critical role of the sympathetic nervous system in hypertension. J. Am. Soc. Hypertens. 2016, 10, 457–466. [Google Scholar] [CrossRef]
- Mancia, G.; Grassi, G.; Giannattasio, C.; Seravalle, G. Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999, 34, 724–728. [Google Scholar] [CrossRef] [Green Version]
- Pacurari, M.; Kafoury, R.; Tchounwou, P.B.; Ndebele, K. The Renin-Angiotensin-aldosterone system in vascular inflammation and remodeling. Int. J. Inflamm. 2014, 2014, 689360. [Google Scholar] [CrossRef] [PubMed]
Participants | 40 |
---|---|
Sex, M/F | 23/17 |
Age, years M ± SD | 25.1 ± 2.64 |
Height, cm M ± SD | 173.6 ± 9.93 |
Body mass index, kg/m2 M ± SD | 24.7 ± 3.6 |
Parameters M ± SD | Position | ||
---|---|---|---|
Horizontal 1 | Standardized HUTT | Horizontal 2 | |
Measuring Units | M ± SD | M ± SD | M ± SD |
SBP mmHg | 114.7 ± 11.5 | 112.8 ± 11.8 | 116.1 ± 8.5 |
DBP mmHg | 74.8 ± 7.3 | 72.1 ± 10.4 | 77.9 ± 6.3 |
HR b/min | 67 ± 11.5 | 77.3 ± 13.3 * | 63.6 ± 10.6 |
SV ml | 93.1 ± 13.9 | 78.6 ± 12.2 * | 95.7 ± 18.7 |
CO l/min | 6.4 ± 1.9 | 6.0 ± 1.3 | 6.2 ± 0.9 |
TVR din·sec·cm−5 | 1078.5 ± 261.9 | 1168.8 ± 259.0 | 1092.1 ± 189.0 |
PWV | 6.2 ± 0.6 | 7.9 ± 0.6 ** | 6.2 ± 0.4 |
Comparison Categories | Existing Orthostatic Tests | The New Head-Up Tilt Test Standardized by the Height of Hydrostatic Column |
---|---|---|
1. Test type | 1. Active orthostatic test 2. HUTT standardized by tilt angle | 1. Passive orthostatic test standardized by the height of hydrostatic column |
2. Purpose of use | Detection of orthostatic disturbances accompanied by clinical symptoms | Detection of subclinical orthostatic disturbances |
3. The goal achieving methods | Provocation of orthostatic disturbances accompanied by clinical signs: 1. Active orthostatic test application 2. Increase of HUTT angle up to 80° 3. Increase of HUTT exposition up to 60 min 4. Vasoactive medications application | 1. Reducing the risk of developing clinical forms of orthostatic disorders 2.Use of standard height of hydrostatic column = 133 cm 3. Standard HUTT exposition, 10 min 4. Measurement of PWV at all stages of HUTT |
4. Diagnostic criteria of orthostatic disturbances | Orthostatic hypotension: drop of SBP by at least 20 mm Hg and/or drop of DBP by at least 10 mm Hg Orthostatic hypertension: rise of SBP by at least 20 mm Hg and/or rise of DBP by at least 10 mm Hg | Orthostatic hypotension: drop of SBP by at least 6 mmHg Orthostatic hypertension: rise of SBP by at least 6 mmHg Orthostatic normotension: Changes of SBP within 5 mmHg |
5. Disadvantages | 1. Diversity of protocol types and time of exposition. 2. Provide detection of mostly significant orthostatic disturbances | 1. Need in additional equipment to measure pulse wave velocity |
6. Indications | Type 1: Episodes of syncope in patients without heart conditions Type 2: Diagnosing vasovagal syncope, unexplained falls, vertigo, etc. Type 3: Control of treatment in vasovagal syncope | 1. No history of orthostatic disturbances, including syncope 2. Examination of young healthy individuals 2a to detect predictors of arterial hypertension 2b to detect early signs of vascular senescence and risk factors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorogovtsev, V.N.; Yankevich, D.S.; Goswami, N. Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes. J. Clin. Med. 2021, 10, 1198. https://doi.org/10.3390/jcm10061198
Dorogovtsev VN, Yankevich DS, Goswami N. Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes. Journal of Clinical Medicine. 2021; 10(6):1198. https://doi.org/10.3390/jcm10061198
Chicago/Turabian StyleDorogovtsev, Victor N., Dmitry S. Yankevich, and Nandu Goswami. 2021. "Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes" Journal of Clinical Medicine 10, no. 6: 1198. https://doi.org/10.3390/jcm10061198
APA StyleDorogovtsev, V. N., Yankevich, D. S., & Goswami, N. (2021). Effects of an Innovative Head-Up Tilt Protocol on Blood Pressure and Arterial Stiffness Changes. Journal of Clinical Medicine, 10(6), 1198. https://doi.org/10.3390/jcm10061198