Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis
Abstract
:1. Introduction
2. Immune Response in Periodontitis
2.1. Polymorphonuclear Leukocytes (PMN) Activation
2.2. Macrophage (Mø) Activation
- IL-1 β is released by LPS-activated macrophages, lymphocytes, and fibroblasts. It stimulates Mø and fibroblasts to secrete PGE2 and causes osteoclastic differentiation and activation [7];
- TNF-α is principally secreted by LPS-stimulated macrophages and lymphocytes and causes osteoclastic differentiation and activation [8];
- PGE2 causes vasodilatation, vasopermeability, and resorption of the alveolar bone;
- IL-1 β, TNF-α and PGE2 stimulate fibroblasts and Mø to release Metalloproteinases (MMPs), urokinase plasminogen activator (u-PA), tissue inhibitor of metalloproteinases, PGE2, TGF-β, and interleukin-1 receptor antagonist [9];
- MIP-1α belongs to the family of chemotactic cytokines [10]. It is secreted by macrophages and performs several functions, such as recruiting inflammatory cells, wound healing, inhibition of stem cells, and activation of bone resorption cells, and it directly induces bone destruction. Cells that secrete MIP-1α are increased at sites of inflammation and bone resorption. MIP-1α plays an important role in the pathogenesis of various inflammatory diseases and conditions that exhibit bone resorption, such as periodontitis. Biological fluids from patients with these diseases exhibit elevated levels of MIP-1α [11].
2.3. Osteoclast Activation
3. Immune Response Host Delivered Salivary Products as Biomarkers for Early Periodontal Diagnosis
3.1. Host-Derived Enzyme
3.1.1. Alkaline Phosphatase
3.1.2. Beta-Glucuronidase
3.1.3. Cathepsin B
3.1.4. Metalloproteinase-8 (MMP-8, Collagenase-2)
3.1.5. Metalloproteinase-9 (MMP-9, Gelatinase)
3.1.6. Dipeptidyl Peptidases II and IV
3.1.7. Metalloproteinase-12 (MMP-12, Elastase)
3.2. Tissue Breakdown Products
3.2.1. Pyridinoline Cross-Linked Carboxyterminal Telopeptide of Type I Collagen (1-CTP)
3.2.2. Chondroitin-4-Sulphate (C-4-S)
3.2.3. Hemoglobin (HB)
3.3. Host Response Modifiers
3.4. Cytokines
3.4.1. Macrophage Inflammatory Protein-1α (MIP-1α)
3.4.2. Interleukin-1 β (IL-1 β)
3.4.3. Interleukin-6 (IL-6)
3.4.4. Tumour Necrosis Factor-α (TNF-α)
3.4.5. Tumour Necrosis Factor-β or Lymphotoxin (TNF-β or LT)
3.4.6. Interferon-γ (INF-γ)
4. The Most Promising Host Derived Biomarkers as Candidates for Early Diagnosis of Periodontitis and Their Combination
4.1. Most Promise Biomarkers
- Metalloproteinase-8 (MMP8): An enzyme released by PMN during immune reaction [78]. Salivary and systemic levels of MMP8 appear to be valuable biomarkers for both acute coronary syndrome (ACS) and periodontitis [79,80]. Recent reports have shown that local and systemic levels of aMMP-8 can reflect the grading and staging of periodontitis [81,82]. In terms of sensitivity, Arias-Bujanda N et al. [19] showed a value of 72.5%, according to de Lima et al. [83]. Other authors have reported MMP-8 as one of the strongest markers for tissue destruction, with sensitivity ranging from 65% to 87%, and specificity ranged from 48% to 87% [84,85];
- Macrophage inflammatory protein-1 alpha (MIP-1α): Secreted by macrophages increased at the sites of periodontal inflammation and bone resorption [86]. Its increased level can reveal the hidden presence of subclinical inflammation in periodontal clinically healthy sites [87], and it can also discriminate periodontitis in type II diabetics (T2DM) patients. Non-surgical periodontal treatment can affect the salivary level of MIP-1α [88]. It appears associated with periodontal bone remodeling, showing high sensitivity and specificity of 95% and 97%, respectively [89];
- Interleukin-1beta (IL-1β): Released by LPS-activated macrophages (Mø), lymphocytes, and fibroblasts. It stimulates Mø and fibroblasts to secrete PGE2, determining bone destruction [90] and fibroblasts, and Mø releases Metalloproteinases (MMPs), determining connective tissue destruction. Genetic variations of IL-1β + 3954 appear to be associated with increased risk of periodontitis in Koreans (Detection of association between periodontitis and polymorphisms of IL-1beta + 3954 and TNF-alpha −863 in the Korean population after controlling for confounding risk factors) [91]. For IL-1β, the sensitivity ranged from 54% to 88% and specificity ranged from 52% to 100% across five studies [31,84,85,92,93]. Clinical parameters showing periodontitis such as gingival index (GI), probing depth (PD), and GCF flow were significantly correlated with gingival crevicular fluid (GCF) and tissue IL-1beta activity [94];
- The levels of salivary IL-6 appear to be increased in patients affected by Chronic Periodontitis as compared to healthy controls [95]. Interleukin-6 572C/G and RS1800796 polymorphisms appear as genetic risk factors for periodontitis patients in the Asian population [96,97]. Its sensitivity ranged from 52% to 80%, and specificity ranged from 48% to 87% [31,84,85,93];
- Hemoglobin(HB): This has a sensitivity value of 72% and a specificity value of 75% [19]. SOBTs may offer a simple screening method for periodontal status when clinical periodontal examination is not possible, although this test it is not sufficiently specific to be a suitable surrogate for a periodontal clinical examination [48]. Mäkinen et al. [49] reported the presence of hemoglobin (Hb), detected in the GCF of periodontal disease sites. In addition, Hanioka et al. [50] observed the existence of Hb in the GCF of mild periodontal pockets. They speculated that invisible bleeding has previously occurred in a pocket with early periodontitis in spite of the negative finding by BOP inspection (BOP–). This hypothesis was supported by other studies, which suggested that the detection of Hb derived from microbleeding in gingival sulci may serve as an index for preclinical diagnosis [51,98] (Table 1).
- Salivary neuropeptides (vasoactive intestinal peptide, VIP and neuropeptide Y NPY) showed significantly higher levels in the saliva of patients with periodontitis and were correlated with bleeding on probing scores in patients with periodontitis [99];
- Oxidative stress-related biomarkers (OS) in saliva and gingival crevicular fluid associated with chronic periodontitis has been reported in a systematic review and meta-analysis. A direct link between CP and OS-related bio- marker levels in the local site has been suggested by a significant decrease of total antioxidant capacity and a significant increase of malondialdehyde (MDA), nitric oxide, total oxidant status (TOS), and 8-hydroxy-de-oxyguanosine levels in the saliva of CP patients [100];
- MicroRNAs (MiRNA-146a and miRNA155) provide consistent, non-invasive, diagnostic and prognostic biomarkers that can be used to monitor periodontal health status in saliva among diabetic and non-diabetic patients [101];
- Salivary oxidative stress biomarkers and advanced glycation end products were investigated in a cross-sectional study in patients affected by periodontitis and in periodontally healthy patients with type 2 diabetes and corresponding systemically healthy controls. Salivary 8-hydroxy-2’-deoxyguanosine (8-OHdG) alone, or in combination with 4-hydroxy-2-nonenal (4-HNE), advanced glycation end products (AGE) and AGE receptor (RAGE) for diabetics, and salivary 8-OHdG alone, or in combination with malondialdehyde (MDA) and high sensitivity C-reactive protein (hsCRP) for systemically healthy persons, could potentially serve as non-invasive screening marker(s) of periodontitis [102];
- Soluble Neuropilin-1 (sNRP-1) is a glycoprotein with angiogenic and immune regulatory functions positively related to periodontitis and could probably be involved in the pro-inflammatory mechanisms observed in periodontal clinical tissue inflammation [103].
4.2. Combination of Biomarkers for Earliest Diagnosis of Periodontitis
5. Conclusions
- (i)
- Universities, in teaching predictive dentistry (e.g., the creation of a specific subject in degree courses in dentistry, post-graduate courses, and PhD courses);
- (ii)
- Dental researchers, in the publication of scientific papers on biomarkers as diagnostic tools for oral diseases;
- (iii)
- Industries, which should provide chair-side LOC to be used by dental operators.
Author Contributions
Funding
Conflicts of Interest
References
- Cafiero, C.; Matarasso, S. Predictive, preventive, personalised and participatory periodontology: ‘the 5Ps age’ has already started. EPMA J. 2013, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Lang, N.P.; Joss, A.; Orsanic, T.; Gusberti, F.A.; Siegrist, B.E. Bleeding on probing. A predictor for the progression of periodontal disease? J. Clin. Periodontol. 1986, 13, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Adler, R.; Joss, A.; Nyman, S. Absence of bleeding on probing. An indicator of periodontal stability. J. Clin. Periodontol. 1990, 17, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Joss, A.; Tonetti, M.S. Monitoring disease during supportive periodontal treatment by bleeding on probing. Periodontol 2000 1996, 12, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Joss, A.; Adler, R.; Lang, N.P. Bleeding on probing. A parameter for monitoring periodontal conditions in clinical practice. J. Clin. Periodontol. 1994, 21, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Tonetti, M.S. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy (SPT). Oral Health Prev. Dent. 2003, 1, 7–16. [Google Scholar]
- Dewhirst, F.E.; Ago, J.M.; Peros, W.; Stashenko, P. Bleeding on probing. Synergism between parathyroid hormone and interleukin 1 in stimulating bone resorption in organ culture. J. Bone Miner. Res. 1987, 2, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Beutler, B.; Cerami, A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature 1986, 320, 584–588. [Google Scholar] [CrossRef]
- Cox, S.W.; Eley, B.M. Detection of cathepsin B-and L-, elastase-, tryptase-, trypsin-, and dipeptidyl peptidase IV-like activities in crevicular fluid from gingivitis and periodontitis patients with peptidyl derivatives of 7-amino-4-trifluoromethyl coumarin. J. Periodontal Res. 1989, 24, 353–361. [Google Scholar] [CrossRef]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Bhavsar, I.; Miller, C.S.; Al-Sabbagh, M. Macrophage Inflammatory Protein-1 Alpha (MIP-1 alpha)/CCL3: As a Biomarker. In General Methods in Biomarker Research and their Applications. Biomarkers in Disease: Methods, Discoveries and Applications; Preedy, V., Patel, V., Eds.; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Hofbauer, L.C.; Khosla, S.; Dunstan, C.R.; Lacey, D.L.; Boyle, W.J.; Riggs, B.L. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.J. Discovery of the RANKL/RANK/OPG system. Bone Miner Metab. 2021, 39, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Le Manach, Y.; Riou, B.; Houle, T.T. Statistical evaluation of a biomarker. Anesthesiology 2010, 112, 1023–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Dental Association (ADA): Oral Health Topics, Salivary Diagnostics. Available online: https://www.ada.org/en/member-center/oral-health-topics/salivary-diagnostics (accessed on 15 March 2021).
- Taba, M., Jr.; Kinney, J.; Kim, A.S.; Giannobile, W.V. Diagnostic biomarkers for oral and periodontal diseases. Dent. Clin. N. Am. 2005, 49, 551–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.S.; Foley, J.D.; Bailey, A.L.; Campell, C.L.; Humphries, R.L.; Christodoulides, N.; Floriano, P.N.; Simmons, G.; Bhagwandin, B.; Jacobson, J.W.; et al. Current developments in salivary diagnostics. Biomark. Med. 2010, 4, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Ghallab, N.A. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch. Oral. Bio. 2018, 87, 115–124. [Google Scholar] [CrossRef]
- Arias-Bujanda, N.; Regueira-Iglesias, A.; Balsa-Castro, C.; Nibali, L.; Donos, N.; Tomás, I. Accuracy of single molecular biomarkers in saliva for the diagnosis of periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2020, 47, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Kc, S.; Wang, X.Z.; Gallagher, J.E. Diagnostic sensitivity and specificity of host-derived salivary biomarkers in periodontal disease amongst adults: Systematic review. J. Clin. Periodontol. 2020, 47, 289–308. [Google Scholar] [CrossRef] [PubMed]
- Denny, P.; Hagen, F.K.; Hardt, M.; Liao, L.; Yan, W.; Arellanno, M.; Bassilian, S.; Bedi, G.S.; Boontheung, P.; Cociorva, D.; et al. The proteomes of human parotid and submandibular⁄sublingual gland salivas collected as the ductal secretions. J. Proteome Res. 2008, 7, 1994–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Human Salivary Proteome Project. Available online: http://www.skb.ucla.edu (accessed on 15 March 2021).
- Armitage, G.C. Analysis of gingival crevice fluid and risk of progression of periodontitis. Periodontology 2000 2004, 34, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Loos, B.G.; Tjoa, S. Host-derived diagnostic markers for periodontitis: Do they exist in gingival crevice fluid? Periodontology 2000 2005, 39, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Giannopoulou, C.; Andersen, E.; Roehrich, N.; Brochut, P.; Dubrez, B.; Cimasoni, G. A longitudinal study of various crevicular fluid components as markers of periodontal disease activity. J. Clin. Periodontol. 1996, 23, 832–838. [Google Scholar] [CrossRef]
- Lamster, I.B.; Holmes, L.G.; Gross, K.B.; Oshrain, R.L.; Cohen, D.W.; Rose, L.F.; Peters, L.M.; Pope, M.R. The relationship of beta-glucuronidase activity in crevicular fluid to probing attachment loss in patients with adult periodontitis. Findings from a multicenter study. J. Clin. Periodontol. 1995, 22, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Kennett, C.N.; Cox, S.W.; Eley, B.M. Investigations into the cellular contribution to host tissue proteases and inhibitors in gingival crevicular fluid. J. Clin. Periodontol. 1997, 24, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Eley, B.M.; Cox, S.W. The relationship between gingival crevicular fluid cathepsin B activity and periodontal attachment loss in chronic periodontitis patients: A 2-year longitudinal study. J. Periodontal. Res. 1996, 31, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Cox, S.W.; Eley, B.M. Cathepsin B, alpha2-macroglobulin and cystatin levels in gingival crevicular fluid from chronic periodontitis patients. J. Clin. Periodontol. 1998, 25, 34–41. [Google Scholar] [CrossRef]
- Cox, S.W.; Eley, B.M. Cathepsin B/L-, elastase-, tryptase-, trypsin- and dipeptidyl peptidase IV-like activities in gingival crevicular fluid. A comparison of levels before and after basic periodontal treatment of chronic periodontitis patients. J. Clin. Periodontol. 1992, 19, 333–339. [Google Scholar] [CrossRef]
- Ramseier, C.A.; Kinney, J.S.; Herr, A.E.; Braun, T.; Sugai, J.V.; Shelburne, C.A.; Rayburn, L.A.; Tran, H.M.; Singh, A.K.; Giannobile, W.V. Identification of pathogen and host-response markers correlated with periodontal disease. J. Periodontol. 2009, 80, 436–446. [Google Scholar] [CrossRef]
- Mancini, S.; Romanelli, R.; Laschinger, C.A.; Overall, C.M.; Sodek, J.; McCulloch, C.A. Assessment of a novel screening test for neutrophil collagenase activity in the diagnosis of periodontal diseases. J. Periodontol. 1999, 70, 1292–1302. [Google Scholar] [CrossRef]
- Teng, Y.T.; Sodek, J.; McCulloch, C.A. Gingival crevicular fluid gelatinase and its relationship to periodontal disease in human subjects. J. Periodontal. Res. 1992, 27, 544–552. [Google Scholar] [CrossRef]
- Eley, B.M.; Cox, S.W. Correlation between gingival crevicular fluid dipeptidyl peptidase II and IV activity and periodontal at-tachment loss. A 2-year longitudinal study in chronic periodontitis patients. Oral Dis. 1995, 1, 201–213. [Google Scholar] [CrossRef]
- Jin, L.; Söder, B.; Corbet, E.F. Interleukin-8 and granulocyte elastase in gingival crevicular fluid in relation to periodontopathogens in untreated adult periodontitis. J. Periodontol. 2000, 71, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Smith, Q.T.; Harriman, L.; Au, G.S.; Stoltenberg, J.L.; Osborn, J.B.; Aeppli, D.M.; Fischer, G. Neutrophil elastase in crevicular fluid: Comparison of a middle-aged general population with healthy and periodontitis groups. J. Clin. Periodontol. 1995, 22, 935–941. [Google Scholar] [CrossRef]
- Palcanis, K.G.; Larjava, I.K.; Wells, B.R.; Suggs, K.A.; Landis, J.R.; Chadwick, D.E.; Jeffcoat, M.K. Elastase as an indicator of periodontal disease progression. J. Periodontol. 1992, 63, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Giannobile, W.V.; Al-Shammari, K.F.; Sarment, D.P. Matrix molecules and growth factors as indicators of periodontal disease activity. Periodontology 2000 2003, 31, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Addy, M.; Embery, G. Gingival crevicular fluid glycosaminoglycan levels in patients with chronic adult periodontitis. J. Clin. Periodontol. 1995, 22, 355–361. [Google Scholar] [CrossRef]
- Gupta, G. Gingival crevicular fluid as a periodontal diagnostic indicator—I: Host derived enzymes and tissue breakdown products. J. Med. Life. 2012, 5, 390–397. [Google Scholar] [PubMed]
- Burt, B.A.; Roder, D.M.; Cecil, J.C.; Eklund, S.A. Saliva-based colorimetric test as an index of gingival inflammation in epidemiologic studies. Community Dent. Oral Epidemiol. 1978, 6, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.H.; Caffesse, R.G. The reliability of a colorimetric test in determining gingival inflammation. J. Periodontol. 1978, 49, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Takasuka, S.; Nakajima, I.; Sakai, K.; Miyazawa, H.; Miyake, Y.; Akasaka, M. Use of the Salivaster salivary occult blood test for the screening of gingivitis in elementary school children and junior high school students. Shoni Shikagaku Zasshi 1985, 23, 103–110. (In Japanese) [Google Scholar]
- Arakawa, H.; Udagawa, E.; Enomoto, K.; Iizuka, Y. An approach to the planning of community health programs for adult periodontal diseases. Screening for periodontal disease using the salivary occult blood test. Kanagawa Shigaku 1986, 20, 503–508. (In Japanese) [Google Scholar]
- Kopczyk, R.A.; Graham, R.; Abrams, H.; Kaplan, A.; Matheny, J.; Jasper, S.J. The feasibility and reliability of using a home screening test to detect gingival inflammation. J. Periodontol. 1995, 66, 52–54. [Google Scholar] [CrossRef]
- Ohshima, M.; Fujikawa, K.; Kumagai, K.; Idesawa, M.; Ezawa, S.; Ito, K.; Otsuka, K. Evaluation of a novel test paper strip method for detecting occult blood in saliva as a screening test for periodontal disease. J. Jpn. Soc. Periodontol. 2001, 43, 416–423. [Google Scholar] [CrossRef] [Green Version]
- Ohshima, M.; Suzuki, K.; Eda, M.; Sato, M.; Ito, K.; Murai, S.; Otsuka, K. An immunological test using anti-human hemoglobin monoclonal antibody for detection of occult blood in saliva—comparison with peroxidase method. J. Jpn. Soc. Periodontol. 1997, 39, 273–280. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Shimazaki, Y.; Akifusa, S.; Takeshita, T.; Shibata, Y.; Doi, Y.; Hata, J.; Ninomiya, T.; Hirakawa, Y.; Kiyohara, Y.; Yamashita, Y. Effectiveness of the salivary occult blood test as a screening method for periodontal status. J. Periodontol. 2011, 82, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, K.K.; Sewón, L.; Mäkinen, P.l. Analysis in gingival crevicular fluid of two oligopeptides derived from human hemoglobin β-chain. J. Periodontal. Res. 1996, 31, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Hanioka, T.; Matsuse, R.; Shigemoto, Y.; Ojima, M.; Shizukuishi, S. Relationship between periodontal disease status and combination of biochemical assays of gingival crevicular fluid. J. Periodontal. Res. 2005, 40, 331–338. [Google Scholar] [CrossRef]
- Ito, H.; Numabe, Y.; Hashimoto, S.; Sekino, S.; Murakashi, E.; Ishiguro, H.; Sasaki, D.; Yaegashi, T.; Takai, H.; Mezawa, M.; et al. Correlation Between Gingival Crevicular Fluid Hemoglobin Content and Periodontal Clinical Parameters. Periodontology 2016, 87, 1314–1319. [Google Scholar] [CrossRef]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Shima, N.; Nakagawa, N.; Mochizuki, S.I.; Yano, K.; Fujise, N.; Sato, Y.; Goto, M.; Yamaguchi, K.; Kuriyama, M.; et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998, 139, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Burgess, T.L.; Qian, Y.; Kaufman, S.; Ring, B.D.; Van, G.; Capparelli, C.; Kelley, M.; Hsu, H.; Boyle, W.J.; Dunstan, C.R.; et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J. Cell Bio. 1999, 145, 527–538. [Google Scholar] [CrossRef] [Green Version]
- Udagawa, N.; Kotake, S.; Kamatani, N.; Takahashi, N.; Suda, T. The molecular mechanism of osteoclastogenesis in rheumatoid arthritis. Arthritis Res. 2002, 4, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Crotti, T.; Smith, M.D.; Hirsch, R.; Soukoulis, S.; Weedon, H.; Capone, M.; Ahern, M.J.; Haynes, D. Receptor activator NF kB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J. Periodont. Res. 2003, 38, 380–387. [Google Scholar] [CrossRef]
- Arikan, F.; Buduneli, N.; Kütükçüler, N. Osteoprotegerin levels in peri-implant crevicular fluid. Clin. Oral Implant. Res. 2008, 19, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Monov, G.; Strbac, G.D.; Baron, M.; Kandler, B.; Watzek, G.; Gruber, R. Soluble RANKL in crevicular fluid of dental implants: A pilot study. Clin. Implant. Dent Rela.t Res. 2006, 8, 135–141. [Google Scholar] [CrossRef]
- Menten, P.; Wuyts, A.; Van Damme, J. Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002, 13, 455–481. [Google Scholar] [CrossRef]
- Dinarello, C.A.; Renfer, L.; Wolff, S.M. Human leukocytic pyrogen: Purification and development of a radioimmunoassay. Proc. Natl. Acad. Sci. USA 1977, 74, 4624–4627. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2018, 281, 8–27. [Google Scholar] [CrossRef]
- Dinarello, C.A. Interleukin-1 and interleukin-1 antagonism. Blood 1991, 77, 1627–1652. [Google Scholar] [CrossRef] [Green Version]
- Masola, V.; Carraro, A.; Granata, S.; Signorini, L.; Bellin, G.; Violi, P.; Lupo, A.; Tedeschi, U.; Onisto, M.; Gambaro, G.; et al. In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J. Transl. Med. 2019, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Rosenwasser, L.J. Biologic activities of IL-1 and its role in human disease. J. Allergy Clin. Immunol. 1998, 102, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Czuszak, C.A.; Sutherland, D.E.; Billman, M.A.; Stein, S.H. Prostaglandin E2 potentiates interleukin-1 beta induced interleukin-6 production by human gingival fibroblasts. J. Clin. Periodontol. 1996, 23, 635–640. [Google Scholar] [CrossRef]
- Mundy, G.R. Inflammatory mediators and the destruction of bone. J. Periodont. Res. 1991, 26, 213–217. [Google Scholar] [CrossRef]
- Mundy, G.R. Mechanisms of osteolytic bone destruction. Bone 1991, 12 (Suppl. 1), S1–S6. [Google Scholar] [CrossRef]
- Meghji, S. Bone remodelling. Br. Dent J. 1992, 172, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef]
- Artis, D.; Spits, H. The biology of innate lymphoid cells. Nature. 2015, 517, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.W.; Chambers, T.J. Interferon-gamma directly inhibits TRANCE-induced osteoclastogenesis. Biochem. Biophys. Res. Commun. 2000, 276, 868–872. [Google Scholar] [CrossRef]
- Takayanagi, H.; Ogasawara, K.; Hida, S.; Chiba, T.; Murata, S.; Sato, K.; Takaoka, A.; Yokochi, T.; Oda, H.; Tanaka, K.; et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000, 408, 600–605. [Google Scholar] [CrossRef]
- Madyastha, P.R.; Yang, S.; Ries, W.L.; Key, L.L., Jr. IFN-gamma enhances osteoclast generation in cultures of peripheral blood from osteopetrotic patients and normalizes superoxide production. J. Interferon Cytokine Res. 2000, 20, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Grassi, F.; Ryan, M.R.; Terauchi, M.; Page, K.; Yang, X.; Weitzmann, M.N.; Pacifici, R. IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J. Clin. Investig. 2007, 117, 122–132. [Google Scholar] [CrossRef]
- Lamster, I.B. Evaluation of components of gingival crevicular fluid as diagnostic tests. Ann. Periodontol. 1997, 2, 123–137. [Google Scholar] [CrossRef]
- Barros, S.P.; Williams, R.; Offenbacher, S.; Morelli, T. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2000 2016, 70, 53–64. [Google Scholar] [CrossRef]
- Zhang, L.; Henson, B.S.; Camargo, P.M.; Wong, D.T. The clinical value of salivary biomarkers for periodontal disease. Periodontology 2000 2009, 51, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Lahdentausta, L.S.J.; Paju, S.; Mäntylä., P.; Buhlin, K.; Tervahartiala, T.; Pietiäinen, M.; Alfthan, H.; Nieminen, M.S.; Sinisalo, J.; Sorsa, T.; et al. Saliva and serum biomarkers in periodontitis and coronary artery disease. J. Clin. Periodontol. 2018, 45, 1045–1055. [Google Scholar] [CrossRef]
- Buduneli, E.; Mäntylä, P.; Emingil, G.; Tervahartiala, T.; Pussinen, P.; Barış, N.; Akıllı, A.; Atilla, G.; Sorsa, T. Acute myocardial infarction is reflected in salivary matrix metalloproteinase-8 activation level. J. Periodontol. 2011, 82, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Sorsa, T.; Alassiri, S.; Grigoriadis, A.; Räisänen, I.T.; Pärnänen, P.; Nwhator, S.O.; Gieselmann, D.R.; Sakellari, D. Active MMP-8 (aMMP-8) as a Grading and Staging Biomarker in the Periodontitis Classification. Diagnostics 2020, 10, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keles Yucel, Z.P.; Afacan, B.; Emingil, G.; Tervahartiala, T.; Kose, T.; Sorsa, T.J. Local and systemic levels of aMMP-8 in gingivitis and stage 3 grade C periodontitis. J. Periodontal. Res. 2020, 55, 887–894. [Google Scholar] [CrossRef] [PubMed]
- De Lima, C.L.; Acevedo, A.C.; Grisi, D.C.; Taba, M.; Guerra, E.; De Luca Canto, G. Host-derived salivary biomarkers in diagnosing periodontal disease: Systematic review and meta-analysis. J. Clin. Periodontol. 2016, 43, 492–502. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Nagarajan, R.; Akers, D.; Miller, C.S. Targeted salivary biomarkers for discrimination of periodontal health and disease(s). Front. Cell Infect. Microbiol. 2015, 5, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebersole, J.L.; Schuster, J.L.; Stevens, J.; Dawson, D., 3rd; Kryscio, R.J.; Lin, Y.; Miller, C.S. Patterns of salivary analytes provide diagnostic capacity for distinguishing chronic adult periodontitis from health. J. Clin. Immunol. 2013, 33, 271–279. [Google Scholar] [CrossRef]
- Nisha, K.J.; Suresh, A.; Anilkumar, A.; Padmanabhan, S. MIP-1alpha and MCP-1 as salivary biomarkers in periodontal disease. Saudi Dent J. 2018, 30, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Miranda, T.S.; Figueiredo, N.F.; Figueiredo, L.C.; Silva, H.D.P.D.; Rocha, F.R.G.; Duarte, P.M. Cytokine profiles of healthy and diseased sites in individuals with periodontitis. Arch. Oral Biol. 2020, 120, 104957. [Google Scholar] [CrossRef]
- Grande, M.A.; Belstrøm, D.; Damgaard, C.; Holmstrup, P.; Könönen, E.; Gursoy, M.; Gursoy, U.K. Salivary concentrations of macrophage activation-related chemokines are influenced by non-surgical periodontal treatment: A 12-week follow-up study. J. Oral Microbiol. 2019, 12, 1694383. [Google Scholar] [CrossRef] [Green Version]
- Al-Sabbagh, M.; Alladah, A.; Lin, Y.; Kryscio, R.J.; Thomas, M.V.; Ebersole, J.L.; Miller, C.S. Bone remodeling-associated salivary biomarker MIP-1α distinguishes periodontal disease from health. J. Periodontal. Res. 2012, 47, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Wu, Z.; Li, M.; Shao, M.; Hu, T. Interleukin-1beta is a potential therapeutic target for periodontitis: A narrative review. Int. J. Oral Sci. 2020, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Kim, E.H.; Park, A.K.; Shin, Y.; Kang, J.; Lim, J.; Bhak, J.; Lee, J.Y.; Kim, B.C.; Joo, J.Y. Detection of association between periodontitis and polymorphisms of IL-1β + 3954 and TNF-α -863 in the Korean population after controlling for confounding risk factors. J. Periodontal Res. 2020, 55, 905–917. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, G.A.; Miozza, V.A.; Delgado, A.; & Busch, L. Salivary IL-1β and PGE2 as biomarkers of periodontal status, before and after periodontal treatment. J. Clin. Periodontol. 2013, 40, 1112–1117. [Google Scholar] [CrossRef]
- Wu, Y.C.; Ning, L.; Tu, Y.K.; Huang, C.P.; Huang, N.T.; Chen, Y.F.; Chang, P.C. Salivary biomarker combination prediction model for the diagnosis of periodontitis in a Taiwanese population. J. Formos. Med Assoc. 2018, 117, 841–848. [Google Scholar] [CrossRef]
- Liu, C.M.; Hou, L.T.; Wong, M.Y.; Rossomando, E.F. Relationships between clinical parameters, Interleukin 1B and histopathologic findings of gingival tissue in periodontitis patients. Cytokine 1996, 8, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Batool, H.; Nadeem, A.; Kashif, M.; Shahzad, F.; Tahir, R.; Afzal, N. Salivary Levels of IL-6 and IL-17 Could Be an Indicator of Disease Severity in Patients with Calculus Associated Chronic Periodontitis. Biomed Res. Int. 2018, 2018, 8531961. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Li, X.; Li, R. Genetic Relationship Between IL-6 rs1800796 Polymorphism and Susceptibility to Periodontitis. Immunol. Investig. 2019, 48, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Jingjin, L.; Zemin, G.; Xin, M.; Donghong, W.; Jianhua, G.; Jie, Y.; Yonggong, W. Correlation between an interleukin-6-572C/G polymorphism and chronic periodontitis. Int. J. Periodontics Restor. Dent. 2010, 30, 301–305. [Google Scholar]
- Ito, H.; Numabe, Y.; Hashimoto, S.; Uehara, S.; Wu, Y.H.; Ogawa, T. Usefulness of hemoglobin examination in gingival crevicular fluid during supportive periodontal therapy to diagnose the pre-symptomatic state in periodontal disease. Clin. Oral Investig. 2021, 25, 487–495. [Google Scholar] [CrossRef]
- Haririan, H.; Andrukhov, O.; Böttcher, M.; Pablik, E.; Wimmer, G.; Moritz, A.; Rausch-Fan, X. Salivary neuropeptides, stress, and periodontitis. J. Periodontol. 2018, 89, 9–18. [Google Scholar] [CrossRef]
- Chen, M.; Cai, W.; Zhao, S.; Shi, L.; Chen, Y.; Li, X.; Sun, X.; Mao, Y.; He, B.; Hou, Y.; et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawi, N.H.; Al-Marzooq, F.; Al-Nuaimi, A.S.; Hachim, M.Y.; Hamoudi, R. Salivary microRNA 155, 146a/b and 203: A pilot study for potentially non-invasive diagnostic biomarkers of periodontitis and diabetes mellitus. PLoS ONE 2020, 15, e0237004. [Google Scholar] [CrossRef]
- Altıngöz, S.M.; Kurgan, S.; Önder, C.; Serdar, M.A.; Ünlütürk, U.; Uyanık, M.; Başkal, N.; Tatakis, D.N.; Günhan, M. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study. J. Periodontol. 2020, 5. [Google Scholar] [CrossRef]
- Prieto, D.; Maurer, G.; Sáez, M.; Cáceres, F.; Pino-Lagos, K.; Chaparro, A. Soluble Neuropilin-1 in gingival crevicular fluid from periodontitis patients: An exploratory cross-sectional study. J. Oral Bio. Craniofac. Res. 2021, 11, 84–87. [Google Scholar] [CrossRef]
- Meisner, A.; Parikh, C.R.; Kerr, K.F. Biomarker combinations for diagnosis and prognosis in multicenter studies: Principles and methods. Stat. Methods Med. Res. 2019, 28, 969–985. [Google Scholar] [CrossRef] [PubMed]
- Yager, P.; Edwards, T.; Fu, E.; Helton, K.; Nelson, K.; Tam, M.R.; Weigl, B.H. Microfluidic diagnostic technologies for global public health. Nature 2006, 442, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Giannobile, W.V.; Beikler, T.; Kinney, J.S.; Ramseier, C.A.; Morelli, T.; Wong, D.T. Saliva as a diagnostic tool for periodontal disease: Current state and future directions. Periodontology 2000. 2009, 50, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Christodoulides, N.; Floriano, P.N.; Miller, C.S.; Ebersole, J.L.; Mohanty, S.; Dharshan, P.; Griffin, M.; Lennart, A.; Ballard, K.L.M.; King, C.P.; et al. Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Ann. N. Y. Acad. Sci. 2007, 1098, 411–428. [Google Scholar] [CrossRef]
- He, W.; You, M.; Wan, W.; Xu, F.; Li, F.; Li, A. Point-of-Care Periodontitis Testing: Biomarkers, Current Technologies, and Perspectives. Trends Biotechnol. 2018, 36, 1127–1144. [Google Scholar] [CrossRef] [PubMed]
- Golubnitschaja, O. Time for new guidelines in advanced healthcare: The mission of The EPMA Journal to promote an integrative view in predictive, preventive and personalized medicine. EPMA J. 2012, 3, 5. [Google Scholar] [CrossRef] [Green Version]
Releasing Cells | Biomarker | Sensitivity % | Specificity % |
---|---|---|---|
Polymorphonuclear Leukocytes | MMP8 (Metalloproteinase-8) | 72% [19,79] 65.87% [80,81] | 48–87% [80,81] |
Macrophage | MIP-1α (Macrophage inflammatory protein-1 alpha): | 95% [82] | 97% [82] |
Macrophage Lymphocytes Fibroblasts | IL-1 β (Interleukin-1 β) | 54–88% [31,80,81,83,84]. | 52–100% [31,80,81,83,84] |
Macrophages Osteoblaststs | IL-6 (Interleukin-6) | 52–80% [31,80,81,84] | 48–87% [31,80,81,84] |
Red Cells | Hemoglobin (HB) | 72% [19] | 75% [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cafiero, C.; Spagnuolo, G.; Marenzi, G.; Martuscelli, R.; Colamaio, M.; Leuci, S. Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. J. Clin. Med. 2021, 10, 1488. https://doi.org/10.3390/jcm10071488
Cafiero C, Spagnuolo G, Marenzi G, Martuscelli R, Colamaio M, Leuci S. Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. Journal of Clinical Medicine. 2021; 10(7):1488. https://doi.org/10.3390/jcm10071488
Chicago/Turabian StyleCafiero, Carlo, Gianrico Spagnuolo, Gaetano Marenzi, Ranieri Martuscelli, Michele Colamaio, and Stefania Leuci. 2021. "Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis" Journal of Clinical Medicine 10, no. 7: 1488. https://doi.org/10.3390/jcm10071488
APA StyleCafiero, C., Spagnuolo, G., Marenzi, G., Martuscelli, R., Colamaio, M., & Leuci, S. (2021). Predictive Periodontitis: The Most Promising Salivary Biomarkers for Early Diagnosis of Periodontitis. Journal of Clinical Medicine, 10(7), 1488. https://doi.org/10.3390/jcm10071488