Use of Anti-Cytokine Therapy in Kidney Transplant Recipients with COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Management of Coronavirus Disease 2019 (COVID-19)
2.2. Management of Immunosuppressive Treatment
2.3. Ordinary Scale Determination (OSD)
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Situation Report [online]. Available online: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200304-sitrep-44-covid-19.pdf?sfvrsn=783b4c9d_6 (accessed on 5 February 2021).
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet 2020, 395, e30–e31. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, M.; Andrés, A.; Loinaz, C.; Delgado, J.F.; López-Medrano, F.; San Juan, R.; González, E.; Polanco, N.; Folgueira, M.D.; Lalueza, A.; et al. COVID-19 in solid organ transplant recipients: A single-center case series from Spain. Am. J. Transplant. 2020, 20, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.R.; Mohan, S.; Cohen, D.J.; Husain, S.A.; Dube, G.K.; Ratner, L.E.; Arcasoy, S.; Aversa, M.M.; Benvenuto, L.J.; Dadhania, D.M.; et al. COVID-19 in Solid Organ Transplant Recipients: Initial Report from the US Epicenter. Am. J. Transplant. 2020, 20, 1800–1808. [Google Scholar] [CrossRef] [PubMed]
- Tschopp, J.; L’Huillier, A.G.; Mombelli, M.; Mueller, N.J.; Khanna, N.; Garzoni, C.; Meloni, D.; Papadimitriou-Olivgeris, M.; Neofytos, D.; Hirsch, H.H.; et al. First experience of SARS-CoV-2 infections in solid organ transplant recipients in the Swiss Transplant Cohort Study. Am. J. Transplant. 2020, 20, 2876–2886. [Google Scholar] [CrossRef] [PubMed]
- Caillard, S.; Anglicheau, D.; Matignon, M.; Durrbach, A.; Greze, C.; Frimat, L.; Thaunat, O.; Legris, T.; Moal, V.; Westeel, P.F.; et al. An initial report from the French SOT COVID Registry suggests high mortality due to COVID-19 in recipients of kidney transplants. Kidney Int. 2020, 98, 1549–1558. [Google Scholar] [CrossRef]
- Cravedi, P.; Mothi, S.S.; Azzi, Y.; Haverly, M.; Farouk, S.S.; Pérez-Sáez, M.J.; Redondo-Pachón, M.D.; Murphy, B.; Florman, S.; Cyrino, L.G.; et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am. J. Transplant. 2020, 20, 3140–3148. [Google Scholar] [CrossRef] [PubMed]
- Akalin, E.; Azzi, Y.; Bartash, R.; Seethamraju, H.; Parides, M.; Hemmige, V.; Ross, M.; Forest, S.; Goldstein, Y.D.; Ajaimy, M.; et al. Covid-19 and Kidney Transplantation. N. Engl. J. Med. 2020, 382, 2475–2477. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, P.C. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, P.C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 2009, 28, 3083–3107. [Google Scholar] [CrossRef] [Green Version]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J. R. Stat. Soc. Ser. B. Epub. 1977, 39, 1–22. [Google Scholar]
- Henderson, L.A.; Canna, S.W.; Schulert, G.S.; Volpi, S.; Lee, P.Y.; Kernan, K.F.; Caricchio, R.; Mahmud, S.; Hazen, M.M.; Halyabar, O.; et al. On the alert for cytokine storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020, 72, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Moore, B.J.B.; June, C.H. Cytokine release syndrome in severe COVID-19. Science 2020, 368, 473–474. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Wu, D.I.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020, 130, 2620–2629. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, S.F.; Ho, Y.C. SARS-CoV-2: A storm is raging. J. Clin. Investig. 2020, 130, 2202–2205. [Google Scholar] [CrossRef]
- Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (actemra). Hum. Vaccines Immunother. 2017, 13, 1972–1988. [Google Scholar] [CrossRef] [Green Version]
- Brudno, J.N.; Kochenderfer, J.N. Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Rev. 2019, 34, 45–55. [Google Scholar] [CrossRef]
- Choi, J.; Aubert, O.; Vo, A.; Loupy, A.; Haas, M.; Puliyanda, D.; Kim, I.; Louie, S.; Kang, A.; Peng, A.; et al. Assessment of Tocilizumab (Anti–Interleukin-6 Receptor Monoclonal) as a Potential Treatment for Chronic Antibody-Mediated Rejection and Transplant Glomerulopathy in HLA-Sensitized Renal Allograft Recipients. Am. J. Transplant. 2017, 17, 2381–2389. [Google Scholar] [CrossRef] [Green Version]
- Hermine, O.; Mariette, X.; Tharaux, P.L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P. Effect of Tocilizumab vs Usual Care in Adults Hospitalized with COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA 2021, 181, 32–40. Available online: https://pubmed.ncbi.nlm.nih.gov/33080017/ (accessed on 18 March 2021).
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N. Engl. J. Med. 2020, 383, 2333–2344. Available online: https://pubmed.ncbi.nlm.nih.gov/33085857/ (accessed on 18 March 2021). [CrossRef]
- Fleischmann, R.M.; Schechtman, J.; Bennett, R.; Handel, M.L.; Burmester, G.R.; Tesser, J.; Modafferi, D.; Poulakos, J.; Sun, G. Anakinra, a recombinant human interleukin-1 receptor antagonist (r-metHuIL-1ra), in patients with rheumatoid arthritis: A large, international, multicenter, placebo-controlled trial. Arthritis Rheum. 2003, 48, 927–934. [Google Scholar] [CrossRef]
- La Rosée, P.; Horne, A.; Hines, M.; von Bahr Greenwood, T.; Machowicz, R.; Berliner, N.; Birndt, S.; Gil-Herrera, J.; Girschikofsky, M.; Jordan, M.B.; et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood 2019, 133, 2465–2477. [Google Scholar] [CrossRef] [Green Version]
- Loustau, C.; Rosine, N.; Forien, M.; Ottaviani, S.; Juge, P.A.; Lioté, F.; Bardin, T.; Richette, P.; Dieudé, P.; Richez, C.; et al. Effectiveness and safety of anakinra in gout patients with stage 4–5 chronic kidney disease or kidney transplantation: A multicentre, retrospective study. Jt. Bone Spine 2018, 85, 755–760. [Google Scholar] [CrossRef]
- Day, J.W.; Fox, T.A.; Halsey, R.; Carpenter, B.; Kottaridis, P.D. IL-1 blockade with anakinra in acute leukaemia patients with severe COVID-19 pneumonia appears safe and may result in clinical improvement. Br. J. Haematol. 2020, 190, e80–e83. [Google Scholar] [CrossRef]
- Filocamo, G.; Mangioni, D.; Tagliabue, P.; Aliberti, S.; Costantino, G.; Minoia, F.; Bandera, A. Use of anakinra in severe COVID-19: A case report. Int. J. Infect Dis. 2020, 96, 607–609. [Google Scholar] [CrossRef]
- Franzetti, M.; Pozzetti, U.; Carugati, M.; Pandolfo, A.; Molteni, C.; Faccioli, P.; Castaldo, G.; Longoni, E.; Ormas, V.; Iemoli, E.; et al. Interleukin-1 receptor antagonist anakinra in association with remdesivir in severe Coronavirus disease 2019: A case report. Int. J. Infect Dis. 2020, 97, 215–218. [Google Scholar] [CrossRef]
- Fleischmann, R.; Schiff, M.; van der Heijde, D.; Ramos-Remus, C.; Spindler, A.; Stanislav, M.; Zerbini, C.A.; Gurbuz, S.; Dickson, C.; de Bono, S.; et al. Baricitinib, Methotrexate, or Combination in Patients With Rheumatoid Arthritis and No or Limited Prior Disease-Modifying Antirheumatic Drug Treatment. Arthritis Rheumatol. 2017, 69, 506–517. [Google Scholar] [CrossRef]
- Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect. 2020, 81, 318–356. [Google Scholar] [CrossRef]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; López, J.R.A.; Cattelan, A.M.; Viladomiu, A.S.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307–1316. [Google Scholar] [CrossRef]
- Sterne, J.A.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. JAMA 2020, 324, 1330–1341. [Google Scholar]
Variable | Total n (%) |
---|---|
Age, median, IQR | 55 (33–86) |
Male sex | 20 (61) |
Hypertension | 30 (91) |
Diabetes mellitus | 9 (27) |
Cardiopathy | 11 (33) |
Chronic obstructive pulmonary disease | 4 (12) |
Cause of end- stage kidney disease
| |
5 (15) | |
10 (30) | |
1 (3) | |
6 (18) | |
2 (6) | |
9 (27) | |
Prior transplantation | 7 (21) |
Multivisceral transplantation | 2 (6) |
Immunosupressive regimen
| |
21 (64) | |
12 (36) | |
Acute allograft rejection (3 months prior) | 0 |
Years from transplant to diagnosis, median, IQR | 5.5 (0.5–21) |
Presenting symptoms
| |
29 (91) | |
3 (9) | |
3 (9) | |
18 (56) | |
6 (18) | |
Days from symptom onset to test, median, IQR | 6 (0–20) |
Serum basal creatinine (mg/dL), IQR | 1.4 (0.8–3.7) |
Impaired kidney graft function | 17 (52) |
Respiratory insufficiency | 21 (64) |
ICU admission | 11 (33) |
Invasive mechanical ventilation | 4 (12) |
Maximum ferritin levels (ng/mL) (NR) 20–400 | 888 (281–4372) |
Maximum C-reactive protein (mg/dL) NR < 0.4 | 14 (0–25) |
Maximum Lactate dehydrogenase (U/L) NR < 234 | 254 (198–687) |
Minimum lymphocytes count (1000/mm3) | 600 (100–1000) |
D-dimer (ng/mL) NR < 500 | 1300 (500–12400) |
Secondary infection | 7 (23) |
Median days of hospitalization (IQR) | 12 (4–59) |
Overall mortality | 4 (12) |
Variable | Biologic (n = 19) | Non Biologic (n = 14) | p Value | Standarized Difference Raw IPTW Adjusted | |
---|---|---|---|---|---|
Age, median, IQR | 52 (37; 83) | 61 (33; 87) | 0.4 | −0.070 | −0.141 |
Male sex | 11 (61) | 9 (60) | 1 | 0.131 | −0.080 |
Hypertension | 15 (83) | 15 (100) | 0.1 | ||
Diabetes mellitus | 5 (28) | 4 (27) | 1 | ||
Cardiopathy | 6 (33) | 5 (33) | 1 | ||
Chronic obstructive pulmonary disease | 4 (22) | 0 | 0.1 | ||
Number of comorbidities, median(IQR) | 1 (0; 4) | 1.5 (1; 3) | 0.6 | 0.197 | 0.158 |
Prior transplantation | 4 (22) | 3 (20) | 1 | −0.009 | 0.033 |
Multivisceral transplantation | 2 (11) | 0 | 0.5 | ||
Immunosupressive regimen
| 1 | 0.0235 | −0.034 | ||
11 | 10 | ||||
7 | 5 | ||||
Years from transplant to diagnosis, median (IQR) | 4.8 (0.5; 15.5) | 6.2 (0.5; 21.6) | 0.4 | ||
Days from symptom onset to test, median (IQR) | 6 (1; 20) | 6 (2; 15) | 0.7 | ||
Days from symptom onset to test <7 | 6 (31.6) | 4 (28.6) | −0.009 | 0.0326 | |
Baseline OSD, median, IQR | 2 (2; 4) | 2 (2; 5) | 0.09 | ||
Baseline OSD >2 (needed O2) | 6 (31.6) | 1 (7.1) | 0.6503 | 0.3035 | |
OSD during hospitalization, median, IQR | 3 (2; 6) | 2 (2; 5) | 0.004 | ||
Serum basal creatinine | 1.5 (0.8; 3.4) | 1.3 (0.8; 3.7) | 0.3 | 0.2311 | 0.0457 |
Impaired kidney graft function | 11 (58) | 6 (46) | 1 | ||
Maximum ferritin levels (ng/mL) NR 20–400 | 1056 (300; 4372) | 361 (281; 3281) | 0.5 | ||
Maximum C-reactive protein (mg/dL) NR < 0.4 | 15 (4; 26) | 11 (0; 20) | 0.09 | ||
Maximum lactate dehydrogenase (U/L) NR < 234 | 367 (267; 687) | 276 (198; 562) | 0.1 | ||
Minimum lymphocytes count (1000/mm3) | 600 (100; 1000) | 500 (200; 800) | 0.8 | ||
D-dimer (ng/mL) NR < 500 | 1300 (1000; 12400) | 1300 (500; 10000) | 1 | ||
Number of analytic results in last tercile | 1 (1; 3) | 2 (1; 3) | 0.6692 | 0.1008 | |
Respiratory insufficiency | 14 (74) | 5 (26) | 0.03 | ||
ICU admission | 6 (33) | 4 (27) | 0.7 | ||
ICU admission post biologic infusion (>24 h) | 2 (11) | - | - | ||
Invasive mechanical ventilation | 2 (11) | 1 (7) | 1 | ||
Invasive mechanical ventilation post biologic infusion (>24 h) | 0 | - | |||
Treatment received
| |||||
18 (100) | 9 (69) | 0.02 | |||
17 (94) | 11 (85) | 0.6 | |||
18 (100) | 12 (92) | 0.4 | |||
3 (17) | 0 (7) | 0.2 | |||
Secondary infection | 6 (35) | 1 (7) | 0.1 | ||
Overall mortality | 3 (16) | 2 (13) | 1 | ||
Therapeutic effort limitation | 2 (10.5) | 1 (7.1) | 1 | 0.1194 | 0.0414 |
Logistic Regression w/IPTW | Logistic Regression w/IPTW and Bootstrap (n = 1000) w/Replacement | ||
---|---|---|---|
OR (95%CI) | p-value | OR (2.5; 97.5 percentiles) | |
OSD = 7 | 0.66 (0.07; 6.60) | 0.7254 | 0.75 (0.15; 2.16) |
OSD during hospitalization ≥ 5 | 0.17 (0.01; 3.83) | 0.2669 | 0.31 (0.10; 0.72) |
Maximum OSD ≥ 5 | 0.41 (0.05; 3.38) | 0.4089 | 0.54 (0.11; 1.72) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodro, M.; Cofan, F.; Ríos, J.; Herrera, S.; Linares, L.; Marcos, M.A.; Soriano, A.; Moreno, A.; Diekmann, F. Use of Anti-Cytokine Therapy in Kidney Transplant Recipients with COVID-19. J. Clin. Med. 2021, 10, 1551. https://doi.org/10.3390/jcm10081551
Bodro M, Cofan F, Ríos J, Herrera S, Linares L, Marcos MA, Soriano A, Moreno A, Diekmann F. Use of Anti-Cytokine Therapy in Kidney Transplant Recipients with COVID-19. Journal of Clinical Medicine. 2021; 10(8):1551. https://doi.org/10.3390/jcm10081551
Chicago/Turabian StyleBodro, Marta, Frederic Cofan, Jose Ríos, Sabina Herrera, Laura Linares, María Angeles Marcos, Alex Soriano, Asunción Moreno, and Fritz Diekmann. 2021. "Use of Anti-Cytokine Therapy in Kidney Transplant Recipients with COVID-19" Journal of Clinical Medicine 10, no. 8: 1551. https://doi.org/10.3390/jcm10081551
APA StyleBodro, M., Cofan, F., Ríos, J., Herrera, S., Linares, L., Marcos, M. A., Soriano, A., Moreno, A., & Diekmann, F. (2021). Use of Anti-Cytokine Therapy in Kidney Transplant Recipients with COVID-19. Journal of Clinical Medicine, 10(8), 1551. https://doi.org/10.3390/jcm10081551