C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Recruitment, CRP and WBC Measurements
2.2. Statistics
3. Results
3.1. Patient Characteristics, Serum CRP Levels and WBC 12–24 h after IVT
3.2. Serum CRP Levels and WBC 12–24 h after IVT and Poor Functional Outcome on Discharge and at Day 90 after Stroke
3.3. Serum CRP Levels and WBC 12–24 h after IVT and Early Neurological Deterioration and Bleeding
3.4. Serum CRP Levels and WBC 12–24 h after IVT and In-Hospital and 90-Day Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wnuk, M.; Pera, J.; Jagiełła, J.; Szczygieł, E.; Ferens, A.; Spisak, K.; Wołkow, P.; Kmieć, M.; Burkot, J.; Chrzanowska-Waśko, J.; et al. The rs2200733 variant on chromosome 4q25 is a risk factor for cardioembolic stroke related to atrial fibrillation in Polish patients. Neurol. Neurochir. Pol. 2011, 45, 148–152. [Google Scholar] [CrossRef]
- Drabik, L.; Konieczyńska, M.; Undas, A. Clot Lysis Time Predicts Stroke During Anticoagulant Therapy in Patients with Atrial Fibrillation. Can. J. Cardiol. 2020, 36, 119–126. [Google Scholar] [CrossRef]
- Soeki, T.; Sata, M. Inflammatory Biomarkers and Atherosclerosis. Int. Heart J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milwidsky, A.; Ziv-Baran, T.; Letourneau-Shesaf, S.; Keren, G.; Taieb, P.; Berliner, S.; Shacham, Y. CRP velocity and short-term mortality in ST segment elevation myocardial infarction. Biomarkers 2017, 22, 383–386. [Google Scholar] [CrossRef]
- Zhao, X.; Jiang, L.; Xu, L.; Tian, J.; Xu, Y.; Zhao, Y.; Feng, X.; Wu, Y.; Zhang, Y.; Wang, D.; et al. Predictive value of in-hospital white blood cell count in Chinese patients with triple-vessel coronary disease. Eur. J. Prev. Cardiol. 2019, 26, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, R.; Ago, T.; Hata, J.; Wakisaka, Y.; Kuroda, J.; Kuwashiro, T.; Kitazono, T.; Kamouchi, M.; on behalf of the Fukuoka Stroke Registry Investigators. Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study. PLoS ONE 2016, 11, e0156790. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Shi, J.; Cao, Y.; Zhang, M.; Xu, J. Prognostic Value of White Blood Cell Counts and C-reactive Protein in Acute Ischemic Stroke Patients After Intravenous Thrombolysis. Curr. Neurovasc. Res. 2018, 15, 10–17. [Google Scholar] [CrossRef]
- Montaner, J.; Fernandez-Cadenas, I.; Molina, C.A.; Ribó, M.; Huertas, R.; Rosell, A.; Penalba, A.; Ortega, L.; Chacón, P.; Alvarez-Sabín, J. Poststroke C-Reactive Protein Is a Powerful Prognostic Tool Among Candidates for Thrombolysis. Stroke 2006, 37, 1205–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topakian, R.; Strasak, A.M.; Nussbaumer, K.; Haring, H.-P.; Aichner, F.T. Prognostic value of admission C-reactive protein in stroke patients undergoing IV thrombolysis. J. Neurol. 2008, 255, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Winbeck, K.; Poppert, H.; Etgen, T.; Conrad, B.; Sander, D. Prognostic Relevance of Early Serial C-Reactive Protein Measurements After First Ischemic Stroke. Stroke 2002, 33, 2459–2464. [Google Scholar] [CrossRef]
- Lee, S.; Song, I.-U.; Na, S.-H.; Jeong, D.-S.; Chung, S.-W. Association Between Long-term Functional Outcome and Change in hs-CRP Level in Patients With Acute Ischemic Stroke. Neurologist 2020, 25, 122–125. [Google Scholar] [CrossRef]
- Mendes de Sá, F.; Mendes Bertoncello Fontes, C.; Lia Mondelli, A. Major infections in hospitalized patients with stroke: A pro-spective study. Int. Arch. Med. 2016, 9, 1–8. [Google Scholar]
- Derbisz, J.; Nowak, K.; Wnuk, M.; Pulyk, R.; Jagiella, J.; Slowik, J.; Dziedzic, T.; Slowik, A. Prognostic Significance of Stroke-Associated Infection and other Readily Available Parameters in Acute Ischemic Stroke Treated by Intravenous Thrombolysis. J. Stroke Cerebrovasc. Dis. 2021, 30, 105525. [Google Scholar] [CrossRef]
- Weimar, C.; Roth, M.P.; Zillessen, G.; Glahn, J.; Wimmer, M.L.; Busse, O.; Haberl, R.L.; Diener, H.-C.; on behalf of the German Stroke Date Bank Collaborators. Complications following Acute Ischemic Stroke. Eur. Neurol. 2002, 48, 133–140. [Google Scholar] [CrossRef]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef]
- Karlinski, M.; Bembenek, J.; Grabska, K.; Kobayashi, A.; Baranowska, A.; Litwin, T.; Czlonkowska, A. Routine serum C-reactive protein and stroke outcome after intravenous thrombolysis. Acta Neurol. Scand. 2014, 130, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.; Gul, R.; Chong, J.; Tan, C.T.Y.; Chin, H.X.; Wong, G.; Doggui, R.; Larbi, A. Recurrent circadian fasting (RCF) improves blood pressure, bi-omarkers of cardiometabolic risk and regulates inflammation in men. J. Transl. Med. 2019, 17, 272. [Google Scholar] [CrossRef] [PubMed]
- Tarp, S.; Bartels, E.M.; Bliddal, H.; Furst, D.E.; Boers, M.; Danneskiold-Samsøe, B.; Rasmussen, M.; Christensen, R. Effect of nonsteroidal antiinflammatory drugs on the C-reactive protein level in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Arthritis Rheum. 2012, 64, 3511–3521. [Google Scholar] [CrossRef]
- Kościelniak, M.B.K.; Charchut, M.A.; Wójcik, M.M.; Sztefko, K.; Tomasik, P.J. Impact of Fasting on Complete Blood Count Assayed in Capillary Blood Samples. Lab. Med. 2017, 48, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Clua-Espuny, J.L.; Abilleira, S.; Queralt-Tomas, L.; Gonzalez-Henares, A.; Gil-Guillen, V.; Muria-Subirats, E.; Ballesta-Ors, J. Long-Term Survival After Stroke According to Reperfusion Therapy, Cardiovascular Therapy and Gender. Cardiol. Res. 2019, 10, 89–97. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Langsted, A.; Mora, S.; Kolovou, G.; Baum, H.; Bruckert, E.; Watts, G.F.; Sypniewska, G.; Wiklund, O.; Boren, J.; et al. Fasting is not routinely required for determination of a lipid profile: Clinical and laboratory implications including flagging at desirable concentration cut-points—A joint con-sensus statement from the European Atherosclerosis Society and European Fede. Eur. Heart J. 2016, 37, 1944–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wnuk, M.; Popiela, T.; Drabik, L.; Brzegowy, P.; Lasocha, B.; Wloch-Kopec, D.; Pulyk, R.; Jagiella, J.; Wiacek, M.; Kaczorowski, R.; et al. Fasting Hyperglycemia and Long-term Outcome in Patients with Acute Ischemic Stroke Treated with Mechanical Thrombectomy. J. Stroke Cerebrovasc. Dis. 2020, 29, 104774. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, P.; Von Kummer, R. Classification and Pathogenesis of Cerebral Hemorrhages After Thrombolysis in Ischemic Stroke. Stroke 2006, 37, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Undas, A.; Drabik, L.; Potpara, T. Bleeding in anticoagulated patients with atrial fibrillation: Practical considerations. Pol. Arch. Intern. Med. 2020, 130, 47–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwan, J.; Hand, P. Early neurological deterioration in acute stroke: Clinical characteristics and impact on outcome. QJM 2006, 99, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Wu, L.; Lang, Y.; Wu, D.; Chen, J.; Zhao, W.; Li, C.; Ji, X. Association between high-sensitivity C-reactive protein levels and clinical outcomes in acute ischemic stroke patients treated with endovascular therapy. Ann. Transl. Med. 2020, 8, 1379. [Google Scholar] [CrossRef]
- Huber, T.; Kleine, J.F.; Kaesmacher, J.; Bette, S.; Poppert, H.; Zimmer, C.; Boeckh-Behrens, T. Blood Leukocytes as Prognostic Parameter in Stroke Thrombectomy. Cerebrovasc. Dis. 2016, 42, 32–40. [Google Scholar] [CrossRef]
- Yue, Y.-H.; Li, Z.-Z.; Hu, L.; Zhu, X.-Q.; Xu, X.-S.; Sun, H.-X.; Wan, Z.-W.; Xue, J.; Yu, D.-H. Clinical characteristics and risk score for poor clinical outcome of acute ischemic stroke patients treated with intravenous thrombolysis therapy. Brain Behav. 2019, 9, e01251. [Google Scholar] [CrossRef]
- Gill, D.; Sivakumaran, P.; Wilding, P.; Love, M.; Veltkamp, R.; Kar, A. Trends in C-Reactive Protein Levels Are Associated with Neurological Change Twenty-Four Hours after Thrombolysis for Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2016, 25, 1966–1969. [Google Scholar] [CrossRef]
- Rocco, A.; Ringleb, P.A.; Grittner, U.; Nolte, C.H.; Schneider, A.; Nagel, S. Follow-up C-reactive protein level is more strongly associ-ated with outcome in stroke patients than admission levels. Neurol. Sci. 2015, 36, 2235–2241. [Google Scholar] [CrossRef]
- Seo, W.-K.; Seok, H.-Y.; Kim, J.H.; Park, M.-H.; Yu, S.-W.; Oh, K.; Koh, S.-B.; Park, K.-W. C-Reactive Protein is a Predictor of Early Neurologic Deterioration in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2012, 21, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Cai, R.; Yang, M.; Qian, J.; Hong, Z. Reduction of the systemic inflammatory induced by acute cerebral infarction through ultra-early thrombolytic therapy. Exp. Ther. Med. 2015, 10, 1493–1498. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Lin, Y.; Yang, P.; Wang, Y.; Zhao, S.; Yang, P.; Fan, J.; Liu, E. C-reactive protein is associated with the progression of acute embolic stroke in rabbit model. J. Thromb. Thrombol. 2011, 33, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qiu, D.-X.; Fu, R.-L.; Xu, T.-F.; Jing, M.-J.; Zhang, H.-S.; Geng, H.-H.; Zheng, L.-C.; Wang, P.-X. H-Type Hypertension and C Reactive Protein in Recurrence of Ischemic Stroke. Int. J. Environ. Res. Public Health 2016, 13, 477. [Google Scholar] [CrossRef] [Green Version]
- Drieu, A.; Levard, D.; Vivien, D.; Rubio, M. Anti-inflammatory treatments for stroke: From bench to bedside. Ther. Adv. Neurol. Disord. 2018, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A.; Simon, A.; Van Der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 2012, 11, 633–652. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Huang, W.; Chen, X.; Li, Q.; Cai, Z.; Yu, T.; Shao, B. Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2017, 26, 650–657. [Google Scholar] [CrossRef]
Q1 CRP < 1.71 (n = 32) | Q2 CRP 1.71–3.11 (n = 32) | Q3 CRP 3.12–5.09 (n = 31) | Q4 CRP 5.10–8.64 (n = 32) | Q5 CRP ≥ 8.65 (n = 31) | p-Value | |
---|---|---|---|---|---|---|
Age (years) | 68 (58–76) | 73 (68–80) | 73 (69–80) | 72 (64–83) | 77 (62–86) | 0.246 |
Women, n (%) | 15 (46.9) | 15 (46.9) | 14 (45.2) | 19 (59.4) | 21 (67.8) | 0.292 |
BMI (kg/m2) | 24.7 (22.8–27.7) | 24.8 (23.3–27.7) | 27.5 (24.2–29.3) | 27.1 (25.2–29.9) | 26.8 (25.0–29.7) | 0.006 |
Hypertension, n (%) | 22 (68.8) | 23 (71.2) | 27 (87.1) | 26 (81.2) | 30 (96.8) | 0.031 |
Hypercholesterolemia, n (%) | 12 (37.5) | 8 (25.0) | 11 (35.5) | 11 34.4) | 6 (19.4) | 0.461 |
Diabetes mellitus, n (%) | 9 (28.1) | 8 (25.0) | 7 (22.6) | 7 (21.9) | 11 (35.5) | 0.744 |
Smoking, n (%) | 6 (18.8) | 2 (6.3) | 2 (6.5) | 8 (25.8) | 5 (16.1) | 0.151 |
Ischemic heart disease, n (%) | 7 (21.9) | 3 (9.4) | 7 (22.6) | 10 (31.2) | 8 (25.8) | 0.307 |
Atrial fibrillation, n (%) | 6 (18.8) | 10 (31.3) | 11 (35.5) | 8 (25.0) | 9 (29.0) | 0.635 |
Previous stroke, n (%) | 7 (21.9) | 3 (9.4) | 8 (25.8) | 6 (18.8) | 4 (12.9) | 0.432 |
mRS score before stroke >0 | 3 (9.4) | 1 (3.1) | 1 (3.2) | 4 (12.5) | 2 (6.4) | 0.523 |
Stroke etiology, n (%) -large-vessel disease -small-vessel disease -cardioembolic -other - undetermined | 5 (15.6) 1 (3.1) 6 (18.8) 19 (59.4) 1 (3.1) | 5 (15.6) 1 (3.1) 11 (34.4) 14 (43.8) 1 (3.1) | 5 (16.1) 0 (0.0) 12 (38.7) 13 (41.9) 1 (3.2) | 3 (9.4) 0 (0.0) 11 (34.4) 18 (56.3) 0 (0.0) | 5 (16.1) 0 (0.0) 10 (32.3) 15 (48.4) 1 (3.2) | 0.932 |
Mechanical thrombectomy, n (%) | 5 (15.60 | 8 (25.0) | 10 (32.3) | 11 (34.4) | 13 (41.9) | 0.198 |
Time from stroke onset to thrombolysis (min) | 119 (94–175) | 145 (93–174) | 117 (85–174) | 90 (76–176) | 121 (83–160) | 0.556 |
NIHSS score on admission | 9.7 ± 6.3 | 9.2 ± 6.7 | 12.5 ± 6.9 | 11.6 ± 6.3 | 14.6 ± 6.4 | 0.013 |
NIHSS score after r-tPA | 4.4 ± 4.6 | 5.3 ± 5.5 | 8.1 ± 9.7 | 5.7 ± 6.9 | 11.9 ± 8.7 | <0.001 |
Post-IVT hemorrhagic brain complications, n (%) -no complication -HI type 1 -HI type 2 -PH type 1 -PH type 2 | 29 (90.6) 1 (3.1) 1 (3.1) 1 (3.1) 0 (0.0) | 27 (84.4) 3 (9.4) 1 (3.1) 1 93.1) 0 (0.0) | 25 (80.7) 2 (6.5) 1 (3.2) 2 (6.5) 1 (3.2) | 27 (84.4) 2 (6.3) 2 (6.3) 0 (0.0) 1 (3.1) | 22 (71.0) 3 (9.7) 3 (9.7) 1 (3.2) 2 96.5) | 0.874 |
Maximal SBP within 24 h after r-tPA (mmHg) | 144 (123–156) | 145 (125–160) | 145 (134–166) | 151 (139–169) | 143 (134–160) | 0.536 |
Maximal DBP within 24 h after r-tPA (mmHg) | 80 (72–90) | 80 (72–89) | 80 (70–90) | 80 (70–85) | 77 (70–80) | 0.694 |
Fasting glucose (mmol/L) | 6.5 (5.5–7.3) | 6.2 (5.4–7.0) | 6.1 (5.4–8.2) | 6.8 (5.5–7.9) | 6.9 (5.9–8.2) | 0.491 |
Creatinine (µmol/L) | 82 (65–94) | 74 (63–100) | 77 (69–97) | 82 (71–91) | 76 (65–93) | 0.892 |
WBC (×109/L) | 7.1 (6.0–8.7) | 7.8 (6.6–8.8) | 7.5 (5.4–9.2) | 8.2 (6.9–10.9) | 8.9 (6.4–11.5) | 0.145 |
On Discharge | Model 1 | Model 2A | |||
---|---|---|---|---|---|
Events n, (%) | OR (95% CI) | p-value | OR (95% CI) | p-value | |
Q1 (<1.71, n = 32) | 6 (18.8) | 1.00 (reference) | - | 1.00 (reference) | - |
Q2 (1.71–3.11, n = 32) | 6 (18.8) | 1.00 (0.28–3.56) | 1.00 | 1.28 (0.27–5.96) | 0.756 |
Q3 (3.12–5.09, n = 31) | 10 (32.3) | 2.13 (0.66–6.94) | 0.209 | 1.65 (0.40–6.86) | 0.493 |
Q4 (5.10–8.64, n = 32) | 8 (25.0) | 1.33 (0.40–4.45) | 0.647 | 1.02 (0.24–4.29) | 0.982 |
Q5 (≥8.65, n = 31) | 22 (71.0) | 9.70 (2.94–31.98) | <0.001 | 10.68 (2.54–44.83) | 0.001 |
P for trend | <0.001 | 0.004 | |||
AIC | 182.19 | 132.89 | |||
AUC | 0.744 ± 0.05 | 0.895 ± 0.03 | |||
R2 Nagelkerke | 0.241 | 0.560 | |||
Hosmer–Lemeshow test p-value | 0.369 | 0.057 | |||
At day 90 after stroke | Model 1 | Model 2B | |||
Events n, (%) | OR (95% CI) | p-value | OR (95% CI) | p-value | |
Q1 (<1.71, n = 32) | 3 (9.4) | 1.00 (reference) | - | 1.00 (reference) | - |
Q2 (1.71–3.11, n = 32) | 7 (21.9) | 2.90 (0.65–13.0) | 0.165 | 4.11 (0.73–23.7) | 0.109 |
Q3 (3.12–5.09, n = 31) | 7 (22.5) | 3.18 (0.71–14.4) | 0.132 | 1.86 (0.33–10.63) | 0.484 |
Q4 (5.10–8.64, n = 32) | 5 (15.7) | 1.64 (0.34–7.83) | 0.535 | 0.75 (0.12–4.53) | 0.754 |
Q5 (≥ 8.65, n = 31) | 17 (54.8) | 12.56 (2.95–53.5) | 0.001 | 7.21 (1.44–36.0) | 0.016 |
P for trend | 0.022 | 0.021 | |||
AIC | 152.42 | 125.16 | |||
AUC | 0.776 ± 0.04 | 0.887 ± 0.03 | |||
R2 Nagelkerke | 0.291 | 0.521 | |||
Hosmer–Lemeshow test p-value | 0.169 | 0.569 |
On Discharge | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
---|---|---|---|---|---|---|
Age (per 1 year) | 1.00 | 0.96–10.5 | 0.861 | - | - | - |
Sex (female) | 4.32 | 0.90–20.68 | 0.067 | - | - | - |
BMI (per 1 unit) | 1.05 | 0.92–1.21 | 0.441 | - | - | - |
Baseline NIHSS score (per 1 point) | 1.15 | 1.03–1.28 | 0.012 | - | - | - |
Mechanical thrombectomy | 3.10 | 0.90–10.73 | 0.074 | - | - | - |
Hemorrhagic brain complications (ECASS 1–3 score) | 6.82 | 1.91–24.28 | 0.003 | 5.66 | 1.52–21.11 | 0.010 |
CRP ≥ 8.65 mg/L | 5.86 | 1.66–20.70 | 0.006 | 4.79 | 1.29–17.88 | 0.020 |
WBC < 6.4 ×109/L | 2.48 | 0.71–8.59 | 0.152 | - | - | - |
AIC AUC | 72.21 0.794 ± 0.07 | |||||
R2 Nagelkerke | 0.208 | |||||
Hosmer–Lemeshow test p-value | 0.689 | |||||
At day 90 after stroke | OR | 95% CI | p-value | OR | 95% CI | p-value |
Age (per 1 year) | 1.03 | 0.99–1.08 | 0.161 | - | - | - |
Sex (female) | 3.50 | 1.10–11.18 | 0.034 | - | - | - |
BMI (per 1 unit) | 1.04 | 0.93–1.16 | 0.523 | - | - | - |
Baseline NIHSS score (per 1 point) | 1.17 | 1.07–1.28 | <0.001 | 1.13 | 1.01–1.25 | 0.036 |
Hemorrhagic brain complications (ECASS 1–3 score) | 8.19 | 2.86–23.50 | <0.001 | 5.53 | 1.59–19.25 | 0.007 |
CRP ≥ 8.65 mg/L | 4.38 | 1.55–12.39 | 0.005 | - | - | - |
WBC < 6.4 ×109/L | 4.06 | 1.48–11.16 | 0.007 | 5.00 | 1.49–16.78 | 0.009 |
AIC AUC | 87.03 0.877 ± 0.04 | |||||
R2 Nagelkerke | 0.406 | |||||
Hosmer–Lemeshow test p-value | 0.420 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wnuk, M.; Derbisz, J.; Drabik, L.; Slowik, A. C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. J. Clin. Med. 2021, 10, 1610. https://doi.org/10.3390/jcm10081610
Wnuk M, Derbisz J, Drabik L, Slowik A. C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Clinical Medicine. 2021; 10(8):1610. https://doi.org/10.3390/jcm10081610
Chicago/Turabian StyleWnuk, Marcin, Justyna Derbisz, Leszek Drabik, and Agnieszka Slowik. 2021. "C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis" Journal of Clinical Medicine 10, no. 8: 1610. https://doi.org/10.3390/jcm10081610
APA StyleWnuk, M., Derbisz, J., Drabik, L., & Slowik, A. (2021). C-Reactive Protein and White Blood Cell Count in Non-Infective Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Clinical Medicine, 10(8), 1610. https://doi.org/10.3390/jcm10081610