Big Data in Studying Acute Pain and Regional Anesthesia
Abstract
:1. Introduction
2. Making Data Accessible for Research
3. Big Data Initiatives in Acute Pain and Regional Anesthesia Research
4. Artificial Intelligence and Machine-Learning Methods
5. A Look into the Future
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Franklin, J.M.; Schneeweiss, S. When and How Can Real World Data Analyses Substitute for Randomized Controlled Trials? Clin. Pharmacol. Ther. 2017, 102, 924–933. [Google Scholar] [CrossRef]
- Definition of “Big Data”. Available online: https://www.lexico.com/en/definition/big_data (accessed on 27 December 2020).
- Cadwalladr, C.; Graham-Harrison, E. Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data breach. Guardian 2018, 17, 22. [Google Scholar]
- NHS Digital. Available online: https://digital.nhs.uk (accessed on 3 February 2021).
- Semler, S.C.; Wissing, F.; Heyder, R. German Medical Informatics Initiative. Methods Inf. Med. 2018, 57, e50–e56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonsen, K.; Rosenstock, C.; Hyldborg Lundstrom, L. The Danish Anaesthesia Database. Clin. Epidemiol. 2016, 8, 435–438. [Google Scholar] [CrossRef] [Green Version]
- Vetter, T.R.; Schober, P. Regression: The apple does not fall far from the tree. Anesth. Analg. 2018, 127, 277–283. [Google Scholar] [CrossRef]
- Aoyama, K.; Pinto, R.; Ray, J.G.; Hill, A.; Scales, D.C.; Fowler, R.A. Determining Associations and Estimating Effects with Regression Models in Clinical Anesthesia. Anesthesiology 2020, 133, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.H. Multivariable Analysis: A Primer for Readers of Medical Research. Ann. Intern. Med. 2003, 138, 644–650. [Google Scholar] [CrossRef]
- Schulte, P.J.; Mascha, E.J. Propensity score methods: Theory and practice for anesthesia research. Anesth. Analg. 2018, 127, 1074–1084. [Google Scholar] [CrossRef]
- VanderWeele, T.J. Mediation Analysis: A Practitioner’s Guide. Annu. Rev. Public Health 2016, 37, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Mascha, E.J.; Dalton, J.E.; Kurz, A.; Saager, L. Understanding the mechanism: Mediation analysis in randomized and nonrandomized studies. Anesth. Analg. 2013, 117, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Vetter, T.R. Repeated measures designs and analysis of longitudinal data: If at first you do not succeed-try, try again. Anesth. Analg. 2018, 127, 569–575. [Google Scholar] [CrossRef]
- Ma, Y.; Mazumdar, M.; Memtsoudis, S.G. Beyond repeated-measures analysis of variance: Advanced statistical methods for the analysis of longitudinal data in anesthesia research. Reg. Anesth. Pain Med. 2012, 37, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnabel, A.; Yahiaoui-Doktor, M.; Meissner, W.; Zahn, P.K.; Pogatzki-Zahn, E.M. Predicting poor postoperative acute pain outcome in adults: An international, multicentre database analysis of risk factors in 50,005 patients. PAIN Rep. 2020, 5, e831. [Google Scholar] [CrossRef]
- Connor, C.W. Artificial Intelligence and Machine Learning in Anesthesiology. Anesthesiology 2019, 131, 1346–1359. [Google Scholar] [CrossRef] [Green Version]
- Sassenscheidt, J.; Jungwirth, B.; Kubitz, J.C. Machine learning in anesthesiology. Anaesthesist 2020, 69, 535–543. [Google Scholar] [CrossRef]
- Zaslansky, R.; Rothaug, J.; Chapman, C.R.; Bäckström, R.; Brill, S.; Fletcher, D.; Fodor, L.; Gordon, D.B.; Komann, M.; Konrad, C.; et al. PAIN OUT: The making of an international acute pain registry. Eur. J. Pain 2015, 19, 490–502. [Google Scholar] [CrossRef]
- Improvement in Postoperative PAIN OUTcome (PAIN OUT). Available online: http://pain-out.med.uni-jena.de (accessed on 4 January 2021).
- Meißner, W. Qualität der Schmerztherapie in Deutschland—Qualitätsmanagement und -sicherung in der Akutschmerztherapie. AINS—Anästhesiol. Intensivmed. Notfallmed. Schmerzther. 2016, 51, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Quality Improvement in Postoperative Pain Management (QUIPS). Available online: http://www.quips-projekt.de/en (accessed on 16 January 2021).
- Network for Safety in Regional Anesthesia and Acute Pain Medicine (net-ra). Available online: https://net-ra.eu (accessed on 16 January 2021).
- Volk, T.; Engelhardt, L.; Spies, C.; Steinfeldt, T.; Kutter, B.; Heller, A.; Werner, C.; Heid, F.; Bürkle, H.; Koch, T.; et al. Das Netzwerk Regionalanästhesie des wissenschaftlichen Arbeitskreises Regionalanästhesie der DGAI und des BDA. AINS—Anästhesiol. Intensivmed. Notfallmed. Schmerzther. 2009, 44, 778–780. [Google Scholar] [CrossRef] [PubMed]
- Premier Incorporated. Premier Healthcare Database White Paper: Data that Informs and Performs. 2020. Available online: https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper (accessed on 22 February 2021).
- Premier Incorporated. Premier Healthcare Database. Available online: https://www.premierinc.com (accessed on 22 February 2021).
- IBM MarketScan Research Databases. Available online: https://www.ibm.com/products/marketscan-research-databases (accessed on 22 February 2021).
- IBM Watson Health. IBM MarketScan Research Databases for Life Sciences Researchers (White Paper). 2019. Available online: https://www.ibm.com/downloads/cas/0NKLE57Y (accessed on 3 February 2021).
- Neuman, M.D. The Importance of Validation Studies in Perioperative Database Research. Anesthesiology 2015, 123, 243–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fast Healthcare Interoperability Resources (FHIR). Available online: http://hl7.org/fhir/index.html (accessed on 22 January 2021).
- Sass, J.; Bartschke, A.; Lehne, M.; Essenwanger, A.; Rinaldi, E.; Rudolph, S.; Heitmann, K.U.; Vehreschild, J.J.; von Kalle, C.; Thun, S. The German Corona Consensus Dataset (GECCO): A standardized dataset for COVID-19 research in university medicine and beyond. BMC Med. Inform. Decis. Mak. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- International Classification of Diseases for Mortality and Morbidity Statistics (11th Revision). Available online: https://icd.who.int/browse11/l-m/en (accessed on 21 January 2021).
- SNOMED CT. Available online: https://www.snomed.org (accessed on 4 January 2021).
- Thun, S.; Dewenter, H. ICD-11, ICHI and SNOMED CT—What do the standards mean for eHealth applications? Bundesgesundheitsblatt Gesundheitsforsch Gesundheitsschutz 2018, 61, 812–820. [Google Scholar] [CrossRef]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef] [Green Version]
- Glare, P.; Aubrey, K.R.; Myles, P.S. Transition from acute to chronic pain after surgery. Lancet 2019, 393, 1537–1546. [Google Scholar] [CrossRef]
- Van Boekel, R.L.M.; Warlé, M.C.; Nielen, R.G.C.; Vissers, K.C.P.; Van Der Sande, R.; Bronkhorst, E.M.; Lerou, J.G.C.; Steegers, M.A.H. Relationship between Postoperative Pain and Overall 30-Day Complications in a Broad Surgical Population: An Observational Study. Ann. Surg. 2019, 269, 856–865. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.; Stamer, U.M.; Pogatzki-Zahn, E.; Zaslansky, R.; Tanase, N.V.; Perruchoud, C.; Kranke, P.; Komann, M.; Lehman, T.; Meisner, W. Chronic postsurgical pain in Europe: An observational study. Eur. J. Anaesthesiol. 2015, 32, 725–734. [Google Scholar] [CrossRef]
- Weinstein, E.J.; Levene, J.L.; Cohen, M.S.; Andreae, D.A.; Chao, J.Y.; Johnson, M.; Hall, C.B.; Andreae, M.H. Local anaesthetics and regional anaesthesia versus conventional analgesia for preventing persistent postoperative pain in adults and children. Cochrane Database Syst. Rev. 2018, 6, CD007105. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Sun, X.; Chiu, Y.L.; Stundner, O.; Liu, S.S.; Banerjee, S.; Mazumdar, M.; Sharrock, N.E. Perioperative comparative effectiveness of anesthetic technique in orthopedic patients. Anesthesiology 2013, 118, 1046–1058. [Google Scholar] [CrossRef] [Green Version]
- Rothaug, J.; Zaslansky, R.; Schwenkglenks, M.; Komann, M.; Allvin, R.; Backström, R.; Brill, S.; Buchholz, I.; Engel, C.; Fletcher, D.; et al. Patients’ Perception of Postoperative Pain Management: Validation of the International Pain Outcomes (IPO) Questionnaire. J. Pain 2013, 14, 1361–1370. [Google Scholar] [CrossRef] [Green Version]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.M.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain Intensity on the First Day after Surgery. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roeb, M.M.; Wolf, A.; Gräber, S.S.; Meißner, W.; Volk, T. Epidural Against Systemic Analgesia: An International Registry Analysis on Postoperative Pain and Related Perceptions after Abdominal Surgery. Clin. J. Pain 2017, 33, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Donauer, K.; Bomberg, H.; Wagenpfeil, S.; Volk, T.; Meissner, W.; Wolf, A. Regional vs General Anesthesia for Total Knee and Hip Replacement: An Analysis of Postoperative Pain Perception from the International PAIN OUT Registry. Pain Pract. 2018, 18, 1036–1047. [Google Scholar] [CrossRef]
- Greimel, F.; Maderbacher, G.; Baier, C.; Keshmiri, A.; Schwarz, T.; Zeman, F.; Meissner, W.; Grifka, J.; Benditz, A. Multicenter cohort-study of 15,326 cases analyzing patient satisfaction and perioperative pain management: General, regional and combination anesthesia in knee arthroplasty. Sci. Rep. 2018, 8, 2–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, T.; Wolf, A.; Van Aken, H.; Bürkle, H.; Wiebalck, A.; Steinfeldt, T. Incidence of spinal haematoma after epidural puncture: Analysis from the German network for safety in regional anaesthesia. Eur. J. Anaesthesiol. 2012, 29, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Volk, T.; Engelhardt, L.; Spies, C.; Steinfeldt, T.; Gruenewald, D.; Kutter, B.; Heller, A.; Werner, C.; Heid, F.; Bürkle, H.; et al. Incidence of infection from catheter procedures for regional anesthesia: First results from the network of DGAI and BDA. Anaesthesist 2009, 58, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, H.; Kubulus, C.; List, F.; Albert, N.; Schmitt, K.; Gräber, S.; Kessler, P.; Steinfeldt, T.; Standl, T.; Gottschalk, A.; et al. Diabetes A Risk Factor for Catheter-Associated Infections. Reg. Anesth. Pain Med. 2015, 40, 16–21. [Google Scholar] [CrossRef]
- Bomberg, H.; Albert, N.; Schmitt, K.; Gräber, S.; Kessler, P.; Steinfeldt, T.; Hering, W.; Gottschalk, A.; Standl, T.; Stork, J.; et al. Obesity in regional anesthesia—a risk factor for peripheral catheter-related infections. Acta Anaesthesiol. Scand. 2015, 59, 1038–1048. [Google Scholar] [CrossRef]
- Bomberg, H.; Bayer, I.; Wagenpfeil, S.; Kessler, P.; Wulf, H.; Standl, T.; Gottschalk, A.; Döffert, J.; Hering, W.; Birnbaum, J.; et al. Prolonged Catheter Use and Infection in Regional Anesthesia: A Retrospective Registry Analysis. Anesthesiology 2018, 128, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, H.; Kubulus, C.; Herberger, S.; Wagenpfeil, S.; Kessler, P.; Steinfeldt, T.; Standl, T.; Gottschalk, A.; Stork, J.; Meissner, W.; et al. Tunnelling of thoracic epidural catheters is associated with fewer catheter-related infections: A retrospective registry analysis. Br. J. Anaesth. 2016, 116, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Bomberg, H.; Krotten, D.; Kubulus, C.; Wagenpfeil, S.; Kessler, P.; Steinfeldt, T.; Standl, T.; Gottschalk, A.; Stork, J.; Meissner, W.; et al. Single-dose Antibiotic Prophylaxis in Regional Anesthesia. Anesthesiology 2016, 125, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Bomberg, H.; Wetjen, L.; Wagenpfeil, S.; Schöpe, J.; Kessler, P.; Wulf, H.; Wiesmann, T.; Standl, T.; Gottschalk, A.; Döffert, J.; et al. Risks and benefits of ultrasound, nerve stimulation, and their combination for guiding peripheral nerve blocks: A retrospective registry analysis. Anesth. Analg. 2018, 127, 1035–1043. [Google Scholar] [CrossRef]
- Walker, B.J.; Long, J.B.; Sathyamoorthy, M.; Birstler, J.; Wolf, C.; Bosenberg, A.T.; Flack, S.H.; Krane, E.J.; Sethna, N.F.; Suresh, S.; et al. Complications in Pediatric Regional Anesthesia: An Analysis of More than 100,000 Blocks from the Pediatric Regional Anesthesia Network. Anesthesiology 2018, 129, 721–732. [Google Scholar] [CrossRef]
- Long, J.B.; Birmingham, P.K.; De Oliveira, G.S.; Schaldenbrand, K.M.; Suresh, S. Transversus Abdominis plane block in children: A multicenter safety analysis of 1994 cases from the PRAN (Pediatric Regional Anesthesia Network) database. Anesth. Analg. 2014, 119, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.J.; Long, J.B.; De Oliveira, G.S.; Szmuk, P.; Setiawan, C.; Polaner, D.M.; Suresh, S. Peripheral nerve catheters in children: An analysis of safety and practice patterns from the pediatric regional anesthesia network (PRAN). Br. J. Anaesth. 2015, 115, 457–462. [Google Scholar] [CrossRef] [Green Version]
- Taenzer, A.H.; Hoyt, M.; Krane, E.J.; Walker, B.J.; Flack, S.; Bosenberg, A.; Sethna, N.F.; Franklin, A.D.; Polaner, D.M. Variation between and within Hospitals in Single Injection Caudal Local Anesthetic Dose: A Report from the Pediatric Regional Anesthesia Network. Anesth. Analg. 2020, 130, 1693–1701. [Google Scholar] [CrossRef] [PubMed]
- Barrington, M.J.; Watts, S.A.; Gledhill, S.R.; Thomas, R.D.; Said, S.A.; Snyder, G.L.; Tay, V.S.; Jamrozik, K. Preliminary Results of the Australasian Regional Anaesthesia Collaboration. Reg. Anesth. Pain Med. 2009, 34, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Ironfield, C.M.; Barrington, M.J.; Kluger, R.; Sites, B. Are patients satisfied after peripheral nerve blockade? Results from an international registry of regional anesthesia. Reg. Anesth. Pain Med. 2014, 39, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Sites, B.; Barrington, M.; Davis, M. Using an international clinical registry of regional anesthesia to identify targets for quality improvement. Reg. Anesth. Pain Med. 2014, 39, 487–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taenzer, A.H.; Sites, B.D.; Kluger, R.; Barrington, M. Settled science or unwarranted variation in local anesthetic dosing? An analysis from an International Registry of Regional Anesthesiology. Reg. Anesth. Pain Med. 2019, 44, 998–1002. [Google Scholar] [CrossRef]
- Liau, A.; Havidich, J.E.; Onega, T.; Dutton, R.P. The national anesthesia clinical outcomes registry. Anesth. Analg. 2015, 121, 1604–1610. [Google Scholar] [CrossRef]
- Lam, S.; Qu, H.; Hannum, M.; Tan, K.S.; Afonso, A.; Tokita, H.K.; McCormick, P.J. Trends in Peripheral Nerve Block Usage in Mastectomy and Lumpectomy: Analysis of a National Database From 2010 to 2018. Anesth. Analg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Fleischut, P.M.; Eskreis-Winkler, J.M.; Gaber-Baylis, L.K.; Giambrone, G.P.; Faggiani, S.L.; Dutton, R.P.; Memtsoudis, S.G. Variability in Anesthetic Care for Total Knee Arthroplasty: An Analysis From the Anesthesia Quality Institute. Am. J. Med. Qual. 2015, 30, 172–179. [Google Scholar] [CrossRef]
- Kheterpal, S. Clinical Research Using an Information System: The Multicenter Perioperative Outcomes Group. Anesthesiol. Clin. 2011, 29, 377–388. [Google Scholar] [CrossRef]
- Bateman, B.T.; Mhyre, J.M.; Ehrenfeld, J.; Kheterpal, S.; Abbey, K.R.; Argalious, M.; Berman, M.F.; Jacques, P.S.; Levy, W.; Loeb, R.G.; et al. The risk and outcomes of epidural hematomas after perioperative and obstetric epidural catheterization: A report from the multicenter perioperative outcomes group research consortium. Anesth. Analg. 2013, 116, 1380–1385. [Google Scholar] [CrossRef]
- Lee, L.O.; Bateman, B.T.; Kheterpal, S.; Klumpner, T.T.; Housey, M.; Aziz, M.F.; Hand, K.W.; MacEachern, M.; Goodier, C.G.; Bernstein, J.; et al. Risk of epidural hematoma after neuraxial techniques in thrombocytopenic parturients a report from the multicenter perioperative outcomes group. Anesthesiology 2017, 126, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Stuart, A.R.; Kuck, K.; Naik, B.I.; Saager, L.; Pace, N.L.; Domino, K.B.; Posner, K.L.; Alpert, S.B.; Kheterpal, S.; Sinha, A.K.; et al. Multicenter Perioperative Outcomes Group Enhanced Observation Study Postoperative Pain Profiles, Analgesic Use, and Transition to Chronic Pain and Excessive and Prolonged Opioid Use Patterns Methodology. Anesth. Analg. 2020, 130, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Fink, A.S.; Campbell, D.A.; Mentzer, R.M.; Henderson, W.G.; Daley, J.; Bannister, J.; Hur, K.; Khuri, S.F. The National Surgical Quality Improvement Program in non-veterans administration hospitals: Initial demonstration of feasibility. Ann. Surg. 2002, 236, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Saied, N.N.; Helwani, M.A.; Weavind, L.M.; Shi, Y.; Shotwell, M.S.; Pandharipande, P.P. Effect of anaesthesia type on postoperative mortality and morbidities: A matched analysis of the NSQIP database. Br. J. Anaesth. 2017, 118, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Turan, A.; Bajracharya, G.R.; Leung, S.; Yazici Kara, M.; Mao, G.; Botsford, T.; Ruetzler, K.; Maheshwari, K.; Ali Sakr Esa, W.; Elsharkawy, H.; et al. Association of neuraxial anesthesia with postoperative venous thromboembolism after noncardiac surgery: A propensity-matched analysis of acs-nsqip database. Anesth. Analg. 2019, 128, 494–501. [Google Scholar] [CrossRef]
- Brovman, E.Y.; Wallace, F.C.; Weaver, M.J.; Beutler, S.S.; Urman, R.D. Anesthesia Type Is Not Associated With Postoperative Complications in the Care of Patients With Lower Extremity Traumatic Fractures. Anesth. Analg. 2019, 129, 1034–1042. [Google Scholar] [CrossRef]
- Basques, B.A.; Bohl, D.D.; Golinvaux, N.S.; Samuel, A.M.; Grauer, J.G. General versus spinal anaesthesia for patients aged 70 years and older with a fracture of the hip. Bone Jt. J. 2015, 97, 689–695. [Google Scholar] [CrossRef]
- Helwani, M.A.; Avidan, M.S.; Ben Abdallah, A.; Kaiser, D.J.; Clohisy, J.C.; Hall, B.L.; Kaiser, H.A. Effects of Regional Versus General Anesthesia on Outcomes After Total Hip Arthroplasty. J. Bone Jt. Surg. 2015, 97, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Cummings, K.C., III; Zimmerman, N.M.; Maheshwari, K.; Cooper, G.S.; Cummings, L.C. Epidural compared with non-epidural analgesia and cardiopulmonary complications after colectomy: A retrospective cohort study of 20,880 patients using a national quality database. J. Clin. Anesth. 2018, 47, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Malik, O.S.; Brovman, E.Y.; Urman, R.D. The Use of Regional or Local Anesthesia for Carotid Endarterectomies May Reduce Blood Loss and Pulmonary Complications. J. Cardiothorac. Vasc. Anesth. 2019, 33, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Leichtle, S.W.; Mouawad, N.J.; Welch, K.; Lampman, R.; Whitehouse, W.M.; Heidenreich, M. Outcomes of carotid endarterectomy under general and regional anesthesia from the American College of Surgeons’ National Surgical Quality Improvement Program. J. Vasc. Surg. 2012, 56, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Sidawy, A.N.; Dezee, K.; Neville, R.F.; Weiswasser, J.; Arora, S.; Aidinian, G.; Abularrage, C.; Adams, E.; Khuri, S.; et al. The effects of the type of anesthesia on outcomes of lower extremity infrainguinal bypass. J. Vasc. Surg. 2006, 44, 964–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.L.; Hurley, R.W.; Anderson, G.F.; Herbert, R.; Rowlingson, A.J.; Fleisher, L.A. Effect of postoperative epidural analgesia on morbidity and mortality following surgery in medicare patients. Reg. Anesth. Pain Med. 2004, 29, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; Rowlingson, A.J.; Herbert, R.; Richman, J.M.; Andrews, R.A.F.; Fleisher, L.A. Correlation of postoperative epidural analgesia on morbidity and mortality after colectomy in Medicare patients. J. Clin. Anesth. 2006, 18, 594–599. [Google Scholar] [CrossRef]
- Cummings, K.C.; Kou, T.D.; Chak, A.; Schluchter, M.D.; Margevicius, S.; Cooper, G.S.; Meropol, N.J.; Perry, Y.; Linden, P.A.; Cummings, L.C. Surgical approach and the impact of epidural analgesia on survival after esophagectomy for cancer: A population-based retrospective cohort study. PLoS ONE 2019, 14, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.L.; Sapirstein, A.; Herbert, R.; Rowlingson, A.J.; Michaels, R.K.; Petrovic, M.A.; Fleisher, L.A. Effect of postoperative epidural analgesia on morbidity and mortality after lung resection in Medicare patients. J. Clin. Anesth. 2006, 18, 515–520. [Google Scholar] [CrossRef]
- Wu, C.L.; Anderson, G.F.; Herbert, R.; Lietman, S.A.; Fleisher, L.A. Effect of postoperative epidural analgesia on morbidity and mortality after total hip replacement surgery in medicare patients. Reg. Anesth. Pain Med. 2003, 28, 271–278. [Google Scholar] [CrossRef]
- Oderda, G.M.; Senagore, A.J.; Morland, K.; Iqbal, S.U.; Kugel, M.; Liu, S.; Habib, A.S. Opioid-related respiratory and gastrointestinal adverse events in patients with acute postoperative pain: Prevalence, predictors, and burden. J. Pain Palliat. Care Pharmacother. 2019, 33, 82–97. [Google Scholar] [CrossRef]
- Cozowicz, C.; Poeran, J.; Zubizarreta, N.; Liu, J.; Weinstein, S.M.; Pichler, L.; Mazumdar, M.; Memtsoudis, S.G. Non-opioid analgesic modes of pain management are associated with reduced postoperative complications and resource utilisation: A retrospective study of obstructive sleep apnoea patients undergoing elective joint arthroplasty. Br. J. Anaesth. 2019, 122, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Memtsoudis, S.G.; Poeran, J.; Zubizarreta, N.; Cozowicz, C.; Mörwald, E.E.; Mariano, E.R.; Mazumdar, M. Association of Multimodal Pain Management Strategies with Perioperative Outcomes and Resource Utilization: A Population-based Study. Anesthesiology 2018, 128, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Cozowicz, C.; Bekeris, J.; Poeran, J.; Zubizarreta, N.; Schwenk, E.; Girardi, F.; Memtsoudis, S.G. Multimodal Pain Management and Postoperative Outcomes in Lumbar Spine Fusion Surgery: A Population-based Cohort Study. Spine 2020, 45, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Bekeris, J.; Fiasconaro, M.; Della Valle, A.G.; Liu, J.; Shanaghan, K.A.; Poeran, J.; Wilson, L.A.; Memtsoudis, S.G. Modifiable Analgesia-/Anesthesia-Related Factors and Risk of Severe Gastrointestinal Complications After Lower Extremity Total Joint Arthroplasty: A Nationwide Analysis. J. Arthroplasty 2020, 35, 2624–2630. [Google Scholar] [CrossRef] [PubMed]
- Haines, K.L.; Fuller, M.; Vaughan, J.G.; Krishnamoorthy, V.; Raghunathan, K.; Kasotakis, G.; Agarwal, S.; Ohnuma, T. The Impact of Nonsteroidal Anti-inflammatory Drugs on Older Adult Trauma Patients With Hip Fractures. J. Surg. Res. 2020, 255, 583–593. [Google Scholar] [CrossRef]
- Stundner, O.; Poeran, J.; Ladenhauf, H.N.; Berger, M.M.; Levy, S.B.; Zubizarreta, N.; Mazumdar, M.; Bekeris, J.; Liu, J.; Galatz, L.M.; et al. Effectiveness of intravenous acetaminophen for postoperative pain management in hip and knee arthroplasties: A population-based study. Reg. Anesth. Pain Med. 2019, 44, 565–572. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Rasul, R.; Suzuki, S.; Poeran, J.; Danninger, T.; Wu, C.; Mazumdar, M.; Vougioukas, V. Does the Impact of the Type of Anesthesia on Outcomes Differ by Patient Age and Comorbidity Burden? Reg. Anesth. Pain Med. 2014, 39, 112–119. [Google Scholar] [CrossRef]
- Sun, E.C.; Darnall, B.D.; Baker, L.C.; MacKey, S. Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern. Med. 2016, 176, 1286–1293. [Google Scholar] [CrossRef] [Green Version]
- Brummett, C.M.; England, C.; Evans-shields, J.; Zimmerman, N.M.; Pawasauskas, J.; Oderda, G. Health Care Burden Associated with Outpatient. J. Manag Care Spec. Pharm. 2019, 25, 973–983. [Google Scholar] [PubMed]
- Tighe, P.J.; Harle, C.A.; Hurley, R.W.; Aytug, H.; Boezaart, A.P.; Fillingim, R.B. Teaching a Machine to Feel Postoperative Pain: Combining High-Dimensional Clinical Data with Machine Learning Algorithms to Forecast Acute Postoperative Pain. Pain Med. 2015, 16, 1386–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lötsch, J.; Sipilä, R.; Tasmuth, T.; Kringel, D.; Estlander, A.M.; Meretoja, T.; Kalso, E.; Ultsch, A. Machine-learning-derived classifier predicts absence of persistent pain after breast cancer surgery with high accuracy. Breast Cancer Res. Treat. 2018, 171, 399–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, A.A.; Velagapudi, M.A.; Lang, J.A.; Behara, L.; Venigandla, R.; Velagapudi, N.; Fong, C.T.; Horibe, M.; Lang, J.D.; Nair, B.G. Machine learning approach to predict postoperative opioid requirements in ambulatory surgery patients. PLoS ONE 2020, 15, e0236833. [Google Scholar] [CrossRef] [PubMed]
- Tighe, P.; Laduzenski, S.; Edwards, D.; Ellis, N.; Boezaart, A.P.; Aygtug, H. Use of Machine Learning Theory to Predict the Need for Femoral Nerve Block Following ACL Repair. Pain Med. 2011, 12, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Churpek, M.M.; Yuen, T.C.; Winslow, C.; Meltzer, D.O.; Kattan, M.W.; Edelson, D.P. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Crit. Care Med. 2016, 44, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Rojas, J.C.; Carey, K.A.; Edelson, D.P.; Venable, L.R.; Howell, M.D.; Churpek, M.M. Predicting intensive care unit readmission with machine learning using electronic health record data. Ann. Am. Thorac. Soc. 2018, 15, 846–853. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, S.; Cho, J.; Kim, Y.S.; Sol, I.S.; Sung, Y.; Cho, I.; Park, M.; Jang, H.; Kim, Y.H.; et al. A deep learning model for real-time mortality prediction in critically ill children. Crit. Care 2019, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit. Care Med. 2018, 46, 547–553. [Google Scholar] [CrossRef]
- Schmidt, C.M.D. Anderson Breaks With IBM Watson, Raising Questions About Artificial Intelligence in Oncology. J. Natl. Cancer Inst. 2017, 109, 315–322. [Google Scholar] [CrossRef] [Green Version]
- IEEE Spectrum How IBM Watson Overpromised and Underdelivered on AI Health Care. Available online: https://spectrum.ieee.org/biomedical/diagnostics/how-ibm-watson-overpromised-and-underdelivered-on-ai-health-care (accessed on 11 March 2021).
- Neuman, M.D.; Ellenberg, S.S.; Sieber, F.E.; Magaziner, J.S.; Feng, R.; Carson, J.L. Regional versus General Anesthesia for Promoting Independence after Hip Fracture (REGAIN): Protocol for a pragmatic, international multicentre trial. BMJ Open 2016, 6, e013473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowark, A.; Adam, C.; Ahrens, J.; Bajbouj, M.; Bollheimer, C.; Borowski, M.; Dodel, R.; Dolch, M.; Hachenberg, T.; Henzler, D.; et al. Improve hip fracture outcome in the elderly patient (iHOPE): A study protocol for a pragmatic, multicentre randomised controlled trial to test the efficacy of spinal versus general anaesthesia. BMJ Open 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Short Title | Title | Est. | Webpage |
---|---|---|---|
Acute postoperative pain on the first postoperative day | |||
PAIN OUT | Improvement in Postoperative Pain Outcome | 2009 | pain-out.med.uni-jena.de |
QUIPS | Quality Improvement in Postoperative Pain Management | 2005 | quips-projekt.de |
Regional anesthesia and acute postoperative pain | |||
net-ra | German Network for Safety in Regional Anesthesia and Acute Pain Medicine | 2007 | net-ra.eu |
Regional anesthesia | |||
PRAN | Pediatric Regional Anesthesia Network | 2007 | pedsanesthesia.org |
IRORA | International Registry of Regional Anesthesia | 2006 | regionalanaesthesia.wordpress.com |
Administrative databases | |||
Medicare | Medicare and Medicaid healthcare claims database | 1999 | medicare.gov resdac.org |
Premier | Premier healthcare database | 1997 | premierinc.com |
MarketScan | IBM MarketScan research database (previously: Truven Health MarketScan Database) | 1989 | ibm.com/products/marketscan-research-databases |
Anesthesiology and Perioperative Medicine | |||
NACOR | National Anesthesia Clinical Outcomes Registry | 2008 | aqihq.org |
MPOG | Multicenter Perioperative Outcomes Group | 2008 | mpog.org |
NSQIP | American College of Surgeons National Surgical Quality Improvement Program | 1991 | facs.org |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller-Wirtz, L.M.; Volk, T. Big Data in Studying Acute Pain and Regional Anesthesia. J. Clin. Med. 2021, 10, 1425. https://doi.org/10.3390/jcm10071425
Müller-Wirtz LM, Volk T. Big Data in Studying Acute Pain and Regional Anesthesia. Journal of Clinical Medicine. 2021; 10(7):1425. https://doi.org/10.3390/jcm10071425
Chicago/Turabian StyleMüller-Wirtz, Lukas M., and Thomas Volk. 2021. "Big Data in Studying Acute Pain and Regional Anesthesia" Journal of Clinical Medicine 10, no. 7: 1425. https://doi.org/10.3390/jcm10071425
APA StyleMüller-Wirtz, L. M., & Volk, T. (2021). Big Data in Studying Acute Pain and Regional Anesthesia. Journal of Clinical Medicine, 10(7), 1425. https://doi.org/10.3390/jcm10071425