Sex-Related Differences in Drugs with Anti-Inflammatory Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Sex-Specific Differences in Immune Responses and Inflammatory Diseases
4. Drugs with Anti-Inflammatory Properties
4.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
4.1.1. Acetylsalicylic Acid (ASA, Aspirin)
4.1.2. Ibuprofen
4.1.3. Diclofenac
4.1.4. Naproxen
4.2. Selective COX-2 Inhibitors-Coxibs
4.3. Glucocorticoids
4.3.1. Prednisone
4.3.2. Methylprednisolone
4.3.3. Hydrocortisone
4.4. TNF-Alpha Inhibitors
4.5. Antileukotrienes
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karlsson Lind, L.; von Euler, M.; Korkmaz, S.; Schenck-Gustafsson, K. Sex differences in drugs: The development of a comprehensive knowledge base to improve gender awareness prescribing. Biol. Sex Differ. 2017, 8, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alswat, K.A. Gender disparities in osteoporosis. J. Clin. Med. Res. 2017, 9, 382–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuseini, H.; Newcomb, D.C. Mechanisms driving gender differences in asthma. Curr. Allergy Asthma Rep. 2017, 17, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, W.F.; Wood, C.; Reed, M.L.; Roy, J.; Lipton, R.B. Cumulative Lifetime Migraine Incidence in Women and Men. Cephalalgia 2008, 28, 1170–1178. [Google Scholar] [CrossRef]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef]
- Chang, L.; Heitkemper, M.M. Gender differences in irritable bowel syndrome. Gastroenterology 2002, 123, 1686–1701. [Google Scholar] [CrossRef] [PubMed]
- Ngo, S.T.; Steyn, F.J.; McCombe, P.A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 2014, 35, 347–369. [Google Scholar] [CrossRef] [Green Version]
- van Vollenhoven, R.F. Sex differences in rheumatoid arthritis: More than meets the eye. BMC Med. 2009, 7, 12–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutler, B.D.; Ulanja, M.B.; Krishan, R.; Aluru, V.; Ndukwu, M.L.; Hagen, M.M.; Dupin, Z.D.; Willyard, C.E.; Moody, A.E.; Boampong-Konam, K.; et al. Sociodemographic Characteristics as Predictors of Outcomes in Hepatocellular Carcinoma: A Retrospective Cohort Study. Cancer Control 2020, 27, 1–11. [Google Scholar] [CrossRef]
- . Gao, Z.; Chen, Z.; Sun, A.; Deng, X. Gender differences in cardiovascular disease. Med. Nov. Technol. Devices 2019, 4, 100025. [Google Scholar] [CrossRef]
- . Cho, D.-H.; Choi, J.; Kim, M.-N.; Kim, H.-L.; Kim, Y.H.; Na, J.O.; Jeong, J.-O.; Yoon, H.J.; Shin, M.-S.; Kim, M.-A.; et al. Gender differences in the presentation of chest pain in obstructive coronary artery disease: Results from the Korean Women’s Chest Pain Registry. Korean J. Intern. Med. 2020, 35, 582–592. [Google Scholar] [CrossRef] [Green Version]
- Fleisch, J.; Fleisch, M.C.; Thurmann, P.A. Women in early-phase clinical drug trials: Have things changed over the past 20 years? Clin. Pharmacol. Ther. 2005, 78, 445–452. [Google Scholar] [CrossRef]
- Müllner, M.; Vamvakas, S.; Rietschel, M.; Van Zwieten-Boot, B. Are women appropriately represented and assessed in clinical trials submitted for marketing authorization? A review of the database of the European Medicines Agency. Int. J. Clin. Pharmacol. Ther. 2007, 45, 477–484. [Google Scholar] [CrossRef]
- Franconi, F.; Campesi, I. Sex and gender influences on pharmacological response: An overview. Expert Rev. Clin. Pharmacol. 2014, 7, 469–485. [Google Scholar] [CrossRef]
- Klein, S.L.; Schiebinger, L.; Stefanick, M.L.; Cahill, L.; Danska, J.; De Vries, G.J.; Kibbe, M.R.; McCarthy, M.M.; Mogil, J.S.; Woodruff, T.K.; et al. Opinion: Sex inclusion in basic research drives discovery. Proc. Natl. Acad. Sci. USA 2015, 112, 5257–5258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, M.; Aweeka, F.; Greenblatt, R.M.; Blaschke, T.F. Sex differences in pharmacokinetics and pharmacodynamics. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 499–523. [Google Scholar] [CrossRef]
- Schwartz, J.B. The influence of sex on pharmacokinetics. Clin. Pharmacokinet. 2003, 42, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.Z.; Benet, L.Z.; Schwartz, J.B. Gender effects in pharmacokinetics and pharmacodynamics. Drugs 1995, 50, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E. Gender-related differences in pharmacokinetics and their clinical significance. J. Clin. Pharm. Ther. 1999, 24, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Riedl, T.; Gottardi, R.; Czejka, M.; Kautzky-Willer, A. Sex-Related Differences in Pharmacokinetics and Pharmacodynamics of Frequently Prescribed Drugs: A Review of the Literature. Adv. Ther. 2020, 37, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Merz, N.B.; Barnes, P.J.; Brinton, R.D.; Carrero, J.-J.; DeMeo, D.L.; De Vries, G.J.; Epperson, C.N.; Govindan, R.; Klein, S.L.; et al. Sex and gender: Modifiers of health, disease, and medicine. Lancet 2020, 396, 565–582. [Google Scholar] [CrossRef]
- Bartz, D.; Chitnis, T.; Kaiser, U.B.; Rich-Edwards, J.W.; Rexrode, K.M.; Pennell, P.B.; Goldstein, J.M.; O’Neal, M.A.; LeBoff, M.; Behn, M.; et al. Clinical advances in sex- and gender-informed medicine to improve the health of all: A review. JAMA Intern. Med. 2020, 180, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.M.; Biswas, P.N.; Freemantle, S.N.; Pearce, G.L.; Mann, R.D. Age and sex distribution of suspected adverse drug reactions to newly marketed drugs in general practice in England: Analysis of 48 cohort studies. Br. J. Clin. Pharmacol. 1998, 46, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabas, I.; Glass, C.K. Anti-inflammatory therapy in chronic disease: Challenges and opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Al-Attar, A.; Presnell, S.R.; Peterson, C.A.; Thomas, D.; Lutz, C.T. The effect of sex on immune cells in healthy aging: Elderly women have more robust natural killer lymphocytes than do elderly men. Mech. Ageing Dev. 2016, 156, 25–33. [Google Scholar] [CrossRef]
- Bupp, M.R.G.; Potluri, T.; Fink, A.L.; Klein, S.L. The Confluence of Sex Hormones and Aging on Immunity. Front. Immunol. 2018, 9, 1269. [Google Scholar] [CrossRef]
- Ursin, R.L.; Shapiro, J.R.; Klein, S.L. Sex-biased immune responses following SARS-CoV-2 infection. Trends Microbiol. 2020, 28, 952–954. [Google Scholar] [CrossRef]
- Global Health 50/50. The Sex, Gender and Covid-19 Project. The COVID-19 sex-Disaggregated Data Tracker. Available online: https://globalhealth5050.org (accessed on 9 February 2021).
- Takahashi, T.; Ellingson, M.K.; Wong, P.; Israelow, B.; Lucas, C.; Klein, J.; Silva, J.; Mao, T.; Oh, J.E.; Tokuyama, M.; et al. Sex differences in immune responses that underlie COVID-19 disease outcomes. Nature 2020, 588, 315–320. [Google Scholar] [CrossRef]
- van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; et al. Presence of genetic variants among young men with severe COVID-19. JAMA 2020, 324, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.-H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Auto-antibodies against type I IFNs in patients with life-threatening COVID-19. Sciences 2020, 370, eabd4585. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Pekosz, A.; Park, H.-S.; Ursin, R.L.; Shapiro, J.R.; Benner, S.E.; Littlefield, K.; Kumar, S.; Naik, H.M.; Betenbaugh, M.J.; et al. Sex, age, and hospitalization drive antibody responses in a COVID-19 convalescent plasma donor population. J. Clin. Investig. 2020, 130, 6141–6150. [Google Scholar] [CrossRef]
- Wray, S.; Arrowsmith, S. The physiological mechanisms of the sex-based difference in outcomes of COVID19 infection. Front. Physiol. 2021, 12, 627260. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.H. A review of vaccine effects on women in light of the COVID-19 pandemic. Taiwan J. Obstet. Gynecol. 2020, 59, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, V.M.M.M.; Janssen, E.B.N.J.; van Bussel, B.C.T.; Jorissen, L.L.M.; Tas, J.; Sels, J.E.M.; Bergmans, D.C.J.J.; Dinh, T.H.T.; van Kuijk, S.M.J.; Hana, A.; et al. The “sex gap” in COVID-19 trials: A scoping review. E Clin. Med. 2020, 29, 100652. [Google Scholar]
- Ansar Ahmed, S.; Penhale, W.J.; Talal, N. Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. Am. J. Pathol. 1985, 121, 531–551. [Google Scholar]
- Bizzarro, A.; Valentini, G.; Di Martino, G.; Daponte, A.; De Bellis, A.; Iacono, G. Influence of Testosterone Therapy on Clinical and Immunological Features of Autoimmune Diseases Associated with Klinefelter’s Syndrome. J. Clin. Endocrinol. Metab. 1987, 64, 32–36. [Google Scholar] [CrossRef]
- Koçar, I.H.; Yesilova, Z.; Özata, M.; Turan, M.; Sengül, A.; Özdemir, I.Ç. The effect of testosterone replacement treatment on immunological features of patients with Klinefelter’s syndrome. Clin. Exp. Immunol. 2000, 121, 448–452. [Google Scholar] [CrossRef]
- Bouman, A.; Heineman, M.J.; Faas, M.M. Sex hormones and the immune response in humans. Hum. Reprod. Update 2005, 11, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Khasar, S.G.; Isenberg, W.M.; Miao, F.J.-P.; Gear, R.W.; Green, P.G.; Levine, J.D. Gender and gonadal hormone effects on vagal modulation of tonic nociception. J. Pain 2001, 2, 91–100. [Google Scholar] [CrossRef]
- Straub, R.H. The complex role of estrogens in inflammation. Endocr. Rev. 2007, 28, 521–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, S.; Sautebin, L.; Werz, O. Sex-biased eicosanoid biology: Impact for sex differences in inflammation and consequences for pharmacotherapy. Biochem. Pharmacol. 2017, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Leresche, L. Defining gender disparities in pain management. Clin. Orthop. Relat. Res. 2011, 469, 1871–1877. [Google Scholar] [CrossRef] [Green Version]
- Neutel, C.I.; Maxwell, C.J.; Appel, W.C. Differences between males and females in risk of NSAID-related severe gastrointestinal events. Pharmacoepidemiol. Drug Saf. 1999, 8, 501–507. [Google Scholar] [CrossRef]
- Castellsague, J.; Holick, C.N.; Hoffman, C.C.; Gimeno, V.; Stang, M.R.; Perez-Gutthann, S. Risk of upper gastrointestinal complications associated with cyclooxygenase-2 selective and nonselective nonsteroidal antiinflammatory drugs. Pharmacotherapy 2009, 29, 1397–1407. [Google Scholar] [CrossRef]
- Soussan, C.; Gouraud, A.; Portolan, G.; Jean-Pastor, M.-J.; Pecriaux, C.; Montastruc, J.-L.; Damase-Michel, C.; Lacroix, I. Drug-induced adverse reactions via breastfeeding: A descriptive study in the French Pharmacovigilance Database. Eur. J. Clin. Pharmacol. 2014, 70, 1361–1366. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, I.; Lapeyre-Mestre, M.; Bagheri, H.; Pathak, A.; Montastruc, J. General Practitioner the Club de Reflexion des cabinets de Groupe de Gastro-Enterologie (CREGG) and General Practitioner Networks Nonsteroidal anti-inflammatory drug-induced liver injury: A case-control study in primary care. Fundam. Clin. Pharmacol. 2004, 18, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Leise, M.D.; Poterucha, J.J.; Talwalkar, J.A. Drug-induced liver injury. Mayo Clin. Proc. 2014, 89, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.A.G.; Williams, R.; Derby, L.E.; Dean, A.D.; Jick, H. Acute Liver Injury Associated With Nonsteroidal Anti-inflammatory Drugs and the Role of Risk Factors. Arch. Intern. Med. 1994, 154, 311–316. [Google Scholar] [CrossRef]
- Samii, A.; Etminan, M.; Wiens, M.O.; Jafari, S. NSAID use and the risk of Parkinson’s disease: Systematic review and meta-analysis of observational studies. Drugs Aging 2009, 26, 769–779. [Google Scholar] [CrossRef] [PubMed]
- Chiang, N.; Bermudez, E.A.; Ridker, P.M.; Hurwitz, S.; Serhan, C.N. Aspirin triggers antiinflammatory 15-epi-lipoxin A4 and inhibits thromboxane in a randomized human trial. Proc. Natl. Acad. Sci. USA 2004, 101, 15178–15183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiang, N.; Hurwitz, S.; Ridker, P.M.; Serhan, C.N. Aspirin has a gender-dependent impact on antiinflammatory 15-epi-lipoxin A4 formation: A randomized human trial. Arter. Thromb. Vasc. Biol. 2006, 26, e14–e17. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.E.; Grobbee, D.E.; Stampfer, M.J.; Taylor, J.O.; Goldhaber, S.Z.; Gaziano, J.; Ridker, P.M.; Buring, J.E.; Hennekens, C.H. Aspirin in the primary prevention of angina pectoris in a randomized trial of United States physicians. Am. J. Med. 1990, 89, 772–776. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V. Therapeutic implications of the gender-specific aspects of cardiovascular disease. Nat. Rev. Drug Discov. 2006, 5, 425–438. [Google Scholar] [CrossRef]
- Zuern, C.S.; Lindemann, S.; Gawaz, M. Platelet function and response to aspirin: Gender-specific features and implications for female thrombotic risk and management. Semin. Thromb. Hemost. 2009, 35, 295–306. [Google Scholar] [CrossRef]
- Ho, P.C.; Triggs, E.J.; Bourne, D.W.; Heazlewood, V.J. The effects of age and sex on the disposition of acetylsalicylic acid and its metabolites. Br. J. Clin. Pharmacol. 1985, 19, 675–684. [Google Scholar] [CrossRef]
- Schwartz, J.B. Gender-specific implications for cardiovascular medication use in the elderly optimizing therapy for older women. Cardiol. Rev. 2003, 11, 275–298. [Google Scholar] [CrossRef]
- Ahsberg, K.; Höglund, P.; Kim, W.-H.; Von Holstein, C.S. Impact of aspirin, NSAIDs, warfarin, corticosteroids and SSRIs on the site and outcome of non-variceal upper and lower gastrointestinal bleeding. Scand. J. Gastroenterol. 2010, 45, 1404–1415. [Google Scholar] [CrossRef]
- Okada, K.; Inamori, M.; Imajyo, K.; Chiba, H.; Nonaka, T.; Shiba, T.; Sakaguchi, T.; Atsukawa, K.; Takahashi, H.; Hoshino, E.; et al. Gender differences of low-dose aspirin-associated gastroduodenal ulcer in Japanese patients. World J. Gastroenterol. 2010, 16, 1896–1900. [Google Scholar] [CrossRef]
- Fillingim, R.B. Sex, gender, and pain. In Principles of Gender-Specific Medicine, 3rd ed.; Legato, M.J., Ed.; Academic Press: San Diego, CA, USA, 2017; pp. 481–496. [Google Scholar]
- Butcher, B.E.; Carmody, J.J. Sex differences in analgesic response to ibuprofen are influenced by expectancy: A randomized, crossover, balanced placebo-designed study. Eur. J. Pain 2012, 16, 1005–1013. [Google Scholar] [CrossRef]
- Walker, J.S.; Carmody, J.J. Experimental pain in healthy human subjects: Gender differences in nociception and in response to ibuprofen. Anesth. Analg. 1998, 86, 1257–1262. [Google Scholar]
- Ryan, J.L.; Jureidini, B.; Hodges, J.S.; Baisden, M.; Swift, J.Q.; Bowles, W.R. Gender Differences in Analgesia for Endodontic Pain. J. Endod. 2008, 34, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Craft, R.M.; Mogil, J.S.; Aloisi, A.M. Sex differences in pain and analgesia: The role of gonadal hormones. Eur. J. Pain 2004, 8, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.D.; Brater, D.C.; Tierney, W.M.; Hui, S.L.; McDonald, C.J. Ibuprofen-associated Renal Impairment in a Large General Internal Medicine Practice. Am. J. Med. Sci. 1990, 299, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Banks, A.T.; Zimmerman, H.J.; Ishak, K.G.; Harter, J.G. Diclofenac-associated hepatotoxicity: Analysis of 180 cases reported to the Food and Drug Administration as adverse reactions. Hepatology 1995, 22, 820–827. [Google Scholar] [CrossRef]
- O’Connor, N.; Dargan, P.I.; Jones, A.L. Hepatocellular damage from non-steroidal anti-inflammatory drugs. QJM 2003, 96, 787–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Diabetes and Digestive and Kidney Diseases. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury: Diclofenac; National Institutes of Health: Bethesda, MD, USA, 2012.
- Mennecozzi, M.; Landesmann, B.; Palosaari, T.; Harris, G.; Whelan, M. Sex differences in liver toxicity-do female and male human primary hepatocytes react differently to toxicants in vitro? PLoS ONE 2015, 10, e0122786. [Google Scholar] [CrossRef] [PubMed]
- Karlsson Lind, L.; Loikas, D. Janusmed Sex and Gender: Diclofenac. Available online: https://janusinfo.se/beslutsstod/janusmedkonochgenus/janusmedsexandgender/database/diclofenac.4.492f438316ec5fbe7121097b.html (accessed on 12 October 2020).
- Rugstad, H.E.; Hundal, Ø.; Holme, I.; Herland, O.B.; Husby, G.; Giercksky, K.-E. Piroxicam and naproxen plasma concentrations in patients with osteoarthritis: Relation to age, sex, efficacy and adverse events. Clin. Rheumatol. 1986, 5, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Modeling sex differences in pharmacokinetics, pharmacodynamics, and disease progression effects of naproxen in rats with collagen-induced arthritis. Drug Metabol. Disp. 2017, 45, 484–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demyanets, S.; Wojta, J. Sex Differences in Effects and Use of Anti-Inflammatory Drugs; Regitz-Zagrosek, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 214. [Google Scholar]
- Cascales Perez, S.; Ruiz Cantero, M.T.; Pardo, M.A. Clinical trials with rofecoxib: Analysis of the information from the gender perspective. Med. Clin. 2003, 120, 207–212. [Google Scholar]
- Trombetta, D.; Imbesi, S.; Vita, G.; Isola, S.; Minciullo, P.L.; Saija, A.; Gangemi, S. Possible link between history of hypersensitivity to a specific non-steroidal anti-inflammatory drug (NSAID) and positive results following challenge test to alternative NSAIDS. Arzneimittelforschung 2009, 59, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Curtis, S.P.; FitzGerald, G.A.; Krum, H.; Kaur, A.; Bolognese, J.A.; Reicin, A.S.; Bombardier, C.; Weinblatt, M.E.; van der Heijde, D.; et al. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: A randomised comparison. Lancet 2006, 368, 1771–1781. [Google Scholar] [CrossRef]
- Cherney, D.Z.I.; Scholey, J.W.; Nasrallah, R.; Dekker, M.G.; Slorach, C.; Bradley, T.J.; Hebert, R.L.; Sochett, E.B.; Miller, J.A. Renal hemodynamic effect of cyclooxygenase 2 inhibition in young men and women with uncomplicated type 1 diabetes mellitus. Am. J. Physiol. Physiol. 2008, 294, F1336–F1341. [Google Scholar] [CrossRef] [Green Version]
- Duma, D.; Collins, J.B.; Chou, J.W.; Cidlowski, J.A. Sexually Dimorphic Actions of Glucocorticoids Provide a Link to Inflammatory Diseases with Gender Differences in Prevalence. Sci. Signal. 2010, 3, ra74. [Google Scholar] [CrossRef] [Green Version]
- Kurina, L.M.; Weiss, L.A.; Graves, S.W.; Parry, R.; Williams, G.H.; Abney, M.; Ober, C. Sex Differences in the Genetic Basis of Morning Serum Cortisol Levels: Genome-Wide Screen Identifies Two Novel Loci Specific to Women. J. Clin. Endocrinol. Metab. 2005, 90, 4747–4752. [Google Scholar] [CrossRef] [Green Version]
- Raven, P.W.; Taylor, N.F. Sex differences in the human metabolism of cortisol. Endocr. Res. 1996, 22, 751–755. [Google Scholar] [CrossRef]
- Rosmond, R.; Wallerius, S.; Wanger, P.; Martin, L.; Holm, G.; Bjorntorp, P. A 5-year follow-up study of disease incidence in men with an abnormal hormone pattern. J. Intern. Med. 2003, 254, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Kaminski, H.J.; McPherson, T.; Feese, M.; Cutter, G. Gender differences in prednisone adverse effects: Survey result from the MG registry. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e507. [Google Scholar] [CrossRef] [Green Version]
- Lew, K.H.; Ludwig, E.A.; Milad, M.A.; Donovan, K.; Middleton, E., Jr.; Ferry, J.J.; Jusko, W.J. Gender-based effects on methylprednisolone pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 1993, 54, 402–414. [Google Scholar] [CrossRef] [Green Version]
- Thurmann, P.A.; Hompesch, B.C. Influence of gender on the pharmacokinetics and pharmacodynamics of drugs. Int. J. Clin. Pharmacol. Ther. 1998, 36, 586–590. [Google Scholar]
- Charmandari, E.; Hindmarsh, P.C.; Johnston, A.; Brook, C.G. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Alterations in cortisol pharmacokinetics at puberty. J. Clin. Endocrinol. Metab. 2001, 86, 2701–2708. [Google Scholar] [CrossRef]
- Burmester, G.R.; Mariette, X.; Montecucco, C.; Monteagudo-Saez, I.; Malaise, M.; Tzioufas, A.G.; Bijlsma, J.W.; Unnebrink, K.; Kary, S.; Kupper, H. Adalimumab alone and in combination with disease-modifying antirheumatic drugs for the treatment of rheumatoid arthritis in clinical practice: The Research in Active Rheumatoid Arthritis (ReAct) trial. Ann. Rheum. Dis. 2007, 66, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, S.; Amorotti, E.; Vecchio, S.; De Leon, M.P.; Roncucci, L. Infliximab-related hepatitis: Discussion of a case and review of the literature. Intern. Emerg. Med. 2010, 5, 193–200. [Google Scholar] [CrossRef]
- Williams, V.L.; Cohen, P.R. TNF alpha antagonist-induced lupus-like syndrome: Report and review of the literature with implications for treatment with alternative TNF alpha antagonists. Int. J. Dermatol. 2011, 50, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Zelinkova, Z.; Bultman, E.; Vogelaar, L.; Bouziane, C.; Kuipers, E.J.; van der Woude, C.J. Sex-dimorphic adverse drug reactions to immune suppressive agents in inflammatory bowel disease. World J. Gastroenterol. 2012, 18, 6967–6973. [Google Scholar] [CrossRef] [PubMed]
- Fidder, H.; Schnitzler, F.; Ferrante, M.; Noman, M.; Katsanos, K.; Segaert, S.; Henckaerts, L.; Van Assche, G.; Vermeire, S.; Rutgeerts, P. Long-term safety of infliximab for the treatment of inflammatory bowel disease: A single-centre cohort study. Gut 2008, 58, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Crandall, W.V.; Mackner, L.M. Infusion reactions to infliximab in children and adolescents: Frequency, outcome and a predictive model. Aliment. Pharmacol. Ther. 2003, 17, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Johnston, N.W.; Mandhane, P.J.; Dai, J.; Duncan, J.M.; Greene, J.M.; Lambert, K.; Sears, M.R. Attenuation of the September Epidemic of Asthma Exacerbations in Children: A Randomized, Controlled Trial of Montelukast Added to Usual Therapy. Pediatrics 2007, 120, e702–e712. [Google Scholar] [CrossRef]
- Pergola, C.; Rogge, A.; Dodt, G.; Northoff, H.; Weinigel, C.; Barz, D.; Radmark, O.; Sautebin, L.; Werz, O. Testosterone suppresses phospholipase D, causing sex differences in leukotriene biosynthesis in human monocytes. FASEB J. 2011, 25, 3377–3387. [Google Scholar] [CrossRef] [PubMed]
- Pergola, C.; Dodt, G.; Rossi, A.; Neunhoeffer, E.; Lawrenz, B.; Northoff, H.; Samuelsson, B.; Rådmark, O.; Sautebin, L.; Werz, O. ERK-mediated regulation of leukotriene biosynthesis by androgens: A molecular basis for gender differences in inflammation and asthma. Proc. Natl. Acad. Sci. USA 2008, 105, 19881–19886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, S.; Pergola, C.; Dehm, F.; Rossi, A.; Gerstmeier, J.; Troisi, F.; Pein, H.; Schaible, A.M.; Weinigel, C.; Rummler, S.; et al. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J. Clin. Investig. 2017, 127, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Sex Gender Sensitive Research Call to Action Group; Wainer, Z.; Carcel, C. Sex and gender in health research: Updating policy to reflect evidence. Med. J. Aust. 2020, 212, 57–62.e51. [Google Scholar] [PubMed] [Green Version]
- European Medicines Agency. Gender Considerations in the Conduct of Clinical Trials. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-gender-considerations-conduct-clinical-trials-step-5_en.pdf (accessed on 27 November 2020).
- US Food and Drug Administration. Regulations, Guidance, and Reports Related to Women’s Health. Available online: https://www.fda.gov/science-research/womens-health-research/regulations-guidance-and-reports-related-womens-health (accessed on 27 November 2020).
- Clayton, J.A.; Tannenbaum, C. Reporting sex, gender, or both in clinical research? JAMA 2016, 316, 1863–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leopold, S.S.; Beadling, L.; Dobbs, M.B.; Gebhardt, M.C.; Lotke, P.A.; Manner, P.A.; Rimnac, C.M.; Wongworawat, M.D. Fairness to all: Gender and sex in scientific reporting. Clin. Orthop. Relat. Res. 2014, 472, 391–392. [Google Scholar] [CrossRef] [Green Version]
Immune Component | Characteristic | Sex Difference |
---|---|---|
Sex differences in the innate immune system | ||
TLR pathways | TLR pathway gene expression | Higher in females |
TLR7 expression | Higher in females | |
IL-10 production by TLR9-stimulated PBMCs | Higher in males | |
APCs | APC efficiency | Higher in females |
Dendritic cells | TLR7 activity | Higher in females |
Type 1 interferon activity | Higher in females | |
Macrophages | TLR4 expression | Higher in males |
Activation | Higher in females | |
Phagocytic capacity | Higher in females | |
Pro-inflammatory cytokine production | Higher in males | |
IL-10 production | Higher in females | |
Neutrophils | Phagocytic capacity | Higher in females |
TLR expression | Higher in males | |
NK cells | NK cell numbers | Higher in males |
Sex differences in the adaptive immune system | ||
Thymus | Size of thymus | Larger in males |
T cells | CD4+ T cell counts | Higher in females |
CD4/CD8 T cell ratio | Higher in females | |
CD8+ T cell counts | Higher in males | |
Number of activated T cells | Higher in females | |
T cell proliferation | Greater in females | |
Cytotoxic T cells | Increased cytotoxic activity in females | |
TH1 versus TH2 cell bias | TH2 cell bias in females, TH1 cell bias in males | |
Treg cell numbers | Increased in males | |
B cells | B cell numbers | Increased in females |
Immunoglobulins | Antibody production | Higher in females |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farkouh, A.; Baumgärtel, C.; Gottardi, R.; Hemetsberger, M.; Czejka, M.; Kautzky-Willer, A. Sex-Related Differences in Drugs with Anti-Inflammatory Properties. J. Clin. Med. 2021, 10, 1441. https://doi.org/10.3390/jcm10071441
Farkouh A, Baumgärtel C, Gottardi R, Hemetsberger M, Czejka M, Kautzky-Willer A. Sex-Related Differences in Drugs with Anti-Inflammatory Properties. Journal of Clinical Medicine. 2021; 10(7):1441. https://doi.org/10.3390/jcm10071441
Chicago/Turabian StyleFarkouh, André, Christoph Baumgärtel, Roman Gottardi, Margit Hemetsberger, Martin Czejka, and Alexandra Kautzky-Willer. 2021. "Sex-Related Differences in Drugs with Anti-Inflammatory Properties" Journal of Clinical Medicine 10, no. 7: 1441. https://doi.org/10.3390/jcm10071441
APA StyleFarkouh, A., Baumgärtel, C., Gottardi, R., Hemetsberger, M., Czejka, M., & Kautzky-Willer, A. (2021). Sex-Related Differences in Drugs with Anti-Inflammatory Properties. Journal of Clinical Medicine, 10(7), 1441. https://doi.org/10.3390/jcm10071441