Tools for the Assessment of the Malnutrition Status and Possible Interventions in Elderly with Cardiovascular Diseases
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Aortic Stenosis
3.1.1. Why Assess Malnutrition
3.1.2. When, How, and Where to Assess Malnutrition
- At the moment of the first diagnosis of symptomatic AS to obtain a comprehensive assessment of the patient and identify subjects presenting excessive risk for any type of intervention;
- When choosing the best type of replacement (TAVR or SAVR) for each patient in order to perform a better risk stratification;
- After aortic valve replacement, aiming at estimating residual risk.
3.1.3. Possible Interventions and Ongoing Studies
3.2. Coronary Artery Disease
3.2.1. Why Assess Malnutrition
3.2.2. When, How, and Where to Assess Malnutrition
- Acute setting of MI;
- Outpatient visits of elderly with stable CAD.
3.2.3. Possible Interventions
3.3. Heart Failure
3.3.1. Why Assess Malnutrition
3.3.2. When, How, and Where to Assess Malnutrition
- Outpatient visits, as completion of the evaluation of patients with chronic HF;
- Emergency department, in order to identify patients at higher risk for brief-term mortality who could benefit from more intensive care;
- During hospital stay for acute HF with the aim of improving management strategies.
3.3.3. Possible Interventions
4. Discussion
Beyond the Malnutrition Condition
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruz-Jentoft, A.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Evans, C. Malnutrition in the Elderly: A Multifactorial Failure to Thrive. Perm. J. 2005, 9, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Yamawaki, M.; Shigemitsu, S.; Kenji, M.; Tokuda, T.; Tsutumi, M.; Mori, S.; Sakamoto, Y.; Kobayashi, N.; Araki, M.; et al. Prognostic value of objective nutritional status after transcatheter aortic valve replacement. J. Cardiol. 2019, 73, 401–407. [Google Scholar] [CrossRef]
- Lee, K.; Ahn, J.M.; Kang, D.Y.; Ko, E.; Kwon, O.; Lee, P.H.; Lee, S.W.; Kim, D.H.; Kim, H.J.; Kim, J.B.; et al. Nutritional status and risk of all-cause mortality in patients undergoing transcatheter aortic valve replacement assessment using the geriatric nutritional risk index and the controlling nutritional status score. Clin. Res. Cardiol. 2020, 109, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, M.; Lauck, S.; Webb, J.G.; Asgar, A.W.; Perrault, L.P.; Piazza, N.; Martucci, G.; Lachapelle, K.; Noiseux, N.; Kim, D.H.; et al. Malnutrition and Mortality in Frail and Non-Frail Older Adults Undergoing Aortic Valve Replacement. Circulation 2018, 138, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Afilalo, J.; Lauck, S.; Kim, D.H.; Lefèvre, T.; Piazza, N.; Lachapelle, K.; Martucci, G.; Lamy, A.; Labinaz, M.; Peterson, M.D.; et al. Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study. J. Am. Coll. Cardiol. 2017, 70, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Dohi, T.; Miyauchi, K.; Jun, S.; Endo, H.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J. Cardiol. 2018, 72, 155–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernio, E.; Malgorzewicz, S.; Dardzinska, J.A.; Jagielak, D.; Rogowski, J.; Gruszecka, A.; Klapkowski, A.; Bramlage, P. Association between Nutritional Status and Mortality after Aortic Valve Replacement Procedure in Elderly with Severe Aortic Stenosis. Nutrients 2019, 11, 446. [Google Scholar] [CrossRef] [Green Version]
- Emami, S.; Rudasill, S.; Bellamkonda, N.; Sanaiha, Y.; Cale, M.; Madrigal, J.; Christian-Miller, N.; Benharash, P. Impact of Malnutrition on Outcomes Following Transcatheter Aortic Valve Implantation (from a National Cohort). Am. J. Cardiol. 2020, 125, 1096–1101. [Google Scholar] [CrossRef]
- Hebeler, K.R.; Baumgarten, H.; Squiers, J.J.; Wooley, J.; Pollock, B.D.; Mahoney, C.; Filardo, G.; Lima, B.; DiMaio, J.M. Albumin Is Predictive of 1-Year Mortality After Transcatheter Aortic Valve Replacement. Ann. Thorac. Surg. 2018, 106, 1302–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuno, T.; Koseki, K.; Nakanishi, T.; Sato, K.; Ninomiya, K.; Tomii, D.; Tanaka, T.; Sato, Y.; Horiuchi, Y.; Koike, H.; et al. Evaluation of objective nutritional indexes as predictors of one-year outcomes after transcatheter aortic valve implantation. J. Cardiol. 2019, 74, 34–39. [Google Scholar] [CrossRef]
- Madhavan, M.V.; Gersh, B.J.; Alexander, K.P.; Granger, C.B.; Stone, G.W. Coronary Artery Disease in Patients >/=80 Years of Age. J. Am. Coll. Cardiol 2018, 71, 2015–2040. [Google Scholar] [CrossRef]
- Qin, Y.; Wie, X.; Han, H.; Wen, Y.; Gu, K.; Ruan, Y.; Lucas, C.H.; Baber, U.; Tomey, M.I.; He, J. Association between age and readmission after percutaneous coronary intervention for acute myocardial infarction. Heart 2020, 106, 1595–1603. [Google Scholar] [CrossRef] [PubMed]
- Tonet, E.; Campo, G.; Maietti, E.; Formiga, F.; Martinez-Sellés, M.; Pavasini, R.; Biscaglia, S.; Serenelli, M.; Sanchis, J.; Diez-Villanueva, P.; et al. Nutritional status and all-cause mortality in older adults with acute coronary syndrome. Clin. Nutr. 2020, 39, 1572–1579. [Google Scholar] [CrossRef]
- Wada, H.; Dohi, T.; Miyauchi, K.; Doi, S.; Naito, R.; Konishi, H.; Tsuboi, S.; Ogita, M.; Kasai, T.; Hassan, A.; et al. Prognostic Impact of the Geriatric Nutritional Risk Index on Long-Term Outcomes in Patients Who Underwent Percutaneous Coronary Intervention. Am. J. Cardiol. 2017, 119, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Dohi, T.; Miyauchi, K.; Doi, S.; Konishi, H.; Naito, R.; Tsuboi, S.; Ogita, M.; Kasai, T.; Okazaki, S.; et al. Prognostic impact of nutritional status assessed by the Controlling Nutritional Status score in patients with stable coronary artery disease undergoing percutaneous coronary intervention. Clin. Res. Cardiol. 2017, 106, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Kunimura, A.; Ishii, H.; Uetani, T.; Aoki, T.; Harada, K.; Hirayama, K.; Negishi, Y.; Shibita, Y.; Sumi, T.; Kawashima, K.; et al. Impact of nutritional assessment and body mass index on cardiovascular outcomes in patients with stable coronary artery disease. Int. J. Cardiol. 2017, 230, 653–658. [Google Scholar] [CrossRef]
- Oduncu, V.; Erkol, A.; Karabay, C.Y.; Kurt, M.; Akgun, T.; Bulut, M.; Pala, S.; Kirma, C. The prognostic value of serum albumin levels on admission in patients with acute ST-segment elevation myocardial infarction undergoing a primary percutaneous coronary intervention. Coron. Artery. Dis. 2013, 24, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Hayıroğlu, M.İ.; Keskin, T.; Kaya, A.; Tatlisu, M.A.; Altay, S.; Uzon, A.O.; Borklu, E.B.; Guvenc, T.S.; Avci, I.I.; et al. A novel and useful predictive indicator of prognosis in ST-segment elevation myocardial infarction; prognostic nutritional index. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 438–446. [Google Scholar] [CrossRef]
- Komici, K.; Vitale, D.F.; Mancini, A.; Bencivegna, L.; Conte, M.; Provenzano, S.; Grieco, F.V.; Visaggi, L.; Ronga, I.; Cittadini, A.; et al. Impact of Malnutrition on Long-Term Mortality in Elderly Patients with Acute Myocardial Infarction. Nutrients 2019, 11, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basta, G.; Chatzianagnostou, K.; Paradossi, U.; Botto, N.; Del Turco, S.; Taddei, A.; Berti, S.; Mazzone, A. The prognostic impact of objective nutritional indices in elderly patients with ST-elevation myocardial infarction undergoing primary coronary intervention. Int. J. Cardiol. 2016, 221, 987–992. [Google Scholar] [CrossRef]
- Aziz, E.F.; Javed, F.; Pratap, B.; Musat, D.; Nader, A.; Pulimi, S.; Alivar, C.L.; Herzog, E.; Kukin, M.L. Malnutrition as assessed by nutritional risk index is associated with worse outcome in patients admitted with acute decompensated heart failure: An ACAP-HF data analysis. Heart Int. 2011, 6, e2. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Lin, Z.; Li, X.; Kong, X.; Sun, G. Review of nutritional screening and assessment tools and clinical outcomes in heart failure. Heart Fail. Rev. 2016, 21, 549–565. [Google Scholar] [CrossRef]
- Sze, S.; Pellicori, P.; Zhang, J.; Weston, J.; Clark, A.L. Agreement and Classification Performance of Malnutrition Tools in Patients with Chronic Heart Failure. Curr. Dev. Nutr. 2020, 4, nzaa071. [Google Scholar] [CrossRef] [PubMed]
- Candeloro, M.; Di Nisio, M.; Balducci, M.; Genova, S.; Valeriani, E.; Pierdomenico, S.D.; Porreca, E. Prognostic nutritional index in elderly patients hospitalized for acute heart failure. ESC Heart Fail. 2020, 7, 2479–2484. [Google Scholar] [CrossRef]
- Iwakami, N.; Nagai, T.; Furukawa, T.A.; Sugano, Y.; Honda, S.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; et al. Prognostic value of malnutrition assessed by Controlling Nutritional Status score for long-term mortality in patients with acute heart failure. Int. J. Cardiol. 2017, 230, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Sato, K.; Sai, S.; Yamamoto, M.; Ishizu, T.; Sugano, A.; Obara, K.; Wu, L.; et al. Cardiovascular Assessment Study-Heart Failure Investigators. Utility of Nutritional Screening in Predicting Short-Term Prognosis of Heart Failure Patients. Int. Heart J. 2018, 59, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 10, 3320. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Zhang, J.; Pellicori, P.; Morgan, D.; Hoye, A.; Clark, A.L. Prognostic value of simple frailty and malnutrition screening tools in patients with acute heart failure due to left ventricular systolic dysfunction. Clin. Res. Cardiol. 2017, 106, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.L.; Sung, S.H.; Cheng, H.M.; Hsu, P.F.; Guo, C.Y.; Yu, W.C.; Chen, C.H. Prognostic Nutritional Index and the Risk of Mortality in Patients With Acute Heart Failure. J. Am. Heart Assoc. 2017, 6, e004876. [Google Scholar] [CrossRef] [PubMed]
- Nishi, I.; Seo, Y.; Hamada-Harimura, Y.; Yamamoto, M.; Ishizu, T.; Sugani, A.; Sato, K.; Sai, S.; Obara, K.; Suzuki, S.; et al. Cardiovascular Assessment Study-Heart Failure Investigators. Geriatric nutritional risk index predicts all-cause deaths in heart failure with preserved ejection fraction. ESC Heart Fail. 2019, 6, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargento, L.; Satendra, M.; Almeida, I.; Sousa, A.C.; Gomes, S.; Salazar, F.; Lousada, N.; Dos Reis, R.P. Nutritional status of geriatric outpatients with systolic heart failure and its prognostic value regarding death or hospitalization, biomarkers and quality of life. J. Nutr. Health Aging 2013, 17, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Zhang, J.; Pellicori, P.; Kazmi, S.; Rigby, A.; Cleland, J.G.F.; Wong, K.; Clark, A.L. Prevalence and Prognostic Significance of Malnutrition Using 3 Scoring Systems Among Outpatients With Heart Failure, A Comparison with Body Mass Index. J. Am. Coll. Cardiol. Heart Fail 2018, 6, 476–486. [Google Scholar]
- Alataş, Ö.D.; Biteker, M.; Yildirim, B.; Acar, E.; Gokcek, K. Comparison of objective nutritional indexes for the prediction of in-hospital mortality among elderly patients with acute heart failure. Eur. J. Emerg. Med. 2020, 27, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Sze, S.; Pellicori, P.; Zhang, J.; Weston, J.; Clark, A.L. The impact of malnutrition on short-term morbidity and mortality in ambulatory patients with heart failure. J. Clin. Nutr. 2021, 113, 695–705. [Google Scholar] [CrossRef]
- Martín-Sánchez, F.J.; Triana, F.C.; Rossello, X.; Garcia, R.P.; Garcia, G.L.; Caimari, F.; Vidan, M.T.; Artacho, P.R.; Del Castillo, J.G.; Llorens, P.; et al. Effect of risk of malnutrition on 30-day mortality among older patients with acute heart failure in Emergency Departments. Eur. J. Intern. Med. 2019, 65, 69–77. [Google Scholar] [CrossRef]
- Dereli, S.; Bayramoğlu, A.; Kaya, A. Effects of sacubutril/valsartan on nutritional status in heart failure with reduced ejection fraction. J. Cardiovasc. Med. 2020, 21, 13–20. [Google Scholar] [CrossRef]
- Bonilla-Palomas, J.L.; Gámez-López, A.L.; Castillo-Domínguez, J.C.; Moreno-Conde, M.; Lopez Ibanez, M.C.; Exposito, R.A.; Ortega, E.R.; Anguita-Sanchez, M.; Villar-Raez, A. Nutritional Intervention in Malnourished Hospitalized Patients with Heart Failure. Arch. Med. Res. 2016, 47, 535–540. [Google Scholar] [CrossRef]
- Campo, G.; Maietti, E.; Tonet, E.; Biscaglia, S.; Ariza-Solé, A.; Pavasini, R.; Tebaldi, M.; Cimaglia, P.; Bugani, G.; Serenelli, M.; et al. The Assessment of Scales of Frailty and Physical Performance Improves Prediction of Major Adverse Cariac Events in Older Adults with Acute Coronary Syndrome. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 1113–1119. [Google Scholar] [CrossRef]
- Tonet, E.; Pavasini, R.; Biscaglia, S.; Campo, G. Frailty in patients admitted to hospital for acute coronary syndrome: When, how and why? J. Geriatric. Cardiol. 2019, 16, 129–137. [Google Scholar]
- Campo, G.; Tonet, E.; Chiaranda, G.; Sella, G.; Maietti, E.; Mazzoni, G.; Biscaglia, S.; Pavasini, R.; Myers, J.; Grazzi, G. Exercise Intervention to Improve Functional Capacity in Older Adults After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2019, 74, 2948–2950. [Google Scholar] [CrossRef] [PubMed]
- Campo, G.; Tonet, E.; Chiaranda, G.; Sella, G.; Maietti, E.; Bugani, G.; Vitali, F.; Serenelli, M.; Mazzoni, G.; Ruggiero, R.; et al. Exercise intervention improves quality of life in older adults after myocardial infarction: Randomized clinical trial. Heart 2020, 106, 1658–1664. [Google Scholar] [CrossRef] [PubMed]
Score | Brief Description | Cut off Values | Setting of Validation |
---|---|---|---|
CONUT [4] Controlling Nutritional Index | Assess the risk of malnutrition giving points for each parameter, then summarize the point: Albumin, g/dL Total cholesterol, mmol/L Lymphocyte count, ×109/L | 0–1 = no risk 2–4 = mild risk 5–8 = moderate risk 9–12 = severe risk | Aortic stenosis Coronary artery disease Heart failure |
GNRI [5] Geriatric Nutritional Risk Index | Simple screening tool to assess nutritional status based on serum albumin and body mass index. GNRI = 14.89× serum albumin [g/dL] + 41.7× [actual body weight/ideal body weight] | >104 no risk 98–104 moderate risk <98 severe risk | Aortic stenosis Coronary artery disease Heart failure |
PNI [5] Prognostic Nutritional Index | Assess the risk of malnutrition with the formula: 10× serum albumin (g/dL) + 0.005× total lymphocyte count (mm3) | >38 no risk 35–38 moderate risk <35 severe risk | Aortic stenosis Coronary artery disease Heart failure |
MNA-SF [6] Mini Nutritional Assessment -Short Form | Able to identify multifactorial causes of nutritional risk specifically in elderly. | >24 scores = no risk 17–23.5 scores = at risk of malnutrition <17 scores = malnourished | Aortic stenosis Coronary artery disease Heart failure |
A questionnaire consisting of 18 components grouped into four components, which are anthropometry data, general status, dietary habits, self-perceived health, and nutrition status | |||
EFT [7] Essential Frailty Toolset | The EFT is scored 0 (least frail) to 5 (most frail) based on the following four items: preprocedural anemia; hypoalbuminemia; lower-extremity muscle weakness, defined as a time of >15 s or inability to complete five sit-to-stand repetitions without using arms; and cognitive impairment, defined as a score of <24 on the Mini-Mental State | 0–2 low risk of frailty 3–5 high risk of frailty | Aortic stenosis |
Combined Objective Nutritional Score [8] | Assessment the risk of malnutrition giving 1 point each for: high CONUT score (3–12), low GNRI (<98) or low PNI (<45) | 0 = no risk 1–2 = moderate risk 3 = severe risk | Coronary artery disease |
SGA [9] Subjective Global Assessment | A validated tool consisting of clinical history (weight loss history, dietary intake changes, gastrointestinal symptoms persisting for more than 2 weeks, and functional capacity) and physical examination (subcutaneous fat, muscle wasting, ankle and sacral edema, and ascites | Based on nutrition rating: SGA A = well-nourished SGA B = moderate or suspected undernourished SGA C = severely undernourished | Aortic stenosis |
Most Important Studies | Number of Patients | Nutritional Tool Used | Mean Age (Years) | Setting | Results |
---|---|---|---|---|---|
Goldfarb et al. [6] | 1158 | MNA-SF | 81.3 ± 6.1 | Hospital | Pts with malnutrition have 3-fold increase in mortality one year following AVR |
Afilalo et al. [7] | 1020 | EFT | 82 (77–86) | Hospital | Pts with EFT > 4 have:
|
Honda Y. et al. [4] | 150 | CONUT | 86 ± 5 | Hospital | Association between CONUT score and increase mortality after TAVR. |
Hebeler K. et al. [11] | 470 | Serum albumin level | 81.7 ± 7.9 | Hospital | Albumin is predictive of 1-year mortality and may be a useful variable to include in TAVR risk scores. |
Lee K et al. [5] | 412 | GNRI CONUT | 78.7 ± 5.2 | Hospital | GNRI and CONUT score reflected mortality risk. Lower GNRI (≤ 98) was the only independent predictor of all-cause death at 1 year |
Okuno T et al. [12] | 95 | GNRI CONUT PNI | 84 (81–88) | Hospital | CONUT score and PNI were associated with 1-year clinical outcomes especially with 1-year all-cause mortality in patients undergoing TAVR. CONUT score and PNI might have better predictive values than GNRI |
Wernio et al. [9] | 101 | f-MNA, 7-SGA, low concentrations of total cholesterol, LDL-cholesterol, and prealbumin were considered | 74.6 ± 5.2 | Hospital | In malnourished patients the risk of postsurgery complications increased 1.22 times. Unintentional weight loss of >2.8% in the six months preceding surgery predicted death within the first year after AVR surgery |
Most Important Studies | Number of Patients | Nutritional Tool Used | Mean Age (years) | Setting | Results | |
---|---|---|---|---|---|---|
Chronic ischemic heart disease | Wada et al. [16] | 2853 | GNRI | 69 ± 10 | Hospital | Lower GNRI was an independent predictor of all-cause mortality (HR 1.55, CI 1.08–1.90, p < 0.0001) and cardiac death (HR 144, CI 1.08–1.90, p < 0.01) |
Wada et al. [17] | 1984 | CONS | 68.2 ± 9.6 | Hospital | CONS of 3 showed 2.91-fold (95% (CI) 2.10–4.00; p < 0.0001) and 2.16-fold (95% CI 1.15–3.92; p = 0.02) increases in risk of mortality and cardiac mortality compared with patients with a CONS of 0. | |
Wada et al. [8] | 1988 | PNI | 69.7 ± 9.4 | Hospital | Lower PNI scores are correlated with the increased cumulative incidence of MACE and all-cause death (p < 0.0001 each). PNI is independently associated with cardiovascular outcomes after adjusting for these risk factors. | |
Kunimura et al. [18] | 1004 | CONUT score combined with BMI | 73 ± 9 | Hospital | High CONUT score + normal BMI showed a 2.72-fold increase in the incidence of MACE (95% CI 1.46–5.08, p = 0.002) | |
Acute ischemic heart disease | Oduncu V et al. [19] | 1706 | Serum albumin | 61.3 ± 12.3 | Hospital | Hypoalbuminemia at admission is a strong independent predictor for long-term mortality and development of advanced HF in patients with STEMI undergoing p-PCI. |
Tonet E et al. [15] | 908 | MNA-SF | 82 ± 6 | Hospital | MNA-SF is an independent predictor of all-cause mortality (HR 0.76, 95% CI 0.68–0.84 for single change unit). The MNA-SF score improved the GRACE score’s ability to discriminate subjects at risk of death. | |
Keskin M et al. [20] | 1823 | PNI | 58 ± 11 | Hospital | Long-term mortality was also significantly higher in the group with PNI < 44, confirmed even after adjustment for possible confounders | |
Komici K et al. [21] | 174 | MNA | 74.2 ± 7 | Hospital | MNA showed a significant and independent impact on mortality (HR = 0.56, 95% CI = 0.42–0.73) | |
Basta G et al. [22] | 945 | CONUT, PNI | 78 ± 9 | Hospital | CONUT > 2 but not PNI < 35, has the highest event rate for all-cause death (p < 0.001). CONUT but not the PNI was associated with increased risk of all-cause death for an unadjusted model. |
Most Important Studies | Number of Patients | Nutritional Tool Used | Mean Age (Years) | Setting | Results |
---|---|---|---|---|---|
Candeloro M et al. [26] | 344 | PNI | 84 (65–101) | Hospital | PNI values ≤ 34 is associated with a twofold higher risk of overall mortality (HR 2.54; 95% CI, 1.52 to 4.24) and threefold higher risk of in-hospital mortality (HR 3.37; 95% CI, 1.14 to 9.95). |
Iwakami et al. [27] | 635 | CONUT | 78 ± 10 | Hospital | CONUT score is independently associated with death (HR 1.26, 95% CI 1.11–1.42, p < 0.001). |
Nishi I et al. [28] | 482 | CONUT | 71.7 ± 13.6 | Hospital | Demonstrate the usefulness of CONUT scores as predictors of short-term prognosis in hospitalized HF patients |
Kato T et al. [29] | 2466 | CONUT | 79 (70–85) | Hospital | The excess risk of high relative to low CONUT score for mortality and infection is significant (OR: 1.61, 95% CI: 1.05–2.44 and OR: 1.66, 95% CI: 1.30–2.12, respectively). The effect was incremental according to the score. |
Sze S et al. [30] | 265 | PNI | 76 (69–82) | Outpatient visit | A model, including CFS and PNI, increased c-statistic for mortality prediction from 0.68 to 0.84. Worsening frailty and malnutrition indices are strongly related to worse outcomes in patients hospitalised with HF. |
Cheng YL et al. [31] | 1673 | PNI | 75.8 ± 13.2 | Hospital | PNI is independently associated with long-term survival in patients hospitalized for acute heart failure with either reduced or preserved left ventricular ejection fraction. |
Nishi I et al. [32] | 110 | GNRI | 78.5 ± 7.2 | Hospital | GNRI at discharge is helpful to predict the long-term prognosis of elderly HFpEF patients |
Sargento L et al. [33] | 50 | MNA | 74.3 ± 6.3 | Outpatient visit | Patients with malnutrition by the MNA-SF were at greater risk of death (HR = 8.0 p = 0.059) and hospitalization (HR 8.1 p = 0.008) |
Sze et al. [34] | 3386 | CONUT, GNRI, PNI | 75 (67–81) | Outpatient visit | Malnutrition is frequent in HF and it is strongly related to worse outcomes. Amongst the malnutrition scores, GNRI had the greatest incremental value. |
Alatas O et al. [35] | 628 | GNRI, PNI, CONUT, | 74.7 ± 11.8 | Hospital | Though all objective nutritional indexes were associated with prognosis in elderly patients with acute heart failure, GNRI was superior to other scores in predicting in-hospital mortality. |
Sze S et al. [36] | 467 | CONUT, GNRI, PNI MUST, MNA-SF | 76 (69–82) | Outpatient visit | Among the 6 malnutrition tools studied, MNA-SF has the best classification performance in identifying significant malnutrition as defined by the combined index |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonet, E.; Campana, R.; Caglioni, S.; Gibiino, F.; Fiorio, A.; Chiaranda, G.; Zagnoni, S.; Casella, G.; Campo, G. Tools for the Assessment of the Malnutrition Status and Possible Interventions in Elderly with Cardiovascular Diseases. J. Clin. Med. 2021, 10, 1508. https://doi.org/10.3390/jcm10071508
Tonet E, Campana R, Caglioni S, Gibiino F, Fiorio A, Chiaranda G, Zagnoni S, Casella G, Campo G. Tools for the Assessment of the Malnutrition Status and Possible Interventions in Elderly with Cardiovascular Diseases. Journal of Clinical Medicine. 2021; 10(7):1508. https://doi.org/10.3390/jcm10071508
Chicago/Turabian StyleTonet, Elisabetta, Roberta Campana, Serena Caglioni, Federico Gibiino, Alessio Fiorio, Giorgio Chiaranda, Silvia Zagnoni, Gianni Casella, and Gianluca Campo. 2021. "Tools for the Assessment of the Malnutrition Status and Possible Interventions in Elderly with Cardiovascular Diseases" Journal of Clinical Medicine 10, no. 7: 1508. https://doi.org/10.3390/jcm10071508
APA StyleTonet, E., Campana, R., Caglioni, S., Gibiino, F., Fiorio, A., Chiaranda, G., Zagnoni, S., Casella, G., & Campo, G. (2021). Tools for the Assessment of the Malnutrition Status and Possible Interventions in Elderly with Cardiovascular Diseases. Journal of Clinical Medicine, 10(7), 1508. https://doi.org/10.3390/jcm10071508