A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Biochemical Parameters
2.3. Cardiovascular Risk Assessment
2.4. Subjective Well-Being Assessment
2.5. Trial Registration and Ethical Issues
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Cardiovascular Risk Categories
4.2. Comparison of Parameters between CV Groups
4.3. Estimating CV Risk Using Various Calculators
4.4. Limitation and Advantages
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef]
- Eckel, R.H.; York, D.A.; Rossner, S.; Hubbard, V.; Caterson, I.; St Jeor, S.T.; Hayman, L.L.; Mullis, R.M.; Blair, S.N.; American Heart, A. Prevention Conference VII: Obesity, a worldwide epidemic related to heart disease and stroke: Executive summary. Circulation 2004, 110, 2968–2975. [Google Scholar] [CrossRef] [PubMed]
- Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.; Khang, Y.H.; Stevens, G.A.; et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: Systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 2011, 378, 31–40. [Google Scholar] [CrossRef]
- Finucane, M.M.; Stevens, G.A.; Cowan, M.J.; Danaei, G.; Lin, J.K.; Paciorek, C.J.; Singh, G.M.; Gutierrez, H.R.; Lu, Y.; Bahalim, A.N.; et al. National, regional, and global trends in body-mass index since 1980: Systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9.1 million participants. Lancet 2011, 377, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; He, D.; Zhang, W.; Walton, R.G. Trends in prevalence, awareness, management, and control of hypertension among United States adults, 1999 to 2010. J. Am. Coll. Cardiol. 2012, 60, 599–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbaresko, J.; Rienks, J.; Nothlings, U. Lifestyle Indices and Cardiovascular Disease Risk: A Meta-analysis. Am. J. Prev. Med. 2018, 55, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Kotseva, K.; De Backer, G.; De Bacquer, D.; Ryden, L.; Hoes, A.; Grobbee, D.; Maggioni, A.; Marques-Vidal, P.; Jennings, C.; Abreu, A.; et al. Primary prevention efforts are poorly developed in people at high cardiovascular risk: A report from the European Society of Cardiology EURObservational Research Programme EUROASPIRE V survey in 16 European countries. Eur. J. Prev. Cardiol. 2020, 2047487320908698. [Google Scholar] [CrossRef]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Jaspers, N.E.M.; Blaha, M.J.; Matsushita, K.; van der Schouw, Y.T.; Wareham, N.J.; Khaw, K.T.; Geisel, M.H.; Lehmann, N.; Erbel, R.; Jockel, K.H.; et al. Prediction of individualized lifetime benefit from cholesterol lowering, blood pressure lowering, antithrombotic therapy, and smoking cessation in apparently healthy people. Eur. Heart J. 2020, 41, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart. J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Cantor, W.J.; Fitchett, D.; Borgundvaag, B.; Heffernan, M.; Cohen, E.A.; Morrison, L.J.; Ducas, J.; Langer, A.; Mehta, S.; Lazzam, C.; et al. Rationale and design of the Trial of Routine ANgioplasty and Stenting After Fibrinolysis to Enhance Reperfusion in Acute Myocardial Infarction (TRANSFER-AMI). Am. Heart J. 2008, 155, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; et al. Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc. Dis. 2007, 23, 75–80. [Google Scholar] [CrossRef]
- North American Symptomatic Carotid Endarterectomy Trial, C.; Barnett, H.J.M.; Taylor, D.W.; Haynes, R.B.; Sackett, D.L.; Peerless, S.J.; Ferguson, G.G.; Fox, A.J.; Rankin, R.N.; Hachinski, V.C.; et al. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N. Engl. J. Med. 1991, 325, 445–453. [Google Scholar] [CrossRef]
- Chlabicz, M.; Jamiolkowski, J.; Paniczko, M.; Sowa, P.; Lapinska, M.; Szpakowicz, M.; Jurczuk, N.; Kondraciuk, M.; Raczkowski, A.; Sawicka, E.; et al. Independent Impact of Gynoid Fat Distribution and Free Testosterone on Circulating Levels of N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) in Humans. J. Clin. Med. 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdrojewski, T.; Jankowski, P.; Bandosz, P.; Bartus, S.; Chwojnicki, K.; Drygas, W.; Gaciong, Z.; Hoffman, P.; Kalarus, Z.; Kazmierczak, J.; et al. A new version of cardiovascular risk assessment system and risk charts calibrated for Polish population. Kardiol. Pol. 2015, 73, 958–961. [Google Scholar] [CrossRef] [Green Version]
- Conroy, R.M.; Pyorala, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetiere, P.; Jousilahti, P.; Keil, U.; et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Jaspers, N.E.M.; Ridker, P.M.; Dorresteijn, J.A.N.; Visseren, F.L.J. The prediction of therapy-benefit for individual cardiovascular disease prevention: Rationale, implications, and implementation. Curr. Opin. Lipidol. 2018, 29, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction with Life Scale. J. Pers. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Janssen, M.F.; Birnie, E.; Bonsel, G.J. Quantification of the level descriptors for the standard EQ-5D three-level system and a five-level version according to two methods. Qual. Life Res. 2008, 17, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Townsend, N.; Nichols, M.; Scarborough, P.; Rayner, M. Cardiovascular disease in Europe 2015: Epidemiological update. Eur. Heart J. 2015, 36, 2673–2674. [Google Scholar] [CrossRef] [Green Version]
- Kuzma, L.; Struniawski, K.; Pogorzelski, S.; Bachorzewska-Gajewska, H.; Dobrzycki, S. Gender Differences in Association between Air Pollution and Daily Mortality in the Capital of the Green Lungs of Poland-Population-Based Study with 2,953,000 Person-Years of Follow-Up. J. Clin. Med. 2020, 9, 2351. [Google Scholar] [CrossRef]
- Gierlotka, M.; Zdrojewski, T.; Wojtyniak, B.; Polonski, L.; Stokwiszewski, J.; Gasior, M.; Kozierkiewicz, A.; Kalarus, Z.; Wierucki, L.; Chlebus, K.; et al. Incidence, treatment, in-hospital mortality and one-year outcomes of acute myocardial infarction in Poland in 2009–2012--nationwide AMI-PL database. Kardiol. Pol. 2015, 73, 142–158. [Google Scholar] [CrossRef]
- Ptaszynska-Kopczynska, K.; Sobolewska, D.; Kozuch, M.; Dobrzycki, S.; Sobkowicz, B.; Hirnle, T.; Musial, W.J.; Kaminski, K.A. Efficacy of invasive treatment and the occurrence of cardiac rupture in acute ST-elevation myocardial infarction. Kardiol. Pol. 2011, 69, 795–800. [Google Scholar] [PubMed]
- Verdecchia, P.; Angeli, F.; Gattobigio, R.; Sardone, M.; Pede, S.; Reboldi, G.P. Regression of left ventricular hypertrophy and prevention of stroke in hypertensive subjects. Am. J. Hypertens. 2006, 19, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Psaty, B.M.; Lumley, T.; Furberg, C.D.; Schellenbaum, G.; Pahor, M.; Alderman, M.H.; Weiss, N.S. Health outcomes associated with various antihypertensive therapies used as first-line agents: A network meta-analysis. JAMA 2003, 289, 2534–2544. [Google Scholar] [CrossRef]
- Egan, B.M.; Li, J.; Qanungo, S.; Wolfman, T.E. Blood pressure and cholesterol control in hypertensive hypercholesterolemic patients: National health and nutrition examination surveys 1988–2010. Circulation 2013, 128, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Niklas, A.; Marcinkowska, J.; Kozela, M.; Pajak, A.; Zdrojewski, T.; Drygas, W.; Piwonska, A.; Kwasniewska, M.; Kozakiewicz, K.; Tykarski, A. Blood pressure and cholesterol control in patients with hypertension and hypercholesterolemia: The results from the Polish multicenter national health survey WOBASZ II. Pol. Arch. Intern. Med. 2019, 129, 864–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niklas, A.; Flotynska, A.; Puch-Walczak, A.; Polakowska, M.; Topor-Madry, R.; Polak, M.; Piotrowski, W.; Kwasniewska, M.; Nadrowski, P.; Pajak, A.; et al. Prevalence, awareness, treatment and control of hypertension in the adult Polish population—Multi-center National Population Health Examination Surveys—WOBASZ studies. Arch. Med. Sci. 2018, 14, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Amor, A.J.; Masana, L.; Soriguer, F.; Goday, A.; Calle-Pascual, A.; Gaztambide, S.; Rojo-Martinez, G.; Valdes, S.; Gomis, R.; Ortega, E.; et al. Estimating Cardiovascular Risk in Spain by the European Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Rev. Esp. Cardiol. 2015, 68, 417–425. [Google Scholar] [CrossRef]
- Polak, M.; Dorynska, A.; Szafraniec, K.; Pajak, A. Cardiovascular risk assessment, cardiovascular disease risk factors, and lung function parameters. Kardiol. Pol. 2018, 76, 1055–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diederichs, C.; Neuhauser, H.; Rucker, V.; Busch, M.A.; Keil, U.; Fitzgerald, A.P.; Heuschmann, P.U. Predicted 10-year risk of cardiovascular mortality in the 40 to 69 year old general population without cardiovascular diseases in Germany. PLoS ONE 2018, 13, e0190441. [Google Scholar] [CrossRef] [Green Version]
- Zdrojewski, T.; Rutkowski, M.; Bandosz, P.; Gaciong, Z.; Jedrzejczyk, T.; Solnica, B.; Pencina, M.; Drygas, W.; Wojtyniak, B.; Grodzicki, T.; et al. Prevalence and control of cardiovascular risk factors in Poland. Assumptions and objectives of the NATPOL 2011 Survey. Kardiol. Pol. 2013, 71, 381–392. [Google Scholar] [CrossRef] [Green Version]
- Hoefle, G.; Saely, C.H.; Aczel, S.; Benzer, W.; Marte, T.; Langer, P.; Drexel, H. Impact of total and central obesity on vascular mortality in patients undergoing coronary angiography. Int. J. Obes. 2005, 29, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Banerji, M.A.; Faridi, N.; Atluri, R.; Chaiken, R.L.; Lebovitz, H.E. Body composition, visceral fat, leptin, and insulin resistance in Asian Indian men. J. Clin. Endocrinol. Metab. 1999, 84, 137–144. [Google Scholar] [CrossRef]
- Fan, H.; Li, X.; Zheng, L.; Chen, X.; Lan, Q.; Wu, H.; Ding, X.; Qian, D.; Shen, Y.; Yu, Z.; et al. Abdominal obesity is strongly associated with Cardiovascular Disease and its Risk Factors in Elderly and very Elderly Community-dwelling Chinese. Sci. Rep. 2016, 6, 21521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrannini, G.; De Bacquer, D.; De Backer, G.; Kotseva, K.; Mellbin, L.; Wood, D.; Ryden, L.; collaborators, E.V. Screening for Glucose Perturbations and Risk Factor Management in Dysglycemic Patients With Coronary Artery Disease-A Persistent Challenge in Need of Substantial Improvement: A Report From ESC EORP EUROASPIRE V. Diabetes Care 2020, 43, 726–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeFronzo, R.A.; Abdul-Ghani, M. Assessment and treatment of cardiovascular risk in prediabetes: Impaired glucose tolerance and impaired fasting glucose. Am. J. Cardiol. 2011, 108, 3B–24B. [Google Scholar] [CrossRef]
- Kowalska, I.; Prokop, J.; Bachorzewska-Gajewska, H.; Telejko, B.; Kinalskal, I.; Kochman, W.; Musial, W. Disturbances of glucose metabolism in men referred for coronary arteriography. Postload glycemia as predictor for coronary atherosclerosis. Diabetes Care 2001, 24, 897–901. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Boyko, E.J.; McNeely, M.J.; Leonetti, D.L.; Kahn, S.E.; Fujimoto, W.Y. Visceral adiposity, not abdominal subcutaneous fat area, is associated with an increase in future insulin resistance in Japanese Americans. Diabetes 2008, 57, 1269–1275. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, P.; Kosior, D.A.; Sowa, P.; Szostak-Janiak, K.; Koziel, P.; Krzykwa, A.; Sawicka, E.; Haberka, M.; Setny, M.; Kaminski, K.; et al. Secondary prevention of coronary artery disease in Poland. Results from the POLASPIRE survey. Cardiol. J. 2020. [Google Scholar] [CrossRef]
- Zdrojewski, T.; Solnica, B.; Cybulska, B.; Bandosz, P.; Rutkowski, M.; Stokwiszewski, J.; Gaciong, Z.; Banach, M.; Wojtyniak, B.; Pencina, M. Prevalence of lipid abnormalities in Poland. The NATPOL 2011 survey. Kardiol. Pol. 2016, 74, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Valkamo, M.; Koivumaa-Honkanen, H.T.; Hintikka, J.; Niskanen, L.; Honkalampi, K.; Viinamaki, H. Life satisfaction in patients with chest pain subsequently diagnosed as coronary heart disease-connection through depressive symptoms? Qual. Life Res. 2003, 12, 1099–1105. [Google Scholar] [CrossRef]
- Steca, P.; Greco, A.; Addario, M.D.; Monzani, D.; Pozzi, R.; Villani, A.; Rella, V.; Giglio, A.; Malfatto, G.; Parati, G. Relationship of illness severity with health and life satisfaction in patients with cardiovascular disease: The mediating role of self-efficacy belifs and illness perceptions. J. Happiness Stud. 2012, 14, 1585–1599. [Google Scholar] [CrossRef]
Variable | Total Population n = 931 | Cardiovascular Risk Class | |||
---|---|---|---|---|---|
Low n = 429 (46.1%) | Moderate n = 212 (22.8%) | High n = 126 (13.5%) | Very High n = 164 (17.6%) | ||
Age, years | 49.1 ± 15.5 | 35.7 ± 8.4 abc | 54.9 ± 7.7 ade | 61.1 ± 10.1 bdf | 67.7 ± 7.5 cef |
Male sex, n | 402 (43.2) | 155 (36.1) c | 90 (42.5) e | 56 (44.4) f | 101 (61.6) cef |
BPs, mmHg | 124.4 ± 17.7 | 116.2 ± 14.2 abc | 125.9 ± 15.0 ae | 130.6 ± 16.5 bf | 139.1 ± 18.0 cef |
BPd, mmHg | 81.7 ± 10.1 | 78.7 ± 9.1 abc | 84.0 ± 9.6 a | 84.0 ± 11.1 b | 85.0 ± 10.1 c |
BP ≥ 140 and/or ≥90 mmHg | 253 (27.2) | 57 (13.3) abc | 63 (29.7) ae | 49 (38.9) b | 84 (51.2) ce |
HR, bpm | 72.3 ± 10.9 | 73.9 ± 10.4 abc | 71.0 ± 10.8 a | 70.9 ± 10.7 b | 70.8 ± 12.0 c |
Laboratory tests | |||||
NT-proBNP, pg/mL | 89.4 ± 190.3 | 52.9 ± 47.4 abc | 74.6 ± 72.6 ae | 98.8 ± 96.6 bf | 192.0 ± 408.8 cef |
hs-TnT, pg/mL | 7.4 ± 5.1 | 5.4 ± 1.9 abc | 7.2 ± 4.2 ade | 8.5 ± 6.1 bdf | 10.5 ± 7.2 cef |
Fasting glucose, mg/dL | 102.1 ± 21.0 | 94.4 ± 9.4 abc | 104.1 ± 21.4 ae | 107.9 ± 23.9 bf | 115.1 ± 29.9 cef |
OGTT 120 min glucose, mg/dL | 124.3 ± 39.7 | 110.0 ± 27.8 abc | 129.1 ± 35.9 ae | 137.2 ± 46.7 bf | 154.7 ± 49.9 cef |
Fasting insulin, µUI/mL | 12.3 ± 7.6 | 10.9 ± 6.8 abc | 13.5 ± 8.0 a | 12.6 ± 6.2 b | 14.1 ± 9.3 c |
OGTT 120 min Insulin, µUI/mL | 64.8 ± 64.3 | 52.4 ± 50.2 abc | 72.2 ± 58.6 a | 71.5 ± 61.5 b | 89.9 ± 100.2 c |
HbA1 c, % | 5.5 ± 0.7 | 5.2 ± 0.42 abc | 5.7 ± 0.6 ae | 5.8 ± 0.7 bf | 6.1 ± 0.9 cef |
HOMA –IR | 3.2 ± 2.8 | 2.6 ± 1.9 abc | 3.7 ± 4.0 a | 3.4 ± 2.2 b | 4.1 ± 3.2 c |
Fasting C-peptide, ng/mL | 2.6 ± 1.1 | 2.2 ± 1.0 abc | 2.8 ± 1.1 a | 2.7 ± 1.0 b | 2.9 ± 1.3 c |
OGTT 120 min C-peptide, ng/mL | 8.8 ± 3.8 | 7.7 ± 3.1 abc | 9.9 ± 3.7 a | 9.5 ± 3.9 b | 10.6 ± 4.7 c |
TC, mg/dL | 192.5 ± 40.8 | 181.0 ± 32.8 abc | 199.3 ± 31.1 ad | 214.9 ± 48.7 bdf | 196.7 ± 53.0cf |
LDL-C, mg/dL | 124.4 ± 37.8 | 113.9 ± 30.0 abc | 130.8 ± 28.6 a | 143.5 ± 47.6 bf | 129.1 ± 48.5 cf |
HDL-C, mg/dL | 62.6 ± 17.3 | 64.1 ± 16.1 c | 62.5 ± 19.6 | 61.8 ± 16.1 | 59.2 ± 18.0 c |
TG, mg/dL | 113.2 ± 77.6 | 96.6 ± 82.4 abc | 122.9 ± 70.1 a | 137.0 ± 75.2 b | 125.7 ± 66.1 c |
hsCRP, mg/l | 1.7 ± 4.2 | 1.3 ± 3.2 abc | 2.0 ± 5.0 a | 1.8 ± 3.7 b | 2.3 ± 5.3 c |
Creatinine, μmol/L | 70.9 ± 14.9 | 69.5 ± 14.6 bc | 69.0 ± 15.0 de | 73.1 ± 14.2 bd | 75.0 ± 15.3 ce |
CrCl, mL/min | 115.0 ± 40.7 | 126.6 ± 42.8 abc | 116.3 ± 40.2 ade | 102.2 ± 33.3 bd | 92.7 ± 26.8 ce |
Echocardiography | |||||
LVEF Biplane, % | 58.5 ± 5.7 | 59.6 ± 5.3 bc | 58.7 ± 5.2 e | 57.8 ± 5.5 b | 55.9 ± 6.9 ce |
LVMI, g/m2 | 77.4 ± 20.5 | 68.5 ± 16.5 abc | 80.9 ± 18.2 ae | 83.6 ± 19.6 bf | 92.0 ± 22.4 cef |
LVMI, ≥95 g/m2 women, ≥115 g/m2 men | 84 (9.3) | 9 (2.1)abc | 25 (12.1)a | 17 (14.3)b | 33 (21.3)c |
LAVI, mL/m2 | 22.6 ± 7.0 | 20.6 ± 5.7 abc | 23.5 ± 7.0 a | 24.0 ± 6.7 b | 25.6 ± 8.6 c |
LAVI, >34 mL/m2 * | 53 (6.2) | 6 (1.5) abc | 15 (7.7) a | 11 (9.6) b | 21 (14.2) c |
Diastolic dysfunction * | 105 (11.4) | 20 (4.7) abc | 22 (10.5) ae | 19 (15.2) b | 44 (27.7) ce |
Variable | Total Population n = 931 | Cardiovascular Risk Class | |||
---|---|---|---|---|---|
Low n = 429 (46.1%) | Moderate n = 212 (22.8%) | High n = 126 (13.5%) | Very high n = 164 (17.6%) | ||
Anthropometric measurements and body composition analysis | |||||
BMI, kg/m2 | 26.8 ± 5.0 | 24.8 ± 4.4 abc | 28.4 ± 5.0 a | 28.5 ± 4.2 b | 28.7 ± 4.6 c |
BMI < 25 kg/m2 | 330 (35.4) | 224 (52.2)abc | 49 (23.1) a | 24 (19.0) b | 33 (20.1) c |
BMI 25–29.99 kg/m2 | 352 (37.8) | 146 (34.0) | 91 (42.9) | 52 (41.3) | 63 (38.4) |
BMI ≥ 30 kg/m2 | 249 (26.7) | 59 (13.8)abc | 72 (34.0) a | 50 (39.7) b | 68 (41.5) c |
Body mass, kg | 77.2 ± 16.2 | 73.6 ± 16.2 abc | 80.3 ± 16.1 a | 80.8 ± 14.7 b | 80.1 ± 15.2 c |
Height, cm | 169.6 ± 9.9 | 171.8 ± 9.6 abc | 168.2 ± 9.7 a | 168.2 ± 10.7 b | 166.8 ± 9.2 c |
Waist, cm | 87.0 ± 13.5 | 80.5 ± 11.7 abc | 90.9 ± 12.1 af | 92.6 ± 11.6 b | 94.8 ± 13.0 cf |
Hips, cm | 99.52 ± 9.6 | 97.0 ± 9.2 abc | 101.8 ± 10.2 a | 102.1 ± 8.3 b | 101.0 ± 9.2 c |
Waist, >80 cm women, >94 cm men | 636 (68.8) | 233 (54.8) abc | 166 (78.7) a | 106 (84.8) b | 131 (79.9) c |
Thigh, cm | 58.2 ± 5.9 | 58.4 ± 6.3 c | 59.2 ± 5.7 e | 58.5 ± 5.3 f | 56.5 ± 5.1 cef |
WHR | 0.9 ± 0.1 | 0.8 ± 0.1 abc | 0.9 ± 0.1 ae | 0.9 ± 0.1 bf | 0.9 ± 0.1 cef |
WHR, ≥0.85 women, ≥0.9 men | 464 (50.1%) | 134 (31.5) abc | 121 (57.3) ae | 82 (65.1) b | 127 (77.4) ae |
FMI (kg/m2) | 9.2 ± 3.5 | 8.0 ± 3.1 abc | 10.3 ± 3.7 a | 10.4 ± 3.4 b | 10.1 ± 3.3 c |
Total fat mass, kg | 26.1 ± 9.2 | 23.1 ± 8.7 abc | 28.8 ± 9.6 a | 29.1 ± 8.2 b | 27.9 ± 8.4 c |
Total lean mass, kg | 48.8 ± 10.6 | 48.2 ± 11.2 | 49.0 ± 9.7 | 49.5 ± 10.9 | 49.9 ± 9.7 |
Android fat mass, kg | 2.4 ± 1.2 | 1.9 ± 1.1 acb | 2.8 ± 1.2 a | 2.9 ± 1.1 b | 2.9 ± 1.2 c |
Gynoid fat mass, kg | 4.1 ± 1.4 | 3.9 ± 1.4 ab | 4.3 ± 1.6 a | 4.3 ± 1.3 b | 3.9 ± 1.2 |
Gynoid lean mass, kg | 7.2 ± 1.6 | 7.2 ± 1.7 | 7.2 ± 1.5 | 7.3 ± 1.6 | 7.4 ± 1.5 |
Legs fat mass, kg | 7.7 ± 2.8 | 7.6 ± 2.8 | 8.2 ± 3.0 e | 7.9 ± 2.6 f | 7.1 ± 2.4 ef |
Legs lean mass, kg | 16.9 ± 4.0 | 1.7 ± 4.2 | 1.7 ± 3.8 | 1.7 ± 4.0 | 1.7 ± 3.8 |
Visceral mass, kg | 1.2 ± 1.0 | 0.7 ± 0.7 abc | 1.4 ± 0.9 ae | 1.7 ± 1.0 b | 1.9 ± 1.1 ce |
A/G fat ratio | 0.6 ± 0.2 | 0.5 ± 0.2 abc | 0.6 ± 0.2 ae | 0.7 ± 0.2 bf | 0.8 ± 0.2 cef |
Subjective well-being | |||||
SWLS | 23.07 ± 5.30 | 23.6 ± 5.3 | 22.7 ± 5.0 | 22.8 ± 5.3 | 22.4 ±5.6 |
EQ-VAS | 76.7 ± 14.7 | 80.9 ± 13.4 abc | 76.3 ± 13.6 ae | 72.6 ± 15.1 b | 68.9 ce |
BDI | 7.02 ± 6.58 | 6.2 ± 6.3 bc | 6.6 ± 5.7 e | 8.0 ± 6.8 b | 8.9 ± 7.7 ce |
Medical history | Total Population n = 931 | Cardiovascular Risk Class | |||
---|---|---|---|---|---|
Low n = 429 (46.1%) | Moderate n = 212 (22.8%) | High n = 126 (13.5%) | Very high n = 164 (17.6%) | ||
History of hypertension | 275 (29.6) | 32 (7.5) abc | 77 (36.8) ae | 60 (47.6) bf | 106 (64.6) cef |
Well-controlled BP in patients diagnosed with hypertension * | 78 (28.4) | 11 (34.4) | 23 (29.9) | 18 (30.0) | 26 (24.5) |
Undiagnosed hypertension | 107 (11.5) | 44 (10.3) a | 24 (11.3) ad | 21 (16.7) df | 18 (11.0) f |
History of hypercholesterolemia | 290 (31.1) | 58 (13.5) abc | 98 (46.7) a | 57 (45.2) b | 77 (47.0)c |
Well-controlled lipid profile in patients with diagnosed hypercholesterolemia ** | 39 (13.4) | 11 (19.0) c | 22 (22.4) de | 3 (5.3) d | 3 (3.9) ce |
Undiagnosed hypercholesterolemia *** | 399 (42.9) | 149 (34.7) abc | 99 (46.7) a | 66 (52.4) b | 85 (51.8) c |
History of diabetes | 71 (7.6) | 2 (0.5) abc | 18 (8.5) ae | 14 (11.1) b | 37 (22.7) ae |
Well controlled glucose in patients diagnosed with diabetes **** | 51 (71.8) | 1 (50) | 16 (88.9) | 9 (64.3) | 25 (67.6) |
Undiagnosed diabetes ***** | 57 (6.1) | 5 (1.2) | 16 (7.5) | 10 (7.9) | 26 (15.9) |
History of atrial fibrillation | 27 (2.9) | 1 (0.2) abc | 6 (2.9) a | 9 (7.2) b | 11 (6.8) c |
Currently smoking | 186 (20.1) | 86 (20.1) | 39 (18.4) | 23 (18.5) | 38 (23.5) |
CV Risk Calculators | Total Population | Cardiovascular Risk Class | |||
---|---|---|---|---|---|
Low | Moderate | High | Very High | ||
Pol-SCORE, % | 4.0 ± 4.9 | 0.5 ± 0.3 abc | 2.5 ± 1.1 ade | 6.1 ± 2.3 bdf | 15.3 ± 6.0 cef |
FRS-Lipids, % | 8.6 ± 8.2 | 2.4 ± 1.7 abc | 8.6 ± 4.7 ade | 13.3 ± 6.0 bdf | 23.9 ± 7.1 cef |
FRS-BMI, % | 10.9 ± 9.6 | 3.2 ± 2.2 abc | 11.9 ± 6.1 ade | 17.7 ± 8.3 bdf | 27.0 ± 5.3 cef |
LIFE-CVD 10-year risk, % | 4.9 ± 3.9 | 1.3 ± 0.7 abc | 3.2 ± 1.4 ade | 5.0 ± 1.7 bdf | 10.1 ± 4.8 cef |
LIFE-CVD Lifetime risk, % | 17.3 ± 8.4 | 11.5 ± 3.4 abc | 16.4 ± 6.7 ae | 17.8 ± 8.4 bf | 22.4 ± 10.2 cef |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chlabicz, M.; Jamiołkowski, J.; Łaguna, W.; Sowa, P.; Paniczko, M.; Łapińska, M.; Szpakowicz, M.; Drobek, N.; Raczkowski, A.; Kamiński, K.A. A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study. J. Clin. Med. 2021, 10, 1584. https://doi.org/10.3390/jcm10081584
Chlabicz M, Jamiołkowski J, Łaguna W, Sowa P, Paniczko M, Łapińska M, Szpakowicz M, Drobek N, Raczkowski A, Kamiński KA. A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study. Journal of Clinical Medicine. 2021; 10(8):1584. https://doi.org/10.3390/jcm10081584
Chicago/Turabian StyleChlabicz, Małgorzata, Jacek Jamiołkowski, Wojciech Łaguna, Paweł Sowa, Marlena Paniczko, Magda Łapińska, Małgorzata Szpakowicz, Natalia Drobek, Andrzej Raczkowski, and Karol A. Kamiński. 2021. "A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study" Journal of Clinical Medicine 10, no. 8: 1584. https://doi.org/10.3390/jcm10081584
APA StyleChlabicz, M., Jamiołkowski, J., Łaguna, W., Sowa, P., Paniczko, M., Łapińska, M., Szpakowicz, M., Drobek, N., Raczkowski, A., & Kamiński, K. A. (2021). A Similar Lifetime CV Risk and a Similar Cardiometabolic Profile in the Moderate and High Cardiovascular Risk Populations: A Population-Based Study. Journal of Clinical Medicine, 10(8), 1584. https://doi.org/10.3390/jcm10081584