The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographics
2.2. Cardiac Follow-Up
2.3. Brain Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. Step 1: Cardiac—Preterm/Control
3.3. Step 2: Cardiac/Brain—Preterm
3.4. Step 3: Brain—Preterm/Control
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- de Kieviet, J.; Zoetebier, L.; van Elburg, R.; Vermeulen, J.; Oosterlaan, J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: A meta-analysis. Dev. Med. Child. Neurol. 2012, 54, 313–323. [Google Scholar] [CrossRef]
- Telles, F.; McNamara, N.; Nanayakkara, S.; Doyle, M.P.; Williams, M.; Yaeger, L.; Marwick, T.H.; Leeson, P.; Levy, P.T.; Lewandowski, A.J. Changes in the preterm heart from birth to young adulthood: A meta-analysis. Pediatrics 2020, 146. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Bradlow, W.M.; Augustine, D.; Davis, E.F.; Francis, J.; Singhal, A.; Lucas, A.; Neubauer, S.; McCormick, K.; Leeson, P. Right ventricular systolic dysfunction in young adults born preterm. Circulation 2013, 128. [Google Scholar]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm heart in adult life. Circulation 2013, 127. [Google Scholar] [CrossRef] [Green Version]
- Boardman, H.; Birse, K.; Davis, E.F.; Whitworth, P.; Aggarwal, V.; Lewandowski, A.J.; Leeson, P. Comprehensive multi-modality assessment of regional and global arterial structure and function in adults born preterm. Hypertens. Res. 2016, 39, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Eikenes, L.; Løhaugen, G.C.; Brubakk, A.M.; Skranes, J.; Håberg, A.K. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage 2011, 54, 1774–1785. [Google Scholar] [CrossRef] [PubMed]
- Allin, M.P.G.; Kontis, D.; Walshe, M.; Wyatt, J.; Barker, G.J.; Kanaan, R.A.A.; McGuire, P.; Rifkin, L.; Murray, R.M.; Nosarti, C. White matter and cognition in adults who were born preterm. PLoS ONE 2011, 6, 1–9. [Google Scholar] [CrossRef]
- Salvan, P.; Froudist Walsh, S.; Allin, M.P.G.; Walshe, M.; Murray, R.M.; Bhattacharyya, S.; McGuire, P.K.; Williams, S.C.R.; Nosarti, C. Road work on memory lane-Functional and structural alterations to the learning and memory circuit in adults born very preterm. Neuroimage 2014, 102, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Back, S.A.; Miller, S.P. Brain injury in premature neonates: A primary cerebral dysmaturation disorder? Ann. Neurol. 2014, 75, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Bauml, J.G.; Daamen, M.; Jaekel, J.; Neitzel, J.; Scheef, L.; Busch, B.; Baumann, N.; Boecker, H.; Zimmer, C.; et al. Extensive and interrelated subcortical white and gray matter alterations in preterm-born adults. Brain Struct. Funct. 2015, 1–13. [Google Scholar] [CrossRef]
- Nosarti, C.; Nam, K.W.; Walshe, M.; Murray, R.M.; Cuddy, M.; Rifkin, L.; Allin, M.P.G. Preterm birth and structural brain alterations in early adulthood. Neuroimage Clin. 2014, 6, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Bäuml, J.G.; Daamen, M.; Meng, C.; Neitzel, J.; Scheef, L.; Jaekel, J.; Busch, B.; Baumann, N.; Bartmann, P.; Wolke, D.; et al. Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-Matter Volume in the Ventral Brain of Preterm Born Adults. Cereb. Cortex 2014, i. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aanes, S.; Bjuland, K.J.; Skranes, J.; Lohaugen, G.C.C. Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults. Neuroimage 2015, 105, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, B.; Gressens, P. Tertiary mechanisms of brain damage: A new hope for treatment of cerebral palsy? Lancet Neurol. 2012, 11, 556–566. [Google Scholar] [CrossRef]
- Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007; ISBN 9780309101592. [Google Scholar]
- Marelli, A.; Miller, S.P.; Marino, B.S.; Jefferson, A.L.; Newburger, J.W. Brain in Congenital Heart Disease Across the Lifespan. Circulation 2016, 133, 1951–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillard, P.; Seshadri, S.; Beiser, A.; Himali, J.J.; Au, R.; Fletcher, E.; Carmichael, O.; Wolf, P.A.; DeCarli, C. Effects of systolic blood pressure on white-matter integrity in young adults in the Framingham Heart Study: A cross-sectional study. Lancet Neurol. 2012, 11, 1039–1047. [Google Scholar] [CrossRef] [Green Version]
- Cooper, L.L.; Himali, J.J.; Torjesen, A.; Tsao, C.W.; Beiser, A.; Hamburg, N.M.; DeCarli, C.; Vasan, R.S.; Seshadri, S.; Pase, M.P.; et al. Inter-relations of orthostatic blood pressure change, aortic stiffness, and brain structure and function in young adults. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Cermakova, P.; Muller, M.; Armstrong, A.C.; Religa, D.; Nick Bryan, R.; Lima, J.A.C.; Launer, L.J. Subclinical cardiac dysfunction and brain health in midlife: CARDIA (Coronary Artery Risk Development in Young Adults) brain magnetic resonance imaging substudy. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, A.L.; Himali, J.J.; Beiser, A.S.; Au, R.; Massaro, J.M.; Seshadri, S.; Gona, P.; Salton, C.J.; DeCarli, C.; O’Donnell, C.J.; et al. Cardiac index is associated with brain aging: The Framingham Heart Study. Circulation 2010, 122, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, A.C.; Muller, M.; Ambale-Ventakesh, B.; Halstead, M.; Kishi, S.; Bryan, N.; Sidney, S.; Correia, L.C.L.; Gidding, S.S.; Launer, L.J.; et al. Association of early left ventricular dysfunction with advanced magnetic resonance white matter and gray matter brain measures: The CARDIA study. Echocardiography 2017, 34, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.; Sánchez-Quintana, D.; Bossone, E.; Bogaard, H.J.; Naeije, R. Anatomy, Function, and Dysfunction of the Right Ventricle: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 1463–1482. [Google Scholar] [CrossRef] [PubMed]
- Giezendanner, S.; Fisler, M.S.; Soravia, L.M.; Andreotti, J.; Walther, S.; Wiest, R.; Dierks, T.; Federspiel, A. Microstructure and cerebral blood flow within white matter of the human brain: A TBSS analysis. PLoS ONE 2016, 11, e0150657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badji, A.; Sabra, D.; Bherer, L.; Cohen-Adad, J.; Girouard, H.; Gauthier, C.J. Arterial stiffness and brain integrity: A review of MRI findings. Ageing Res. Rev. 2019, 53, 100907. [Google Scholar] [CrossRef] [PubMed]
- Cainelli, E.; Arrigoni, F.; Vedovelli, L. White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog. Neurobiol. 2020, 193, 101845. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.; Vassar, R.; Cahill-Rowley, K.; Guzman, X.S.; Stevenson, D.K.; Barnea-Goraly, N. Brain microstructural development at near-term age in very-low-birth-weight preterm infants: An atlas-based diffusion imaging study. Neuroimage 2014, 86, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Ball, G.; Boardman, J.P.; Rueckert, D.; Aljabar, P.; Arichi, T.; Merchant, N.; Gousias, I.S.; Edwards, A.D.; Counsell, S.J. The effect of preterm birth on thalamic and cortical development. Cereb. Cortex 2012, 22, 1016–1024. [Google Scholar] [CrossRef]
- Lao, Y.; Wang, Y.; Shi, J.; Ceschin, R.; Nelson, M.D.; Panigrahy, A.; Leporé, N. Thalamic alterations in preterm neonates and their relation to ventral striatum disturbances revealed by a combined shape and pose analysis. Brain Struct. Funct. 2016, 221, 487–506. [Google Scholar] [CrossRef] [Green Version]
- Lamar, M.; Boots, E.A.; Arfanakis, K.; Barnes, L.L.; Schneider, J.A. Common Brain Structural Alterations Associated with Cardiovascular Disease Risk Factors and Alzheimer’s Dementia: Future Directions and Implications. Neuropsychol. Rev. 2020, 30, 546–557. [Google Scholar] [CrossRef]
- Lucas, A.; Gore, S.M.; Cole, T.J.; Bamford, M.F.; Dossetor, J.F.; Barr, I.; Dicarlo, L.; Cork, S.; Lucas, P.J. Multicentre trial on feeding low birthweight infants: Effects of diet on early growth. Arch. Dis. Child. 1984, 59, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.J.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Patenaude, B.; Smith, S.M.; Kennedy, D.; Jenkinson, M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 2011, 56, 907–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jbabdi, S.; Sotiropoulos, S.N.; Savio, A.M.; Graña, M.; Behrens, T.E.J. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn. Reson. Med. 2012, 68, 1846–1855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clayden, J.D.; Storkey, A.J.; Bastin, M.E. A Probabilistic Model-Based Approach to Consistent White Matter Tract Segmentation. Ieee Trans. Med. Imaging 2007, 26, 1555–1561. [Google Scholar] [CrossRef]
- Burchert, H.; Lewandowski, A.J. Preterm Birth Is a Novel, Independent Risk Factor for Altered Cardiac Remodeling and Early Heart Failure: Is it Time for a New Cardiomyopathy? Curr. Treat. Options Cardiovasc. Med. 2019, 21, 8. [Google Scholar] [CrossRef] [Green Version]
- Goss, K.N.; Haraldsdottir, K.; Beshish, A.G.; Barton, G.P.; Watson, A.M.; Palta, M.; Chesler, N.C.; Francois, C.J.; Wieben, O.; Eldridge, M.W. Association between preterm birth and arrested cardiac growth in adolescents and young adults. Jama Cardiol. 2020, 5, 910. [Google Scholar] [CrossRef] [PubMed]
- Haraldsdottir, K.; Watson, A.M.; Pegelow, D.F.; Palta, M.; Tetri, L.H.; Levin, T.; Brix, M.D.; Centanni, R.M.; Goss, K.N.; Eldridge, M.M. Blunted cardiac output response to exercise in adolescents born preterm. Eur. J. Appl. Physiol. 2020, 120, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- Ruitenberg, A.; den Heijer, T.; Bakker, S.L.M.; van Swieten, J.C.; Koudstaal, P.J.; Hofman, A.; Breteler, M.M.B. Cerebral hypoperfusion and clinical onset of dementia: The Rotterdam study. Ann. Neurol. 2005, 57, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Pase, M.P.; Davis-Plourde, K.; Himali, J.J.; Satizabal, C.L.; Aparicio, H.; Seshadri, S.; Beiser, A.S.; DeCarli, C. Vascular risk at younger ages most strongly associates with current and future brain volume. Neurology 2018, 91, e1479–e1486. [Google Scholar] [CrossRef]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Aye, C.Y.L.; Lewandowski, A.J.; Lamata, P.; Upton, R.; Davis, E.; Ohuma, E.O.; Kenworthy, Y.; Boardman, H.; Wopperer, S.; Packham, A.; et al. Disproportionate cardiac hypertrophy during early postnatal development in infants born preterm. Nat. Publ. Gr. 2017, 82. [Google Scholar] [CrossRef]
- Cox, D.J.; Bai, W.; Price, A.N.; Groves, A.M.; Edwards, A.D.; Rueckert, D. Ventricular remodeling in preterm infants: Computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res. 2018, 1. [Google Scholar] [CrossRef]
- Risnes, K.; Bilsteen, J.F.; Brown, P.; Pulakka, A.; Andersen, A.-M.N.; Opdahl, S.; Kajantie, E.; Sandin, S. Mortality among young adults born preterm and early term in 4 Nordic Nations. Jama Netw. Open 2021, 4, e2032779. [Google Scholar] [CrossRef]
- Huckstep, O.J.; Williamson, W.; Telles, F.; Burchert, H.; Bertagnolli, M.; Herdman, C.; Arnold, L.; Smillie, R.; Mohamed, A.; Boardman, H.; et al. Physiological Stress Elicits Impaired Left Ventricular Function in Preterm-Born Adults. J. Am. Coll. Cardiol. 2018, 71, 1347–1356. [Google Scholar] [CrossRef]
- Huckstep, O.J.; Burchert, H.; Williamson, W.; Telles, F.; Tan, C.M.J.; Bertagnolli, M.; Arnold, L.; Mohamed, A.; McCormick, K.; Hanssen, H.; et al. Impaired myocardial reserve underlies reduced exercise capacity and heart rate recovery in preterm-born young adults. Eur. Heart J. Cardiovasc. Imaging 2020. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Hou, W.; Chui, J.; Han, R.; Gelb, A.W. Cardiac Output and Cerebral Blood Flow. Anesthesiology 2015, 123, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, A.L.; Tate, D.F.; Poppas, A.; Brickman, A.M.; Paul, R.H.; Gunstad, J.; Cohen, R.A. Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease. J. Am. Geriatr. Soc. 2007, 55, 1044–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintana, D.D.; Ren, X.; Hu, H.; Engler-Chiurazzi, E.B.; Rellick, S.L.; Lewis, S.E.; Povroznik, J.M.; Simpkins, J.W.; Alvi, M. Gradual common carotid artery occlusion as a novel model for cerebrovascular Hypoperfusion. Metab. Brain Dis. 2018, 33, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Ueno, M.; Chiba, Y.; Matsumoto, K.; Murakami, R.; Fujihara, R.; Kawauchi, M.; Miyanaka, H.; Nakagawa, T. Blood-brain barrier damage in vascular dementia. Neuropathology 2016, 36, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Harjola, V.-P.; Mebazaa, A.; Čelutkienė, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary management of acute right ventricular failure: A statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Dennison Himmelfarb, C.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association task force on clinical pr. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [CrossRef] [PubMed]
Cardiac + Brain MRI Cohort (n = 48) | |
---|---|
Gestational age (weeks), mean (SD) | 29.7 (2.4) |
Birthweight (grams), mean (SD) | 1251 (280) |
Days of ventilation, mean (SD) | 5.6 (9.7) |
Patent ductus arteriosus (%) | 27.1 |
Apgar score at 5 min, mean (SD) | 7.9 (1.9) |
Steroid use (%) | 14.6 |
Maternal smoking (%) | 22.9 |
Infant infection confirmed by blood culture (%) | 6.3 |
Necrotising enterocolitis confirmed (%) | 4.2 |
Percentage of maternal milk in diet, mean (SD) | 48.6 (38.2) |
Born to hypertensive pregnancy (%) | 27.1 |
Maternal education level A-levels or higher (%) | 22.9 |
Preterm Group (n = 48) | Term Group (n = 101) | Adjusted Mean Difference (95% CI) | |
---|---|---|---|
LV ejection fraction, % | 64.1 (6.6) | 64.1 (4.9) | 0.0 (−1.9, 1.9) |
LV stroke volume, mL/m2 | 44.6 (6.9) | 51.3 (8.9) | −6.9 (−9.7, −4.0) ** |
LV end diastolic volume, mL/m2 | 69.6 (7.8) | 80.2 (11.7) | −10.8 (-14.2, −7.4) ** |
LV end diastolic length, mm | 9.1 (0.6) | 9.8 (0.7) | −0.7 (−0.9, −0.5) ** |
LV global longitudinal strain, % | −14.8 (2.9) | −17.9 (4.1) | 3 (1.7, 4.4) ** |
RV ejection fraction, % | 56.2 (7.8) | 60 (5.3) | −3.7 (−5.8, −1.5) * |
RV stroke volume, mL/m2 | 42.9 (9.7) | 52.9 (7.2) | −10.1 (−12.8, −7.4) ** |
RV end diastolic volume, mL/m2 | 75.9 (12.4) | 88.5 (11.8) | −12.8 (−16.5, −9.1) ** |
Pulse wave velocity, m/s | 5.9 (0.7) | 5.5 (0.6) | 0.4 (0.2, 0.6) ** |
Central systolic blood pressure, mmHg | 107.9 (10.9) | 97.4 (8.8) | 10.6 (7.2, 13.9) ** |
Central pulse pressure, mmHg | 33 (7) | 27.8 (5.6) | 5.2 (3.1, 7.3) ** |
Preterm Group (n = 48) | Term Group (n = 71) | Adjusted Mean Difference (95% CI) | |
---|---|---|---|
Left ventricle, mm3 | 9375.4 (5855.4) | 6818.0 (4564.0) | −2949.8 (−923.9, −4975.7) * |
Left thalamus, mm3 | 7714.1 (940.8) | 8343.1 (922.0) | 701.9 (1019.6, 384.3) ** |
Right putamen, mm3 | 5030.2 (628.2) | 5254.4 (560.5) | 239.9 (443.6, 36.3) |
FA corpus callosum | 0.6 (0.1) | 0.7 (0.0) | −0.0176 (−0.0349, −0.0002) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lapidaire, W.; Clark, C.; Fewtrell, M.S.; Lucas, A.; Leeson, P.; Lewandowski, A.J. The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors. J. Clin. Med. 2021, 10, 1285. https://doi.org/10.3390/jcm10061285
Lapidaire W, Clark C, Fewtrell MS, Lucas A, Leeson P, Lewandowski AJ. The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors. Journal of Clinical Medicine. 2021; 10(6):1285. https://doi.org/10.3390/jcm10061285
Chicago/Turabian StyleLapidaire, Winok, Chris Clark, Mary S. Fewtrell, Alan Lucas, Paul Leeson, and Adam J. Lewandowski. 2021. "The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors" Journal of Clinical Medicine 10, no. 6: 1285. https://doi.org/10.3390/jcm10061285
APA StyleLapidaire, W., Clark, C., Fewtrell, M. S., Lucas, A., Leeson, P., & Lewandowski, A. J. (2021). The Preterm Heart-Brain Axis in Young Adulthood: The Impact of Birth History and Modifiable Risk Factors. Journal of Clinical Medicine, 10(6), 1285. https://doi.org/10.3390/jcm10061285