How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly
Abstract
:1. Background
2. How Neurosurgeons Select a Shunt?
3. Differential-Pressure Valves: The First Generation
4. Basic Fluid Mechanics Required to Understand Shunts and Valves
5. Which Pressures Govern Cerebrospinal Fluid Flow in an Implanted Shunt Assembly?
6. Valve Mechanics and Technology
7. Fixed Versus Adjustable Valves
8. The Resistance of Shunts and Valves: A Neglected Variable
9. Hydrodynamic Properties of Different Shunts
Model | CP (mmHg) | Rvalve (mmHg/mL/min) | Rshunt (mmHg/mL/min) |
---|---|---|---|
Silicone 100 cm (1.2 mm ID) | 0 | No valve | 1.72 |
Silicone 100 cm (1.0 mm ID) | 0 | No valve | 3.57 |
Silicone 100 cm (0.6 mm ID) | 0 | No valve | 27.5 |
Sotelo’s shunt (0.51 mm ID) | 0 | No valve | 52.7 |
Codman–Hakim (low) | 2.9 | 1.65 | 4.92 |
Codman–Hakim (medium-low) | 5.1 | 1.83 | 5.10 |
Codman–Hakim (high) | 9.6 | 2.20 | 5.46 |
Delta valve (PL1) | 1.9 | 1.9 | 3.6 |
Delta valve (PL2) | 4.0 | 2.2 | 3.7 |
Contour Flex (low) | 0.7–3.7 | 2.3 | 3.5 |
Contour Flex (medium) | 3.7–8.1 | 2.5 | 3.8 |
Contour Flex (high) | 8.1–12.5 | 2.8 | 4.2 |
Polaris (30 mmH2O) | 2.2 | 1.6 | 4.6 |
Polaris (70 mmH2O) | 5.14 | 2.1 | 5.1 |
Polaris (110 mmH2O) | 8.1 | 2.5 | 5.6 |
Dual Switch Valve (5 cmH2O) | 3.7 | 2.2 | 2.9 |
Dual Switch Valve (10 cmH2O) | 7.4 | 2.2 | 2.9 |
10. DPV and Shunt Assemblies for Complex Hydrocephalus Patients
11. Conclusions and Recommendations
- In patients with iNPH and unknown IVP, because ICP is not available or used, it is recommended to use low-pressure valves. The use of these valves will avoid problems with underdrainage when the patient is recumbent. Selecting high-pressure DPVs does not control overdrainage and increases the risk of underdrainage while the patient is recumbent.
- Spring-and-ball mechanical valves are much more reliable in OP than are silicone-based valves. In Table 1, we show that the OP can be defined with a narrow limit in mechanical valves, but that manufacturers usually provide ranges of “working pressures” for nonmechanical valves, reflecting the potential variability in OP even in the same lot of valves.
- Without gravitational control of the postural-induced hydrostatic pressure, all DPVs, independent of their OP, will overdrain when the patients assume the standing or sitting position. An exception to this rule is when for different reasons—obesity, pregnancy, abdominal distension, etc.—IPP is significantly raised, causing PPshunt to be reduced when the patient is standing. Therefore, neurosurgeons should consider gravitational control—either integrated in the valve or as an added device—in most patients in which DPVs are used. As Czosnyka et al. cautioned, neurosurgeons should take care when implanting “low-resistance shunts” into patients with gross ventricular dilatation or greatly increased cerebrospinal compliance, and of their subsequent mobilization, if no siphon control mechanism is added [24].
- In the selection of DPVs, we recommend knowing the specifications provided by the manufacturer and the hydrodynamic properties of the selected shunt from independent research. It is important to remember that a high resistance valve together with a catheter of reduced ID increases the risk of nonresponse in iNPH patients.
- The most rational approach to selecting the most appropriate shunt for an individual patient is to have the best information concerning shunt hardware and as many patient variables as possible that will influence PPshunt. Apart from height, weight, and BMI, an estimation of the mean ICP and IPP is helpful [67].
- In low- and medium-income countries, AVs are significantly overpriced and therefore not affordable. However, despite the lack of robust evidence about their clinical benefits, and when cost is not a relevant variable, AVs allow us to fine-tune the OP in many pediatric and adult patients with hydrocephalus and might reduce the number of shunt revisions.
- An important recommendation for all neurosurgeons involved in the management of iNPH was introduced in the Shunt Book published by Drake and Sainte-Rose: “Even if the ideal shunt existed, it would be quickly rendered useless by improper surgical technique during implantation” [6].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Aschoff, A. In-Depth View: Functional Characteristics of CSF Shunt Devices (Pros and Cons). In Textbook of Pediatric Neurosurgery; Di Rocco, C., Pang, D., Rutka, J.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–40. [Google Scholar] [CrossRef]
- Aschoff, A.; Kremer, P.; Hashemi, B.; Kunze, S. The scientific history of hydrocephalus and its treatment. Neurosurg. Rev. 1999, 22, 67–93. [Google Scholar] [CrossRef] [PubMed]
- Furlanetti, L.L.; Ballestero, M.F.M.; De Oliveira, R.S. Shunt Technology in Pediatric Neurosurgery: Current options and Scientific Evidence. Arch. Pediatric. Neurosurg. 2020, 2, e342020. [Google Scholar] [CrossRef]
- Garegnani, L.; Franco, J.V.; Ciapponi, A.; Garrote, V.; Vietto, V.; Portillo Medina, S.A. Ventriculo-peritoneal shunting devices for hydrocephalus. Cochrane Database Syst. Rev. 2020, 6, CD012726. [Google Scholar] [CrossRef]
- Turner, M.S. The treatment of hydrocephalus: A brief guide to shunt selection. Surg. Neurol. 1995, 43, 314–319. [Google Scholar] [CrossRef]
- Drake, J.M.; Sainte-Rose, C. The Shunt Book; Blackwell Science: Cambridge, MA, USA, 1995; p. xii. 228p. [Google Scholar]
- Ros, B.; Iglesias, S.; Martin, A.; Carrasco, A.; Ibanez, G.; Arraez, M.A. Shunt overdrainage syndrome: Review of the literature. Neurosurg. Rev. 2018, 41, 969–981. [Google Scholar] [CrossRef]
- Scarff, J.E. Treatment of hydrocephalus: An historical and critical review of methods and results. J. Neurol. Neurosurg. Psychiatry 1963, 26, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Zaim, H.S.; Heggers, J.P. Silicones for Pharmaceutical and Biomedical Applications. In Polymeric Biomaterials, 2nd ed.; Dumitriu, S., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 79–121. [Google Scholar]
- Nulsen, F. Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg. Forum 1952, 399–403. [Google Scholar]
- Baru, J.S.; Bloom, D.A.; Muraszko, K.; Koop, C.E. John Holter’s shunt. J. Am. Coll. Surg. 2001, 192, 79–85. [Google Scholar] [CrossRef]
- Holter, J.W.; Spitz, E.B. Device for Draining Ventricular Fluid in Cases of Hydrocephalus. Patent 2,969,066, 2 October 1956. [Google Scholar]
- Sutera, S.P.; Skalak, R. The history of Poiseuille’s law. Annu. Rev. Fluid Mech. 1993, 25, 1–20. [Google Scholar] [CrossRef]
- Rayport, M.; Reiss, J. Hydrodynamic properties of certain shunt assemblies for the treatment of hydrocephalus. Part 1: Report of a case of communicating hydrocephalus with increased cerebrospinal fluid production treated by duplication of shunting device. Part 2: Pressure-Flow characteristics of the Spitz-Holter, Pudenz-Heyer and Cordis-Hakim shunt systems. J. Neurosurg. 1969, 30, 455–467. [Google Scholar]
- Bloomfield, I.G.; Johnston, I.H.; Bilston, L.E. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr. Neurosurg. 1998, 28, 246–251. [Google Scholar] [CrossRef]
- Beck, J.; Fung, C.; Ulrich, C.T.; Fiechter, M.; Fichtner, J.; Mattle, H.P.; Mono, M.L.; Meier, N.; Mordasini, P.; Z’Graggen, W.J.; et al. Cerebrospinal fluid outflow resistance as a diagnostic marker of spontaneous cerebrospinal fluid leakage. J. Neurosurg. Spine 2017, 27, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Albeck, M.J.; Skak, C.; Nielsen, P.R.; Olsen, K.S.; Borgesen, S.E.; Gjerris, F. Age dependency of resistance to cerebrospinal fluid outflow. J. Neurosurg. 1998, 89, 275–278. [Google Scholar] [CrossRef]
- Fox, J.L.; McCullough, D.C.; Green, R.C. Effect of cerebrospinal fluid shunts on intracranial pressure and on cerebrospinal fluid dynamics. 2. A new technique of pressure measurements: Results and concepts. 3. A concept of hydrocephalus. J. Neurol. Neurosurg. Psychiatry 1973, 36, 302–312. [Google Scholar] [CrossRef] [Green Version]
- International Organization for Standardization. ISO 7197:2016. Neurosurgical Implants—Sterile, Single-Use Hydrocephalus Shunts and Components, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Czosnyka, M.; Czosnyka, S.; Pickard, J.D. Codman Hakim Precision Valve; MDA/96/59; HSMO: London, UK, 1996. [Google Scholar]
- Pinto, J.R.C.; Maset, A.L.; Andrade, J.R.; Mancini, B.M.; Pereira, G.M.L.; Barbosa, R.C.; Rollo, J.M.D.A. Evaluation of flow rate accuracy and pressure measurements of testing rig for neurological valve hydrodynamic tests. Rev. Bras. Eng. Bioméd. 2014, 30, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Mirone, G.; Spina, D.; Sainte-Rose, C. Shunt Hardware. In Pediatric Hydrocephalus; Cinalli, G., Ed.; Springer: New York, NY, USA, 2019; pp. 1239–1277. [Google Scholar]
- Chhabra, D.K. The saga of the ‘Chhabra’ shunt. Neurol. India 2019, 67, 635–638. [Google Scholar] [CrossRef]
- Czosnyka, M.; Czosnyka, Z.; Whitehouse, H.; Pickard, J.D. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory. J. Neurol. Neurosurg. Psychiatry 1997, 62, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hakim, S. Hydrocephalus Shunt with Spring Biased One-Way Valves. Patent US3288142A, 1964. [Google Scholar]
- Boch, A.L.; Hermelin, E.; Sainterose, C.; Sgouros, S. Mechanical dysfunction of ventriculoperitoneal shunts caused by calcification of the silicone rubber catheter. J. Neurosurg. 1998, 88, 975–982. [Google Scholar] [CrossRef] [Green Version]
- Hakim, S.; Hakim, C.A. Magnetically-Adjustable Cerebospinal Fluid Shunt Valve. Patent US4595390A, 17 June 1986. [Google Scholar]
- Hakim, S.; de la Roche, F.D.; Burton, J.D. A critical analysis of valve shunts used in the treatment of hydrocephalus. Dev. Med. Child. Neurol. 1973, 15, 230–255. [Google Scholar] [CrossRef] [PubMed]
- Hakim, C.A. The Physics and Physicopathology of the Hydraulic Complex. of the Central Nervous System (the Mechanics of Hydrocephalus and Normal Pressure Hydrocephalus). Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA, 1985; p. 314. [Google Scholar]
- Hakim, S.; Venegas, J.G.; Burton, J.D. The physics of the cranial cavity, hydrocephalus and normal pressure hydrocephalus: Mechanical interpretation and mathematical model. Surg. Neurol. 1976, 5, 187–210. [Google Scholar]
- Hakim, S. Hydraulic and mechanical mis-matching of valve shunts used in the treatment of hydrocephalus: The need for a servo-valve shunt. Dev. Med. Child Neurol. 1973, 15, 646–653. [Google Scholar] [CrossRef]
- Meier, U.; Kintzel, D. Clinical experiences with different valve systems in patients with normal-pressure hydrocephalus: Evaluation of the Miethke dual-switch valve. Child’s Nerv. Syst. 2002, 18, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Strahle, J.; Selzer, B.J.; Muraszko, K.M.; Garton, H.J.; Maher, C.O. Programmable shunt valve affected by exposure to a tablet computer. J. Neurosurg. Pediatr. 2012, 10, 118–120. [Google Scholar] [CrossRef]
- Czosnyka, Z.; Pickard, J.D.; Czosnyka, M. Hydrodynamic properties of the Certas hydrocephalus shunt. J. Neurosurg. Pediatr. 2013, 11, 198–204. [Google Scholar] [CrossRef]
- Portnoy, H.D.; Schulte, R.R.; Fox, J.L.; Croissant, P.D.; Tripp, L. Anti-siphon and reversible occlusion valves for shunting in hydrocephalus and preventing post-shunt subdural hematomas. J. Neurosurg. 1973, 38, 729–738. [Google Scholar] [CrossRef]
- Fiss, I.; Vanderheyden, M.; von der Brelie, C.; Bettag, C.; Hore, N.; Freimann, F.; Thomale, U.W.; Rohde, V.; Brandner, S. In vitro performance of combinations of anti-siphon devices with differential pressure valves in relation to the spatial position. Acta Neurochir. 2020, 162, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Poca, M.A.; Gándara, D.F.; Rosas, K.; Alcina, A.; López-Bermeo, D.; Sahuquillo, J. Considerations in the Use of Gravitational Valves in the Management of Hydrocephalus. Some Lessons Learned with the Dual-Switch Valve. J. Clin. Med. 2021, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Bozhkov, Y.; Roessler, K.; Hore, N.; Buchfelder, M.; Brandner, S. Neurological outcome and frequency of overdrainage in normal pressure hydrocephalus directly correlates with implanted ventriculo-peritoneal shunt valve type. Neurol. Res. 2017, 39, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Lemcke, J.; Meier, U.; Muller, C.; Fritsch, M.J.; Kehler, U.; Langer, N.; Kiefer, M.; Eymann, R.; Schuhmann, M.U.; Speil, A.; et al. Safety and efficacy of gravitational shunt valves in patients with idiopathic normal pressure hydrocephalus: A pragmatic, randomised, open label, multicentre trial (SVASONA). J. Neurol. Neurosurg. Psychiatry 2013, 84, 850–857. [Google Scholar] [CrossRef]
- Bergsneider, M.; Black, P.M.; Klinge, P.; Marmarou, A.; Relkin, N. Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57, S29–S39. [Google Scholar] [CrossRef] [Green Version]
- Andrews, J.; Guyatt, G.; Oxman, A.D.; Alderson, P.; Dahm, P.; Falck-Ytter, Y.; Nasser, M.; Meerpohl, J.; Post, P.N.; Kunz, R.; et al. GRADE guidelines: 14. Going from evidence to recommendations: The significance and presentation of recommendations. J. Clin. Epidemiol. 2013, 66, 719–725. [Google Scholar] [CrossRef]
- Saehle, T.; Farahmand, D.; Eide, P.K.; Tisell, M.; Wikkelso, C. A randomized controlled dual-center trial on shunt complications in idiopathic normal-pressure hydrocephalus treated with gradually reduced or “fixed” pressure valve settings. J. Neurosurg. 2014, 1–7. [Google Scholar] [CrossRef]
- Nowak, S.; Mehdorn, H.M.; Stark, A. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature. Clin. Neurol. Neurosurg. 2018, 173, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Czosnyka, Z.; Czosnyka, M.; Pickard, J.D.; Chari, A. Who Needs a Revision? 20 Years of Cambridge Shunt Lab. Acta Neurochir. Suppl. 2016, 122, 347–351. [Google Scholar] [CrossRef]
- Aschoff, A.; Kremer, P.; Benesch, C.; Fruh, K.; Klank, A.; Kunze, S. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow- reducing devices. Child’s Nerv. Syst. 1995, 11, 193–202. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Rubio, E.; Codina, A.; Molins, A.; Guitart, J.M.; Poca, M.A.; Chasampi, A. Reappraisal of the intracranial pressure and cerebrospinal fluid dynamics in patients with the so-called “normal pressure hydrocephalus” syndrome. Acta Neurochir. 1991, 112, 50–61. [Google Scholar] [CrossRef]
- Portnoy, H.D. Shunt System Resistant to Overdrainage and Siphoning and Valve Therefor. U.S. Patent 3,991,768, 16 November 1976. [Google Scholar]
- Korson, L.; Drost-Hansen, W.; Millero, F.J. Viscosity of water at various temperatures. J. Phys. Chem. 1969, 73, 34–39. [Google Scholar] [CrossRef]
- Sotelo, J.; Rubalcava, M.A.; Gomez-Llata, S. A new shunt for hydrocephalus that relies on CSF production rather than on ventricular pressure: Initial clinical experiences. Surg. Neurol. 1995, 43, 324–331. [Google Scholar] [CrossRef]
- Sotelo, J. A new ventriculoperitoneal shunt for treatment of hydrocephalus. Experimental results. Eur. J. Biomed. Technol. 1993, 15, 257–262. [Google Scholar]
- Sotelo, J.; Arriada, N.; Lopez, M.A. Ventriculoperitoneal shunt of continuous flow vs valvular shunt for treatment of hydrocephalus in adults. Surg. Neurol. 2005, 63, 197–203; discussion 203. [Google Scholar] [CrossRef] [PubMed]
- Aschoff, A.; Kramer, P.; Benesch, C.; Klank, A. Shunt-technology and overdrainage--a critical review of hydrostatic, programmable and variable-resistance-valves and flow- reducing devices. Eur. J. Pediatric Surg. 1991, 1 (Suppl. S1), 49–50. [Google Scholar]
- Czosnyka, M.; Czosnyka, S.; Fahie, L.; Pickard, J. PS Medical Delta Valve; HMSO: Surbiton, UK, 1995; pp. 1–40. [Google Scholar]
- Czosnyka, M.; Czosnyka, S.; Fahie, L.; Pickard, J. Cordis Orbis-Sigma Valve; HMSO: Surbiton, UK, 1995; pp. 1–43. [Google Scholar]
- Czosnyka, Z.; Czosnyka, M.; Pickard, J.D. Hydrodynamic performance of a new siphon preventing device: The SiphonGuard. J. Neurol. Neurosurg. Psychiatry 1999, 66, 408–409. [Google Scholar] [CrossRef]
- Czosnyka, Z.H.; Czosnyka, M.; Richards, H.K.; Pickard, J.D. Laboratory evaluation of the phoenix CRx diamond valve. Neurosurgery 2001, 48, 689–693; discussion 693–684. [Google Scholar] [CrossRef]
- Donnelly, J.; Czosnyka, M.; Adams, H.; Cardim, D.; Kolias, A.G.; Zeiler, F.A.; Lavinio, A.; Aries, M.; Robba, C.; Smielewski, P.; et al. Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis. Neurosurgery 2019, 85, E75–E82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotelo, J.; Izurieta, M.; Arriada, N. Treatment of hydrocephalus in adults by placement of an open ventricular shunt. J. Neurosurg. 2001, 94, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Czosnyka, M.; Richards, H.K.; Pickard, J.D.; Czosnyka, Z.H. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory. J. Neurosurg. 2014, 120, 697–707. [Google Scholar] [CrossRef]
- Oi, S.; Sato, O.; Matsumoto, S. Neurological and medico-social problems of spina bifida patients in adolescence and adulthood. Childs Nerv. Syst. 1996, 12, 181–187. [Google Scholar] [CrossRef]
- Oi, S.; Shimoda, M.; Shibata, M.; Honda, Y.; Togo, K.; Shinoda, M.; Tsugane, R.; Sato, O. Pathophysiology of long-standing overt ventriculomegaly in adults. J. Neurosurg. 2000, 92, 933–940. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Poca, M.A.; Chasampi, A.; Molins, A.; Rovira, A.; Gabás, E.; Rubio, E. Hidrocefalia crónica del adulto (hidrocefalia “normotensiva”) y macrocefalia. Neurocirugía 1992, 2, 344–353. [Google Scholar] [CrossRef]
- Weintraub, A.H.; Gerber, D.J.; Kowalski, R.G. Posttraumatic Hydrocephalus as a Confounding Influence on Brain Injury Rehabilitation: Incidence, Clinical Characteristics, and Outcomes. Arch. Phys. Med. Rehabil. 2017, 98, 312–319. [Google Scholar] [CrossRef]
- Kiefer, M.; Eymann, R.; Steudel, W.I.; Strowitzki, M. Gravitational shunt management of long-standing overt ventriculomegaly in adult (LOVA) hydrocephalus. J. Clin. Neurosci. 2005, 12, 21–26. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Poca, M.A.; Martínez, M.; Rovira, A.; Busto, M.; Rubio, E. Preventing shunt overdrainage in hydrocephalus: Are anti-siphon devices really physiological? In Intracranial Pressure IX; Nagai, H., Kamiya, K., Ishii, S., Eds.; Springer: Tokyo, Japan, 1994; pp. 83–86. [Google Scholar]
- Poca, M.A.; Mataro, M.; del Mar, M.M.; Arikan, F.; Junque, C.; Sahuquillo, J. Is the placement of shunts in patients with idiopathic normal-pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J. Neurosurg. 2004, 100, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Sahuquillo, J.; Arikan, F.; Poca, M.A.; Noguer, M.; Martinez-Ricarte, F. Intra-Abdominal Pressure: The Neglected Variable in Selecting the Ventriculoperitoneal Shunt for Treating Hydrocephalus. Neurosurgery 2008, 62, 143–150. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahuquillo, J.; Rosas, K.; Calvo, H.; Alcina, A.; Gándara, D.; López-Bermeo, D.; Poca, M.-A. How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly. J. Clin. Med. 2021, 10, 1210. https://doi.org/10.3390/jcm10061210
Sahuquillo J, Rosas K, Calvo H, Alcina A, Gándara D, López-Bermeo D, Poca M-A. How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly. Journal of Clinical Medicine. 2021; 10(6):1210. https://doi.org/10.3390/jcm10061210
Chicago/Turabian StyleSahuquillo, Juan, Katiuska Rosas, Helena Calvo, Aloma Alcina, Dario Gándara, Diego López-Bermeo, and Maria-Antonia Poca. 2021. "How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly" Journal of Clinical Medicine 10, no. 6: 1210. https://doi.org/10.3390/jcm10061210
APA StyleSahuquillo, J., Rosas, K., Calvo, H., Alcina, A., Gándara, D., López-Bermeo, D., & Poca, M. -A. (2021). How to Choose a Shunt for Patients with Normal Pressure Hydrocephalus: A Short Guide to Selecting the Best Shunt Assembly. Journal of Clinical Medicine, 10(6), 1210. https://doi.org/10.3390/jcm10061210