Effectiveness and Safety of Nadroparin Therapy in Preterm and Term Neonates with Venous Thromboembolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Population
2.3. Data Collection
2.4. Anticoagulation Protocol
2.5. Coagulation Assays
2.6. Outcome Parameters
2.6.1. Therapeutic Target Range
2.6.2. Effectiveness and Safety
2.7. Data Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Therapeutic Target Range
3.3. Effectiveness Endpoints
3.4. Safety Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CRNMB | clinically relevant non-major bleeding |
ELBW | extremely low birth weight |
LMWH | low-molecular-weight-heparin |
TTR | therapeutic target range |
UFH | unfractionated heparin |
VTE | venous thromboembolic event |
VLBW | very low birth weight |
References
- Raffini, L.; Huang, Y.S.; Witmer, C.; Feudtner, C. Dramatic increase in venous thromboembolism in children’s hospitals in the united states from 2001 to 2007. Pediatrics 2009, 124, 1001–1008. [Google Scholar] [CrossRef]
- Boulet, S.L.; Grosse, S.D.; Thornburg, C.D.; Yusuf, H.; Tsai, J.; Hooper, W.C. Trends in venous thromboembolism-related hospitalizations, 1994–2009. Pediatrics 2012, 130, e812–e820. [Google Scholar] [CrossRef] [Green Version]
- Andrew, M.; David, M.; Adams, M.; Ali, K.; Anderson, R.; Barnard, D.; Bernstein, M.; Brisson, L.; Cairney, B.; DeSai, D.; et al. Venous thromboembolic complications (vte) in children: First analyses of the canadian registry of vte. Blood 1994, 83, 1251–1257. [Google Scholar] [CrossRef]
- van Ommen, C.H.; Heijboer, H.; Buller, H.R.; Hirasing, R.A.; Heijmans, H.S.; Peters, M. Venous thromboembolism in childhood: A prospective two-year registry in the netherlands. J. Pediatr. 2001, 139, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monagle, P.; Chan, A.K.; Goldenberg, N.A.; Ichord, R.N.; Journeycake, J.M.; Nowak-Gottl, U.; Vesely, S.K.; American College of Chest Physicians. Antithrombotic therapy in neonates and children: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 2012, 141, e737S–e801S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malowany, J.I.; Knoppert, D.C.; Chan, A.K.; Pepelassis, D.; Lee, D.S. Enoxaparin use in the neonatal intensive care unit: Experience over 8 years. Pharmacotherapy 2007, 27, 1263–1271. [Google Scholar] [CrossRef]
- Law, C.; Raffini, L. A guide to the use of anticoagulant drugs in children. Paediatr. Drugs 2015, 17, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Revel-Vilk, S. The conundrum of neonatal coagulopathy. Hematol. Am. Soc. Hematol. Educ. Program. 2012, 2012, 450–454. [Google Scholar] [CrossRef]
- Nohe, N.; Flemmer, A.; Rumler, R.; Praun, M.; Auberger, K. The low molecular weight heparin dalteparin for prophylaxis and therapy of thrombosis in childhood: A report on 48 cases. Eur. J. Pediatr. 1999, 158 (Suppl. 3), S134–S139. [Google Scholar] [CrossRef]
- Newall, F.; Ignjatovic, V.; Johnston, L.; Summerhayes, R.; Lane, G.; Cranswick, N.; Monagle, P. Age is a determinant factor for measures of concentration and effect in children requiring unfractionated heparin. Thromb. Haemost 2010, 103, 1085–1090. [Google Scholar] [PubMed] [Green Version]
- Klaassen, I.L.M.; Sol, J.J.; Suijker, M.H.; Fijnvandraat, K.; van de Wetering, M.D.; Heleen van Ommen, C. Are low-molecular-weight heparins safe and effective in children? A systematic review. Blood Rev. 2019, 33, 33–42. [Google Scholar] [CrossRef]
- van Ommen, C.H.; van den Dool, E.J.; Peters, M. Nadroparin therapy in pediatric patients with venous thromboembolic disease. J. Pediatr. Hematol. Oncol. 2008, 30, 230–234. [Google Scholar] [CrossRef]
- Sol, J.J.; van de Loo, M.; Boerma, M.; Bergman, K.A.; Donker, A.E.; van der Hoeven, M.; Hulzebos, C.V.; Knol, R.; Djien Liem, K.; van Lingen, R.A.; et al. Neonatal central-venous line observational study on thrombosis (neoclot): Evaluation of a national guideline on management of neonatal catheter-related thrombosis. BMC Pediatr. 2018, 18, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, L.G.; Goldenberg, N.A.; Male, C.; Kenet, G.; Monagle, P.; Nowak-Gottl, U.; Perinatal and Paediatric Haemostasis Subcommittee of the SSC of the ISTH. Definition of clinical efficacy and safety outcomes for clinical trials in deep venous thrombosis and pulmonary embolism in children. J. Thromb. Haemost. 2011, 9, 1856–1858. [Google Scholar] [CrossRef]
- Curley, A.; Venkatesh, V.; Stanworth, S.; Clarke, P.; Watts, T.; New, H.; Willoughby, K.; Khan, R.; Muthukumar, P.; Deary, A. Platelets for neonatal transfusion-study 2: A randomised controlled trial to compare two different platelet count thresholds for prophylactic platelet transfusion to preterm neonates. Neonatology 2014, 106, 102–106. [Google Scholar] [CrossRef]
- Raets, M.M.; Sol, J.J.; Govaert, P.; Lequin, M.H.; Reiss, I.K.; Kroon, A.A.; Appel, I.M.; Dudink, J. Serial cranial us for detection of cerebral sinovenous thrombosis in preterm infants. Radiology 2013, 269, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Laporte, S.; Mismetti, P.; Piquet, P.; Doubine, S.; Touchot, A.; Decousus, H. Population pharmacokinetic of nadroparin calcium (fraxiparine) in children hospitalised for open heart surgery. Eur. J. Pharm. Sci. 1999, 8, 119–125. [Google Scholar] [CrossRef]
- Kuhle, S.; Massicotte, P.; Dinyari, M.; Vegh, P.; Mitchell, D.; Marzinotto, V.; Chan, A.; Pieniaszek, H.; Mitchell, L.G. Dose-finding and pharmacokinetics of therapeutic doses of tinzaparin in pediatric patients with thromboembolic events. Thromb. Haemost. 2005, 94, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Gottl, U.; Bidlingmaier, C.; Krumpel, A.; Gottl, L.; Kenet, G. Pharmacokinetics, efficacy, and safety of lmwhs in venous thrombosis and stroke in neonates, infants and children. Br. J. Pharmacol. 2008, 153, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Trame, M.N.; Mitchell, L.; Krumpel, A.; Male, C.; Hempel, G.; Nowak-Gottl, U. Population pharmacokinetics of enoxaparin in infants, children and adolescents during secondary thromboembolic prophylaxis: A cohort study. J. Thromb. Haemost. 2010, 8, 1950–1958. [Google Scholar] [CrossRef] [PubMed]
- Malowany, J.I.; Monagle, P.; Knoppert, D.C.; Lee, D.S.; Wu, J.; McCusker, P.; Massicotte, M.P.; Williams, S.; Chan, A.K.; Canadian Paediatric, T.; et al. Enoxaparin for neonatal thrombosis: A call for a higher dose for neonates. Thromb. Res. 2008, 122, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Haidl, H.; Cimenti, C.; Leschnik, B.; Zach, D.; Muntean, W. Age-dependency of thrombin generation measured by means of calibrated automated thrombography (cat). Thromb. Haemost. 2006, 95, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.K.; Berry, L.R.; Monagle, P.T.; Andrew, M. Decreased concentrations of heparinoids are required to inhibit thrombin generation in plasma from newborns and children compared to plasma from adults due to reduced thrombin potential. Thromb. Haemost. 2002, 87, 606–613. [Google Scholar] [PubMed] [Green Version]
- Harmoinen, A.; Ylinen, E.; Ala-Houhala, M.; Janas, M.; Kaila, M.; Kouri, T. Reference intervals for cystatin c in pre- and full-term infants and children. Pediatr. Nephrol. 2000, 15, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Chander, A.; Nagel, K.; Wiernikowski, J.; Paes, B.; Chan, A.K.; Thrombosis and Hemostasis in Newborns (THiN) Group. Evaluation of the use of low-molecular-weight heparin in neonates: A retrospective, single-center study. Clin. Appl. Thromb. Hemost 2013, 19, 488–493. [Google Scholar] [CrossRef]
- Lulic-Botica, M.; Rajpurkar, M.; Sabo, C.; Tutag-Lehr, V.; Natarajan, G. Fluctuations of anti-xa concentrations during maintenance enoxaparin therapy for neonatal thrombosis. Acta Paediatr. 2012, 101, e147–e150. [Google Scholar] [CrossRef] [PubMed]
- Tousovska, K.; Zapletal, O.; Skotakova, J.; Bukac, J.; Sterba, J. Treatment of deep venous thrombosis with low molecular weight heparin in pediatric cancer patients: Safety and efficacy. Blood Coagul. Fibrinolysis 2009, 20, 583–589. [Google Scholar] [CrossRef]
- Bauman, M.E.; Belletrutti, M.J.; Bajzar, L.; Black, K.L.; Kuhle, S.; Bauman, M.L.; Patricia Massicotte, M. Evaluation of enoxaparin dosing requirements in infants and children. Better dosing to achieve therapeutic levels. Thromb. Haemost. 2009, 101, 86–92. [Google Scholar]
- Bauman, M.E.; Black, K.L.; Bauman, M.L.; Belletrutti, M.; Bajzar, L.; Massicotte, M.P. Novel uses of insulin syringes to reduce dosing errors: A retrospective chart review of enoxaparin whole milligram dosing. Thromb. Res. 2009, 123, 845–847. [Google Scholar] [CrossRef]
- van Elteren, H.A.; Te Pas, A.B.; Kollen, W.J.; Walther, F.J.; Lopriore, E. Severe hemorrhage after low-molecular-weight heparin treatment in a preterm neonate. Neonatology 2011, 99, 247–249. [Google Scholar] [CrossRef]
- van Elteren, H.A.; Veldt, H.S.; Te Pas, A.B.; Roest, A.A.; Smiers, F.J.; Kollen, W.J.; Sramek, A.; Walther, F.J.; Lopriore, E. Management and outcome in 32 neonates with thrombotic events. Int. J. Pediatr. 2011, 2011, 217564. [Google Scholar] [CrossRef] [PubMed]
- Obaid, L.; Byrne, P.J.; Cheung, P.Y. Compartment syndrome in an elbw infant receiving low-molecular-weight heparins. J. Pediatr. 2004, 144, 549. [Google Scholar] [CrossRef] [PubMed]
- Streif, W.; Goebel, G.; Chan, A.K.; Massicotte, M.P. Use of low molecular mass heparin (enoxaparin) in newborn infants: A prospective cohort study of 62 patients. Arch. Dis. Child. Fetal. Neonatal. Ed. 2003, 88, F365–F370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Total Group | Group 1 | Group 2 | p-Value |
---|---|---|---|---|
Sex | ||||
Male | n = 34 (55.7%) | n = 15 (55.6%) | n = 19 (55.9%) | 0.98 a |
Female | n = 27 (44.3%) | n = 12 (44.4%) | n = 15 (44.1%) | |
Gestational Age | ||||
Median, range weeks | 30.3 (24–40.7) | 26.6 (24–40.7) | 32,7 (24.4–39.7) | 0.067 b |
<28 weeks | n = 25 (41.0%) | n = 15 (55.6%) | n = 10 (29.4%) | |
28–32 weeks | n = 10 (16.4%) | n = 3 (11.1%) | n = 7 (20.6%) | |
32–37 weeks | n = 9 (14.8%) | n = 4 (14.8%) | n = 5 (14.7 %) | |
≥37 weeks | n = 17 (27.9%) | n = 5 (18.5%) | n = 12 (35.3%) | |
Birth Weight | ||||
Median, range in kilogram | 1.16 (0.4–4.35) c | 0.96 (0.40–4.35) c | 1.60 (0.43–3.90) | 0.027 b |
Weight at start Nadroparin | ||||
Median, range in kilogram | 1.80 (0.53–4.30) | 1.09 (0.53–4.30) | 2.45 (0.72–3.89) | 0.007 b |
Age at start Nadroparin | ||||
Median, range in days | 16 (1–124) | 14 (1–58) | 16 (3–124) | 0.352 b |
Number of VTE episodes | n = 64 d | n = 28 | n = 36 | |
Location thrombus | ||||
Right atrium | n = 22 (34.4%) | n = 14 (50.0%) | n = 8 (22.2%) | |
Cerebral sinovenous thrombosis | n = 12 (18.8%) e | n = 8 (28.6%) | n = 4 (11.1%) e | |
Subclavian/Jugular vein | n = 8 (12.5%) | n = 1 (3.6%) | n = 7 (19.4%) | |
Renal vein | n = 6 (9.4%) | n = 2 (7.1%) | n = 4 (11.1%) | |
Deep venous thrombosis of the legs | n = 6 (9.4%) | n = 1 (3.6%) | n = 5 (13.9%) | |
Inferior caval/Umbilical/Hepatic vein | n = 5 (7.8%) | n = 0 (0%) | n = 5 (13.9%) | |
Deep venous thrombosis of the arms | n = 2 (3.1%) | n = 0 (0%) | n = 2 (5.6%) | |
Portal vein | n = 2 (3.1%) | n = 1 (3.6%) | n = 1 (2.8%) | |
Pulmonary embolism | n = 1 (1.6%) | n = 1 (3.6%) | n = 0 (0%) | |
Associated risk factors | ||||
Central venous catheters | n = 47 (73.4%) | n = 16 (57.1%) | n = 31 (86.1%) | 0.036 a |
(Suspicion of) Sepsis | n = 24 (37.5%) | n = 11 (39.3%) | n = 13 (36.1%) | 0.801 a |
Congenital heart disease | n = 13 (20.3%) | n = 2 (7.1%) | n = 11 (30.6%) | 0.028 a |
Initial dose of Nadroparin | 146.6 (60.9–228.6) | 117.9 (60.9–167.0) | 166.1 (121.4–228.6) | 0.000 b |
Median, range (IU/kg/12 h) |
Total Group | Group 1 | Group 2 | p-Value | |
---|---|---|---|---|
64 VTE episodes | 28 VTE episodes | 36 VTE episodes | ||
Initial dose of Nadroparin | ||||
Median, range (IU/kg/12 h) | 146.6 (60.9–228.6) | 117.9 (60.9–167.0) | 166.1 (121.4–228.6) | 0.000 a |
Reaching TTR b after initial dose | ||||
number | 11 (17.2%) | n = 6 (21.4%) | n = 5 (13.9%) | 0.513 c |
TTR achievement, number | ||||
All weight categories | 32 (50.0%) | n = 10 (35.7%) | n = 22 (61.1%) | 0.077 c |
Weight > 1.5 kg at start Nadroparin | 22 (34.4%) | n = 6 (21.4%) | n = 16 (44.4%) | |
Weight < 1.5 kg at start Nadroparin | 5 (7.8%) | n = 2 (7.1%) | n = 3 (8.3%) | |
Weight < 1.0 kg at start Nadroparin | 5 (7.8%) | n = 2 (7.1%) | n = 3 (8.3%) | |
Time to reach TTR d | ||||
Median, range in days | 3.5 (1–21) | 3 (1–21) | 4 (1–15) | 0.734 a |
Dose adjustments to reach TTR | ||||
Median, range in number | 1 (0–4) | 0 (0–2) | 2 (0–4) | 0.025 a |
Dose to reach TTR | ||||
Median, range (IU/kg/12 h) | 197.0 (97.9–330.3) | 132.8 (97.9–197.4) | 206.2 (149.2–330.3) | 0.000 a |
Characteristics | Patient 1 | Patient 2 | Patient 3 a | Patient 4 | Patient 5 | Patient 6 a |
---|---|---|---|---|---|---|
Group 1 (2007–2013) or 2 (2014–2017) | 1 | 1 | 1 | 2 | 2 | 2 |
Gestational age (weeks days) | 24+3 | 30+3 | 33+4 | 39+5 | 26+1 | 37+5 |
Weight at time of diagnosis rVTE b (kilogram) | 1.00 | 2.16 | 1.80 | 3.68 | 0.83 | 3.07 |
Age at start nadroparin (days) | 32 | 58 | 17 | 28 | 11 | 9 |
Duration nadroparin therapy before diagnosis rVTE b (days) | 11 | 12 | 3 | 5 | 4 | 2 |
Location thrombus | Right atrium | Right atrium | Right atrium | CSVT c | Right atrium | Right jugular vein |
rVTE b Extension—New | ||||||
Extension | Extension | Extension | Extension | New d | New e | |
Associated Risk Factors | ||||||
Central venous catheter | + | + | + | + | + | + |
Infection | - | - | + f | - | + g | - |
Congenital heart disease | - | - | - | - | - | + |
Initial dose of nadroparin (IU/kg/day) | 220 | 234 | 300 | 264 | 373 | 293 |
Dose of nadroparin at diagnosis rVTE b (IU/kg/day) | 230 | 336 | 300 | 353 | 474 | 391 |
Anti-Xa level at diagnosis rVTEb (IU/mL) | - h | - i | <0.10 | 0.23 | 0.77 | 0.20 |
Changes in therapy after diagnosis rVTE | rTPA j followed by nadroparin ↑ k | Nadroparin ↑ k | UFH l | Nadroparin ↑ k | rTPA j followed by nadroparin ↑ k | UFH l |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sol, J.; Boerma, M.; Klaassen, I.; Simons, S.; Witjes, B.; Wildschut, E.; Reiss, I.; van Ommen, C.H. Effectiveness and Safety of Nadroparin Therapy in Preterm and Term Neonates with Venous Thromboembolism. J. Clin. Med. 2021, 10, 1483. https://doi.org/10.3390/jcm10071483
Sol J, Boerma M, Klaassen I, Simons S, Witjes B, Wildschut E, Reiss I, van Ommen CH. Effectiveness and Safety of Nadroparin Therapy in Preterm and Term Neonates with Venous Thromboembolism. Journal of Clinical Medicine. 2021; 10(7):1483. https://doi.org/10.3390/jcm10071483
Chicago/Turabian StyleSol, Jeanine, Marit Boerma, Irene Klaassen, Sinno Simons, Bregje Witjes, Enno Wildschut, Irwin Reiss, and Cornelia Heleen van Ommen. 2021. "Effectiveness and Safety of Nadroparin Therapy in Preterm and Term Neonates with Venous Thromboembolism" Journal of Clinical Medicine 10, no. 7: 1483. https://doi.org/10.3390/jcm10071483
APA StyleSol, J., Boerma, M., Klaassen, I., Simons, S., Witjes, B., Wildschut, E., Reiss, I., & van Ommen, C. H. (2021). Effectiveness and Safety of Nadroparin Therapy in Preterm and Term Neonates with Venous Thromboembolism. Journal of Clinical Medicine, 10(7), 1483. https://doi.org/10.3390/jcm10071483