Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression
Abstract
:1. Introduction
1.1. Poststroke Depression
1.2. Poor Neurological Outcomes in Patients with Post-Stroke Depression
1.3. Depression and Inflammation
1.4. Ischaemic Cascade and Inflammation
1.5. Neuroanatomical Correlates of PSD
1.6. Lesion Volume
1.7. Lesion Laterality
1.8. Inflammation-Related Genetic Polymorphisms Associated with PSD
2. Anti-Inflammatory Treatment in PSD
2.1. Anti-Inflammatory Properties of Herbal Medications for PSD
2.2. Anti-Inflammatory Properties of Antidepressants
2.3. Antioxidants and Other Anti-Inflammatory Medications for PSD
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, C.O.; Nguyen, M.; Roth, G.A.; Nichols, E.; Alam, T.; Abate, D.; Abd-Allah, F.; Abdelalim, A.; Abraha, H.N.; Abu-Rmeileh, N.M.E.; et al. Global, regional, and national burden of stroke, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 439–458. [Google Scholar] [CrossRef] [Green Version]
- Rajsic, S.; Gothe, H.; Borba, H.H.; Sroczynski, G.; Vujicic, J.; Toell, T.; Siebert, U. Economic burden of stroke: A systematic review on post-stroke care. Eur. J. Health Econ. 2019, 20, 107–134. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Bromet, E.; Andrade, L.H.; Hwang, I.; Sampson, N.A.; Alonso, J.; de Girolamo, G.; de Graaf, R.; Demyttenaere, K.; Hu, C.; Iwata, N.; et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Pike, C.T.; Kessler, R.C. The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 2015, 76, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Bromet, E.J. The epidemiology of depression across cultures. Annu. Rev. Public Health 2013, 34, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr Res. 2020, 126, 134–140. [Google Scholar] [CrossRef] [PubMed]
- White, C.L.; McClure, L.A.; Wallace, P.M.; Braimah, J.; Liskay, A.; Roldan, A.; Benavente, O.R.; Investigators, S.P.S. The correlates and course of depression in patients with lacunar stroke: Results from the Secondary Prevention of Small Subcortical Strokes (SPS3) study. Cerebrovasc. Dis. 2011, 32, 354–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, M.L.; Pickles, K. Part I: Frequency of depression after stroke: An updated systematic review and meta-analysis of observational studies. Int. J. Stroke 2014, 9, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Husaini, B.; Levine, R.; Sharp, L.; Cain, V.; Novotny, M.; Hull, P.; Orum, G.; Samad, Z.; Sampson, U.; Moonis, M. Depression increases stroke hospitalization cost: An analysis of 17,010 stroke patients in 2008 by race and gender. Stroke Res. Treat. 2013, 2013, 846732. [Google Scholar] [CrossRef] [PubMed]
- Ezema, C.I.; Akusoba, P.C.; Nweke, M.C.; Uchewoke, C.U.; Agono, J.; Usoro, G. Influence of Post-Stroke Depression on Functional Independence in Activities of Daily Living. Ethiop. J. Health Sci. 2019, 29, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, M.; Meissner, S.; Nestler, S. Does depression after stroke negatively influence physical disability? A systematic review and meta-analysis of longitudinal studies. J. Affect Disord. 2019, 247, 45–56. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Agbenorku, M.; Adamu, S.; Obese, V.; Berchie, P.; Ovbiagele, B. The dynamics of Poststroke depression among Ghanaians. J. Neurol. Sci. 2019, 405, 116410. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Jenkins, C.; Singh, A.; Owolabi, M.; Ojagbemi, A.; Adusei, N.; Saulson, R.; Ovbiagele, B. Post-stroke depression in Ghana: Characteristics and correlates. J. Neurol. Sci. 2017, 379, 261–265. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Berchie, P.; Singh, A.; Nichols, M.; Agyei-Frimpong, M.; Jenkins, C.; Ovbiagele, B. Prevalence, Trajectory, and Predictors of Poststroke Fatigue among Ghanaians. J. Stroke Cerebrovasc. Dis. 2019, 28, 1353–1361. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Nichols, M.; Qanungo, S.; Teklehaimanot, A.; Singh, A.; Mensah, N.; Saulson, R.; Gebregziabher, M.; Ezinne, U.; Owolabi, M.; et al. Stroke-related stigma among West Africans: Patterns and predictors. J. Neurol. Sci. 2017, 375, 270–274. [Google Scholar] [CrossRef] [Green Version]
- Rabi-Žikić, T.; Živanović, Ž.; Đajić, V.; Simić, S.; Ružička-Kaloci, S.; Slankamenac, S.; Žikić, M. Predictors of Early-Onset Depression after First-Ever Stroke. Acta. Clin. Croat. 2020, 59, 81–90. [Google Scholar] [CrossRef]
- van de Weg, F.B.; Kuik, D.J.; Lankhorst, G.J. Post-stroke depression and functional outcome: A cohort study investigating the influence of depression on functional recovery from stroke. Clin. Rehabil. 1999, 13, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Sibolt, G.; Curtze, S.; Melkas, S.; Pohjasvaara, T.; Kaste, M.; Karhunen, P.J.; Oksala, N.K.; Vataja, R.; Erkinjuntti, T. Post-stroke depression and depression-executive dysfunction syndrome are associated with recurrence of ischaemic stroke. Cerebrovasc. Dis. 2013, 36, 336–343. [Google Scholar] [CrossRef]
- Wu, Q.E.; Zhou, A.M.; Han, Y.P.; Liu, Y.M.; Yang, Y.; Wang, X.M.; Shi, X. Poststroke depression and risk of recurrent stroke: A meta-analysis of prospective studies. Medicine 2019, 98, e17235. [Google Scholar] [CrossRef]
- Morris, P.L.; Robinson, R.G.; Raphael, B.; Hopwood, M.J. Lesion location and poststroke depression. J. Neuropsychiatr. Clin. Neurosci. 1996, 8, 399–403. [Google Scholar]
- Ayerbe, L.; Ayis, S.; Crichton, S.; Wolfe, C.D.; Rudd, A.G. The long-term outcomes of depression up to 10 years after stroke; the South London Stroke Register. J. Neurol. Neurosurg. Psychiatr. 2014, 85, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Ellis, C.; Zhao, Y.; Egede, L.E. Depression and increased risk of death in adults with stroke. J. Psychosom. Res. 2010, 68, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartoli, F.; Di Brita, C.; Crocamo, C.; Clerici, M.; Carrà, G. Early Post-stroke Depression and Mortality: Meta-Analysis and Meta-Regression. Front. Psychiatry 2018, 9, 530. [Google Scholar] [CrossRef] [Green Version]
- Towfighi, A.; Ovbiagele, B.; El Husseini, N.; Hackett, M.L.; Jorge, R.E.; Kissela, B.M.; Mitchell, P.H.; Skolarus, L.E.; Whooley, M.A.; Williams, L.S.; et al. Poststroke Depression: A Scientific Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2017, 48, e30–e43. [Google Scholar] [CrossRef]
- Morris, P.L.; Robinson, R.G.; de Carvalho, M.L.; Albert, P.; Wells, J.C.; Samuels, J.F.; Eden-Fetzer, D.; Price, T.R. Lesion characteristics and depressed mood in the stroke data bank study. J. Neuropsychiatry Clin. Neurosci. 1996, 8, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Bartoli, F.; Lillia, N.; Lax, A.; Crocamo, C.; Mantero, V.; Carrà, G.; Agostoni, E.; Clerici, M. Depression after stroke and risk of mortality: A systematic review and meta-analysis. Stroke Res. Treat. 2013, 2013, 862978. [Google Scholar] [CrossRef]
- Adzic, M.; Brkic, Z.; Mitic, M.; Francija, E.; Jovicic, M.J.; Radulovic, J.; Maric, N.P. Therapeutic Strategies for Treatment of Inflammation-related Depression. Curr. Neuropharmacol. 2018, 16, 176–209. [Google Scholar] [CrossRef]
- Baune, B.T.; Stuart, M.; Gilmour, A.; Wersching, H.; Heindel, W.; Arolt, V.; Berger, K. The relationship between subtypes of depression and cardiovascular disease: A systematic review of biological models. Transl. Psychiatry 2012, 2, e92. [Google Scholar] [CrossRef] [Green Version]
- Slavich, G.M.; Cole, S.W. The Emerging Field of Human Social Genomics. Clinical Psychological Science 2013, 1, 331–348. [Google Scholar] [CrossRef] [Green Version]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Jin, R.; Liu, L.; Zhang, S.; Nanda, A.; Li, G. Role of inflammation and its mediators in acute ischemic stroke. J. Cardiovasc. Transl. Res. 2013, 6, 834–851. [Google Scholar] [CrossRef] [Green Version]
- Majd, M.; Saunders, E.F.H.; Engeland, C.G. Inflammation and the dimensions of depression: A review. Front. Neuroendocrinol. 2020, 56, 100800. [Google Scholar] [CrossRef] [PubMed]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef] [PubMed]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Eyre, H.A.; Air, T.; Pradhan, A.; Johnston, J.; Lavretsky, H.; Stuart, M.J.; Baune, B.T. A meta-analysis of chemokines in major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 68, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leighton, S.P.; Nerurkar, L.; Krishnadas, R.; Johnman, C.; Graham, G.J.; Cavanagh, J. Chemokines in depression in health and in inflammatory illness: A systematic review and meta-analysis. Mol. Psychiatry 2018, 23, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craddock, D.; Thomas, A. Cytokines and late-life depression. Essent. Psychopharmacol. 2006, 7, 42–52. [Google Scholar]
- Dahl, J.; Ormstad, H.; Aass, H.C.; Malt, U.F.; Bendz, L.T.; Sandvik, L.; Brundin, L.; Andreassen, O.A. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 2014, 45, 77–86. [Google Scholar] [CrossRef]
- Dandekar, M.P.; Saxena, A.; Scaini, G.; Shin, J.H.; Migut, A.; Giridharan, V.V.; Zhou, Y.; Barichello, T.; Soares, J.C.; Quevedo, J.; et al. Medial Forebrain Bundle Deep Brain Stimulation Reverses Anhedonic-Like Behavior in a Chronic Model of Depression: Importance of BDNF and Inflammatory Cytokines. Mol. Neurobiol. 2019, 56, 4364–4380. [Google Scholar] [CrossRef]
- Del Grande da Silva, G.; Wiener, C.D.; Barbosa, L.P.; Araujo, J.M.G.; Molina, M.L.; San Martin, P.; Oses, J.P.; Jansen, K.; de Mattos Souza, L.D.; da Silva, R.A. Pro-inflammatory cytokines and psychotherapy in depression: Results from a randomized clinical trial. J. Psychiatr. Res. 2016, 75, 57–64. [Google Scholar] [CrossRef]
- Dinan, T.G. Inflammatory markers in depression. Curr. Opin. Psychiatry 2009, 22, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Dinan, T.; Siggins, L.; Scully, P.; O’Brien, S.; Ross, P.; Stanton, C. Investigating the inflammatory phenotype of major depression: Focus on cytokines and polyunsaturated fatty acids. J. Psychiatr. Res. 2009, 43, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Ren, Q.; Yang, C.; Zhang, J.C.; Yao, W.; Dong, C.; Ohgi, Y.; Futamura, T.; Hashimoto, K. Antidepressant effects of combination of brexpiprazole and fluoxetine on depression-like behavior and dendritic changes in mice after inflammation. Psychopharmacology 2017, 234, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohgi, Y.; Futamura, T.; Kikuchi, T.; Hashimoto, K. Effects of antidepressants on alternations in serum cytokines and depressive-like behavior in mice after lipopolysaccharide administration. Pharmacol. Biochem. Behav. 2013, 103, 853–859. [Google Scholar] [CrossRef]
- Qiu, W.; Wu, M.; Liu, S.; Chen, B.; Pan, C.; Yang, M.; Wang, K.J. Suppressive immunoregulatory effects of three antidepressants via inhibition of the nuclear factor-κB activation assessed using primary macrophages of carp (Cyprinus carpio). Toxicol. Appl. Pharmacol. 2017, 322, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hannestad, J.; DellaGioia, N.; Bloch, M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: A meta-analysis. Neuropsychopharmacology 2011, 36, 2452–2459. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Yeh, Y.W.; Kuo, S.C.; Liang, C.S.; Ho, P.S.; Huang, C.C.; Yen, C.H.; Shyu, J.F.; Lu, R.B.; Huang, S.Y. Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology 2018, 87, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Bisdas, S.; Donnerstag, F.; Ahl, B.; Bohrer, I.; Weissenborn, K.; Becker, H. Comparison of Perfusion Computed Tomography With Diffusion-Weighted Magnetic Resonance Imaging in Hyperacute Ischemic Stroke. J. Comput. Assist. Tomogr. 2004, 28, 747–755. [Google Scholar] [CrossRef]
- Mehta, S.L.; Manhas, N.; Raghubir, R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev. 2007, 54, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Astrup, J.; Siesjö, B.K.; Symon, L. Thresholds in cerebral ischemia—the ischemic penumbra. Stroke 1981, 12, 723–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouns, R.; De Deyn, P.P. The complexity of neurobiological processes in acute ischemic stroke. Clin. Neurol. Neurosurg. 2009, 111, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Fann, D.Y.; Lee, S.Y.; Manzanero, S.; Chunduri, P.; Sobey, C.G.; Arumugam, T.V. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res. Rev. 2013, 12, 941–966. [Google Scholar] [CrossRef] [PubMed]
- Shabab, T.; Khanabdali, R.; Moghadamtousi, S.Z.; Kadir, H.A.; Mohan, G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017, 127, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhou, W.; Zhou, Z.; Han, J.; Dong, W. Elevated neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict post-stroke depression with acute ischemic stroke. Exp. Ther. Med. 2020, 19, 2497–2504. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, C.; Wang, L.; Jiang, S.; Zhang, S.; Liu, M.; Wu, B. Association Between Neutrophil to Lymphocyte Ratio and Malignant Brain Edema in Patients With Large Hemispheric Infarction. Curr. Neurovasc. Res. 2020, 17, 429–436. [Google Scholar] [CrossRef]
- Brooks, S.D.; Spears, C.; Cummings, C.; VanGilder, R.L.; Stinehart, K.R.; Gutmann, L.; Domico, J.; Culp, S.; Carpenter, J.; Rai, A.; et al. Admission neutrophil-lymphocyte ratio predicts 90 day outcome after endovascular stroke therapy. J. Neurointerv. Surg. 2014, 6, 578–583. [Google Scholar] [CrossRef]
- Chen, H.; Luan, X.; Zhao, K.; Qiu, H.; Liu, Y.; Tu, X.; Tang, W.; He, J. The association between neutrophil-to-lymphocyte ratio and post-stroke depression. Clin. Chim. Acta 2018, 486, 298–302. [Google Scholar] [CrossRef]
- Gong, P.; Liu, Y.; Gong, Y.; Chen, G.; Zhang, X.; Wang, S.; Zhou, F.; Duan, R.; Chen, W.; Huang, T.; et al. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J. Neuroinflammation 2021, 18, 51. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, H.; Wang, Z.; Hao, Y.; Zi, W.; Yang, D.; Zhou, Z.; Liu, W.; Lin, M.; Shi, Z.; et al. Neutrophil-Lymphocyte Ratio Predicts Functional and Safety Outcomes after Endovascular Treatment for Acute Ischemic Stroke. Cerebrovasc. Dis. 2018, 45, 221–227. [Google Scholar] [CrossRef]
- Lucke-Wold, A.N.; Regier, M.D.; Petrone, A.; Tennant, C.; Barr, T. Abstract TMP80: Relationship Between Neutrophil/Lymphocyte Ratio and Post-stroke Depression. Stroke 2016, 47, ATMP80-ATMP80. [Google Scholar] [CrossRef]
- Miller, A.H.; Haroon, E.; Raison, C.L.; Felger, J.C. Cytokine targets in the brain: Impact on neurotransmitters and neurocircuits. Depress Anxiety 2013, 30, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Felger, J.C.; Lotrich, F.E. Inflammatory cytokines in depression: Neurobiological mechanisms and therapeutic implications. Neuroscience 2013, 246, 199–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.Z.; Zhang, Y.L.; Wang, W.S.; Li, W.G.; Shi, J.P. Serum Levels of High-sensitivity C-Reactive Protein at Admission Are More Strongly Associated with Poststroke Depression in Acute Ischemic Stroke than Homocysteine Levels. Mol. Neurobiol. 2016, 53, 2152–2160. [Google Scholar] [CrossRef]
- Li, Y.; Cao, L.-L.; Liu, L.; Qi, Q.-D. Serum levels of homocysteine at admission are associated with post-stroke depression in acute ischemic stroke. Neurol. Sci. 2017, 38, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.-S.; Tu, W.-J.; Shen, Y.; Zhang, L.-J.; Ji, K. Combination of High-Sensitivity C-Reactive Protein and Homocysteine Predicts the Post-Stroke Depression in Patients with Ischemic Stroke. Mol. Neurobiol. 2018, 55, 2952–2958. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhong, C.; Zhu, Z.; Bu, X.; Xu, T.; Guo, L.; Wang, X.; Zhang, J.; Cui, Y.; Li, D.; et al. Elevated circulating homocysteine and high-sensitivity C-reactive protein jointly predicts post-stroke depression among Chinese patients with acute ischemic stroke. Clin. Chim. Acta 2018, 479, 132–137. [Google Scholar] [CrossRef]
- Zhu, L.; Han, B.; Wang, L.; Chang, Y.; Ren, W.; Gu, Y.; Yan, M.; Wu, C.; Zhang, X.Y.; He, J. The association between serum ferritin levels and post-stroke depression. J. Affect Disord. 2016, 190, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Okan, S.; Cagliyan Turk, A.; Sivgin, H.; Ozsoy, F.; Okan, F. Association of ferritin levels with depression, anxiety, sleep quality, and physical functioning in patients with fibromyalgia syndrome: A cross-sectional study. Croat. Med. J. 2019, 60, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortancil, O.; Sanli, A.; Eryuksel, R.; Basaran, A.; Ankarali, H. Association between serum ferritin level and fibromyalgia syndrome. Eur. J. Clin. Nutr. 2010, 64, 308–312. [Google Scholar] [CrossRef]
- Tobe, E.H. Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr. Dis. Treat. 2013, 9, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Zhao, Y.; Zhang, H.J.; Zhao, W.L. The association between serum leptin and post stroke depression: Results from a cohort study. PLoS ONE 2014, 9, e103137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Lim, O.K.; Lee, J.K.; Park, Y.; Kim, C.; Yoon, J.W.; Park, K.D. The Association Between Serum Leptin Levels and Post-Stroke Depression: A Retrospective Clinical Study. Ann. Rehabil. Med. 2015, 39, 786–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez, I.; Sobrino, T.; Rodriguez-Yanez, M.; Pouso, M.; Cristobo, I.; Sabucedo, M.; Blanco, M.; Castellanos, M.; Leira, R.; Castillo, J. High serum levels of leptin are associated with post-stroke depression. Psychol. Med. 2009, 39, 1201–1209. [Google Scholar] [CrossRef]
- Fuchs, D.; Avanzas, P.; Arroyo-Espliguero, R.; Jenny, M.; Consuegra-Sanchez, L.; Kaski, J.C. The role of neopterin in atherogenesis and cardiovascular risk assessment. Curr. Med. Chem. 2009, 16, 4644–4653. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.-Z.; Zhang, Y.-L.; Wang, W.-S.; Li, W.-G.; Shi, J.-P. Elevated Serum Levels of Neopterin at Admission Predicts Depression After Acute Ischemic Stroke: A 6-Month Follow-Up Study. Mol. Neurobiol. 2016, 53, 3194–3204. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Z.; Sun, D.; Xu, Z.; Yuan, Y.; Zhang, X.; Li, L. Low serum BDNF may indicate the development of PSD in patients with acute ischemic stroke. Int. J. Geriatr. Psychiatry 2011, 26, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhao, Y.D.; Zeng, J.W.; Chen, X.Y.; Wang, R.D.; Cheng, S.Y. Serum Brain-derived neurotrophic factor levels in post-stroke depression. J. Affect. Disord. 2014, 168, 373–379. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, T.; Xu, G.; Yue, X.; Zhu, W.; Ma, M.; Liu, W.; Zhu, S.; Liu, X. Decreased serum brain-derived neurotrophic factor (BDNF) is associated with post-stroke depression but not with BDNF gene Val66Met polymorphism. Clin. Chem. Lab. Med. 2011, 49, 185–189. [Google Scholar] [CrossRef]
- Xu, H.-B.; Xu, Y.-H.; He, Y.; Xue, F.; Wei, J.; Zhang, H.; Wu, J. Decreased Serum Brain-Derived Neurotrophic Factor May Indicate the Development of Poststroke Depression in Patients with Acute Ischemic Stroke: A Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2018, 27, 709–715. [Google Scholar] [CrossRef]
- Liang, Z.H.; Jia, Y.B.; Wang, M.L.; Li, Z.R.; Li, M.; Yun, Y.L.; Zhu, R.X. Efficacy of ginkgo biloba extract as augmentation of venlafaxine in treating post-stroke depression. Neuropsychiatr. Dis. Treat. 2019, 15, 2551–2557. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.J.; Kim, M.; Lee, H.S.; Sung, K.-k.; Lee, S. The Cortisol Awakening Response in Patients with Poststroke Depression Is Blunted and Negatively Correlated with Depressive Mood. BioMed Res. Int. 2015, 2015, 709230. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Du, G.; Wang, J.; Chen, J.; Yang, C.; Li, J.; Zhang, Y. Reduced Serum Adiponectin Level and Risk of Poststroke Depression in Patients with Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2019, 28, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Shan, W.; Du, H.; Xu, M.; Feng, J.; Qiu, C.; Ling, Y. Association between serum retinoic acid levels and risk of post-stroke depression in patients with ischemic stroke. Asian J. Psychiatry 2019, 46, 87–91. [Google Scholar] [CrossRef]
- Yang, C.-D.; Cheng, M.-L.; Liu, W.; Zeng, D.-H. Association of serum retinoic acid with depression in patients with acute ischemic stroke. Aging 2020, 12, 2647–2658. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Plaza-Diaz, J.; Mesa, M.D. Vitamin D: Classic and Novel Actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Han, B.; Lyu, Y.; Sun, H.; Wei, Y.; He, J. Low serum levels of vitamin D are associated with post-stroke depression. Eur. J. Neurol. 2015, 22, 1269–1274. [Google Scholar] [CrossRef]
- Yue, W.; Xiang, L.; Zhang, Y.J.; Ji, Y.; Li, X. Association of serum 25-hydroxyvitamin D with symptoms of depression after 6 months in stroke patients. Neurochem. Res. 2014, 39, 2218–2224. [Google Scholar] [CrossRef]
- Shaffer, J.A.; Edmondson, D.; Wasson, L.T.; Falzon, L.; Homma, K.; Ezeokoli, N.; Li, P.; Davidson, K.W. Vitamin D supplementation for depressive symptoms: A systematic review and meta-analysis of randomized controlled trials. Psychosom. Med. 2014, 76, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascoe, M.C.; Crewther, S.G.; Carey, L.M.; Crewther, D.P. Inflammation and depression: Why poststroke depression may be the norm and not the exception. Int. J. Stroke 2011, 6, 128–135. [Google Scholar] [CrossRef]
- Fann, D.Y.; Lim, Y.A.; Cheng, Y.L.; Lok, K.Z.; Chunduri, P.; Baik, S.H.; Drummond, G.R.; Dheen, S.T.; Sobey, C.G.; Jo, D.G.; et al. Evidence that NF-κB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol. Neurobiol. 2018, 55, 1082–1096. [Google Scholar] [CrossRef]
- Abelaira, H.M.; Reus, G.Z.; Petronilho, F.; Barichello, T.; Quevedo, J. Neuroimmunomodulation in depression: A review of inflammatory cytokines involved in this process. Neurochem. Res. 2014, 39, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Dikshit, R.; Karia, S.; Sonavane, S.; Shah, N.; De Sousa, A. Neutrophil-lymphocyte Ratio and C-reactive Protein Level in Patients with Major Depressive Disorder Before and After Pharmacotherapy. East. Asian Arch. Psychiatry 2018, 28, 53–58. [Google Scholar] [PubMed]
- Aguilar-Valles, A.; Kim, J.; Jung, S.; Woodside, B.; Luheshi, G.N. Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Mol. Psychiatry 2014, 19, 599–606. [Google Scholar] [CrossRef]
- Akosile, W.; Voisey, J.; Lawford, B.; Colquhoun, D.; Mc, D.Y.R.; Mehta, D.; Initiative, P. NLRP3 is associated with coronary artery disease in Vietnam veterans. Gene 2020, 725, 144163. [Google Scholar] [CrossRef] [PubMed]
- Aleem, D.; Tohid, H. Pro-inflammatory Cytokines, Biomarkers, Genetics and the Immune System: A Mechanistic Approach of Depression and Psoriasis. Rev. Colomb. Psiquiatr. 2018, 47, 177–186. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z.; Sun, D.; Xu, Z.; Zhang, X.; Li, L. The serum interleukin-18 is a potential marker for development of post-stroke depression. Neurol. Res. 2010, 32, 340–346. [Google Scholar] [CrossRef]
- Spalletta, G.; Bossù, P.; Ciaramella, A.; Bria, P.; Caltagirone, C.; Robinson, R.G. The etiology of poststroke depression: A review of the literature and a new hypothesis involving inflammatory cytokines. Mol. Psychiatry 2006, 11, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Spalletta, G.; Cravello, L.; Imperiale, F.; Salani, F.; Bossù, P.; Picchetto, L.; Cao, M.; Rasura, M.; Pazzelli, F.; Orzi, F.; et al. Neuropsychiatric symptoms and interleukin-6 serum levels in acute stroke. J. Neuropsychiatr. Clin. Neurosci. 2013, 25, 255–263. [Google Scholar] [CrossRef]
- Kang, H.-J.; Bae, K.-Y.; Kim, S.-W.; Kim, J.-T.; Park, M.-S.; Cho, K.-H.; Kim, J.-M. Effects of interleukin-6, interleukin-18, and statin use, evaluated at acute stroke, on post-stroke depression during 1-year follow-up. Psychoneuroendocrinology 2016, 72, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Kang, H.J.; Kim, J.W.; Bae, K.Y.; Kim, S.W.; Kim, J.T.; Park, M.S.; Cho, K.H. Associations of Tumor Necrosis Factor-α and Interleukin-1β Levels and Polymorphisms with Post-Stroke Depression. Am. J. Geriatr. Psychiatry 2017, 25, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Su, J.A.; Chou, S.Y.; Tsai, C.S.; Hung, T.H. Cytokine changes in the pathophysiology of poststroke depression. Gen. Hosp. Psychiatry 2012, 34, 35–39. [Google Scholar] [CrossRef]
- Chen, Y.; Pu, J.; Liu, Y.; Tian, L.; Chen, X.; Gui, S.; Xu, S.; Song, X.; Xie, P. Pro-inflammatory cytokines are associated with the development of post-stroke depression in the acute stage of stroke: A meta-analysis. Top. Stroke Rehabil. 2020, 1–10. [Google Scholar] [CrossRef]
- Jiao, J.T.; Cheng, C.; Ma, Y.J.; Huang, J.; Dai, M.C.; Jiang, C.; Wang, C.; Shao, J.F. Association between inflammatory cytokines and the risk of post-stroke depression, and the effect of depression on outcomes of patients with ischemic stroke in a 2-year prospective study. Exp. Ther. Med. 2016, 12, 1591–1598. [Google Scholar] [CrossRef]
- Ormstad, H.; Aass, H.C.D.; Lund-Sørensen, N.; Amthor, K.-F.; Sandvik, L. Serum levels of cytokines and C-reactive protein in acute ischemic stroke patients, and their relationship to stroke lateralization, type, and infarct volume. J. Neuro. 2011, 258, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ormstad, H.; Aass, H.C.; Amthor, K.F.; Lund-Sorensen, N.; Sandvik, L. Serum levels of cytokines, glucose, and hemoglobin as possible predictors of poststroke depression, and association with poststroke fatigue. Int. J. Neurosci. 2012, 122, 682–690. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, Y.G.; Chen, H.Y.; Wu, Z.P.; Xie, H.G. Expression of genes encoding cytokines and corticotropin releasing factor are altered by citalopram in the hypothalamus of post-stroke depression rats. Neuro. Endocrinol. Lett. 2013, 34, 773–779. [Google Scholar]
- Aben, I.; Verhey, F. Depression after a cerebrovascular accident. The importance of the integration of neurobiological and psychosocial pathogenic models. Panminerva. Med. 2006, 48, 49–57. [Google Scholar] [PubMed]
- Li, P.; Zhang, Q.L.; Li, S.Y. The relationship between acute inflammatory cytokines, nerve function defect, daily living ability and PSD. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2017, 33, 121–123. [Google Scholar] [CrossRef]
- Meng, G.; Ma, X.; Li, L.; Tan, Y.; Liu, X.; Liu, X.; Zhao, Y. Predictors of early-onset post-ischemic stroke depression: A cross-sectional study. BMC neurol. 2017, 17, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Pu, S.; Ni, Y.; Gao, M.; Li, X.; Zeng, X. Elevated plasma macrophage migration inhibitor factor as a risk factor for the development of post-stroke depression in ischemic stroke. J. Neuroimmunol. 2018, 320, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Kozak, H.H.; Uğuz, F.; Kılınç, İ.; Uca, A.U.; Tokgöz, O.S.; Güney, F.; Özer, N. A cross-sectional study to assess the association between major depression and inflammatory markers in patients with acute ischemic stroke. Indian J. Psychiatry 2019, 61, 283–289. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, W.; Zhou, Z.; Yang, Q.; Han, J.; Yan, Y.; Dong, W. Predictive value of inflammatory indicators for post-stroke depression in patients with ischemic stroke. Nan Fang Yi Ke Da Xue Xue Bao 2019, 39, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Bartels, C.; Schumacher, M.; Wallesch, C.W. Poststroke depression. Is there a pathoanatomic correlate for depression in the postacute stage of stroke? Stroke 1995, 26, 850–856. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi-Kwon, S. Poststroke depression and emotional incontinence: Correlation with lesion location. Neurology 2000, 54, 1805–1810. [Google Scholar] [CrossRef]
- Lam, S.C.; Lee, L.Y.; To, K.W. Depressive symptoms among community-dwelling, post-stroke elders in Hong Kong. Int. Nurs. Rev. 2010, 57, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, B.; Ortiz, X.; SanJose, B.; Frank, A.; Diez-Tejedor, E. Post-stroke depression: Can we predict its development from the acute stroke phase? Acta Neurol. Scand. 2009, 120, 150–156. [Google Scholar] [CrossRef]
- Fuller-Thomson, E.; Tulipano, M.J.; Song, M. The association between depression, suicidal ideation, and stroke in a population-based sample. Int. J. Stroke 2012, 7, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.; van Zandvoort, M.J.; van der Worp, H.B.; de Haan, E.H.; de Kort, P.L.; Jansen, B.P.; Kappelle, L.J. Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke. J. Neurol. Sci. 2006, 247, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennese, F.; del Re, M.; di Giandomenico, E.; Zito, M. Poststroke depression in the elderly. Arch. Gerontol. Geriatr. 1991, 2, 103–106. [Google Scholar]
- Schwartz, J.A.; Speed, N.M.; Brunberg, J.A.; Brewer, T.L.; Brown, M.; Greden, J.F. Depression in stroke rehabilitation. Biol. Psychiatry 1993, 33, 694–699. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, K.; Robinson, R.G. The relationship between poststroke depression and lesion location in long-term follow-up. Biol. Psychiatry 1999, 45, 187–192. [Google Scholar] [CrossRef]
- Smith, C.J.; Emsley, H.C.; Gavin, C.M.; Georgiou, R.F.; Vail, A.; Barberan, E.M.; Del Zoppo, G.J.; Hallenbeck, J.M.; Rothwell, N.J.; Hopkins, S.J. Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. 2004, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.M.; van Zandvoort, M.J.; van der Worp, H.B.; de Haan, E.H.; de Kort, P.L.; Kappelle, L.J. Early depressive symptoms after stroke: Neuropsychological correlates and lesion characteristics. J. Neurol. Sci. 2005, 228, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Hama, S.; Yamashita, H.; Yamawaki, S.; Kurisu, K. Post-stroke depression and apathy: Interactions between functional recovery, lesion location, and emotional response. Psychogeriatrics 2011, 11, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Douven, E.; Köhler, S.; Rodriguez, M.M.F.; Staals, J.; Verhey, F.R.J.; Aalten, P. Imaging Markers of Post-Stroke Depression and Apathy: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 202–219. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Wu, L.; Liu, W.; Liu, Z.; Zhang, S.; Yang, J.; Wu, W. A Study of the Brain Abnormalities of Post-Stroke Depression in Frontal Lobe Lesion. Sci. Rep. 2017, 7, 13203. [Google Scholar] [CrossRef] [Green Version]
- Hollender, K.D. Screening, diagnosis, and treatment of post-stroke depression. J. Neurosci. Nurs. 2014, 46, 135–141. [Google Scholar] [CrossRef]
- Murray, D.R.; Prabhu, S.D.; Chandrasekar, B. Chronic β-adrenergic stimulation induces myocardial proinflammatory cytokine expression. Circulation 2000, 101, 2338–2341. [Google Scholar] [CrossRef] [Green Version]
- Capuron, L.; Raison, C.L.; Musselman, D.L.; Lawson, D.H.; Nemeroff, C.B.; Miller, A.H. Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am. J. Psychiatry 2003, 160, 1342–1345. [Google Scholar] [CrossRef]
- Bansal, Y.; Kuhad, A. Mitochondrial dysfunction in depression. Curr. Neuropharmacol. 2016, 14, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.; Villa, R. The neurobiology of depression: An integrated overview from biological theories to clinical evidence. Mol. Neurobiol. 2017, 54, 4847–4865. [Google Scholar] [CrossRef]
- Altieri, M.; Maestrini, I.; Mercurio, A.; Troisi, P.; Sgarlata, E.; Rea, V.; Di Piero, V.; Lenzi, G.L. Depression after minor stroke: Prevalence and predictors. Eur. J. Neurol. 2012, 19, 517–521. [Google Scholar] [CrossRef]
- Angelelli, P.; Paolucci, S.; Bivona, U.; Piccardi, L.; Ciurli, P.; Cantagallo, A.; Antonucci, G.; Fasotti, L.; Di Santantonio, A.; Grasso, M.G.; et al. Development of neuropsychiatric symptoms in poststroke patients: A cross-sectional study. Acta Psychiatr. Scand. 2004, 110, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.Z.; Xiang, Y.T.; Yang, Y.; Zhang, N.; Wang, S.; Ungvari, G.S.; Chiu, H.F.; Tang, W.K.; Wang, Y.L.; Zhao, X.Q.; et al. Depression after minor stroke: The association with disability and quality of life--a 1-year follow-up study. Int. J. Geriatr. Psychiatry 2016, 31, 421–427. [Google Scholar] [CrossRef]
- Singh, A.; Black, S.E.; Herrmann, N.; Leibovitch, F.S.; Ebert, P.L.; Lawrence, J.; Szalai, J.P. Functional and neuroanatomic correlations in poststroke depression: The Sunnybrook Stroke Study. Stroke 2000, 31, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; Palomaki, H.; Lehtihalmes, M.; Lonnqvist, J.; Kaste, M. Poststroke depression: An 18-month follow-up. Stroke 2003, 34, 138–143. [Google Scholar] [CrossRef]
- Arauz, A.; Rodriguez-Agudelo, Y.; Sosa, A.L.; Chavez, M.; Paz, F.; Gonzalez, M.; Coral, J.; Diaz-Olavarrieta, C.; Roman, G.C. Vascular cognitive disorders and depression after first-ever stroke: The Fogarty-Mexico Stroke Cohort. Cerebrovasc. Dis. 2014, 38, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Chau, J.P.; Thompson, D.R.; Chang, A.M.; Woo, J.; Twinn, S.; Cheung, S.K.; Kwok, T. Depression among Chinese stroke survivors six months after discharge from a rehabilitation hospital. J. Clin. Nurs. 2010, 19, 3042–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- House, A.; Dennis, M.; Warlow, C.; Hawton, K.; Molyneux, A. Mood disorders after stroke and their relation to lesion location. A CT scan study. Brain 1990, 113, 1113–1129. [Google Scholar] [CrossRef]
- Jiang, X.G.; Lin, Y.; Li, Y.S. Correlative study on risk factors of depression among acute stroke patients. Eur. Rev. Med Pharmacol. Sci. 2014, 18, 1315–1323. [Google Scholar]
- Marasco, G.; Iavarone, A.; Ronga, B.; Martini, V.; Crispino, M.; Postiglione, A. Depressive symptoms in patients admitted to a semi-intensive Stroke Unit. Acta Neurol. Belg. 2011, 111, 276–281. [Google Scholar] [PubMed]
- Paradiso, S.; Robinson, R.G. Gender differences in poststroke depression. J. Neuropsychiatry Clin. Neurosci. 1998, 10, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Rajashekaran, P.; Pai, K.; Thunga, R.; Unnikrishnan, B. Post-stroke depression and lesion location: A hospital based cross-sectional study. Indian J. Psychiatry 2013, 55, 343–348. [Google Scholar] [CrossRef]
- Sinyor, D.; Jacques, P.; Kaloupek, D.G.; Becker, R.; Goldenberg, M.; Coopersmith, H. Poststroke depression and lesion location. An attempted replication. Brain 1986, 109, 537–546. [Google Scholar] [CrossRef]
- Snaphaan, L.; van der Werf, S.; Kanselaar, K.; de Leeuw, F.E. Post-stroke depressive symptoms are associated with post-stroke characteristics. Cerebrovasc. Dis. 2009, 28, 551–557. [Google Scholar] [CrossRef]
- Wongwandee, M.; Tangwongchai, S.; Phanthumchinda, K. Relationship between poststroke depression and ischemic lesion location. J. Med. Assoc. Thai. 2012, 95, 330–336. [Google Scholar]
- Caeiro, L.; Ferro, J.M.; Santos, C.O.; Figueira, M. Depression in acute stroke. J. Psychiatry Neurosci. 2006, 31, 377–383. [Google Scholar] [PubMed]
- Dimond, S.J.; Farrington, L.; Johnson, P. Differing emotional response from right and left hemispheres. Nature 1976, 261, 690. [Google Scholar] [CrossRef] [PubMed]
- Flor-Henry, P. On certain aspects of the localization of the cerebral systems regulating and determining emotion. Biol. Psychiatry 1979, 14, 677–698. [Google Scholar]
- Tucker, D.M. Lateral brain function, emotion, and conceptualization. Psycholo. Bull. 1981, 89, 19. [Google Scholar] [CrossRef]
- Paolucci, S.; Antonucci, G.; Pratesi, L.; Traballesi, M.; Grasso, M.G.; Lubich, S. Poststroke depression and its role in rehabilitation of inpatients. Arch. Phys. Med. Rehabilitation 1999, 80, 985–990. [Google Scholar] [CrossRef]
- Gozzi, S.A.; Wood, A.G.; Chen, J.; Vaddadi, K.; Phan, T.G. Imaging predictors of poststroke depression: Methodological factors in voxel-based analysis. BMJ Open 2014, 4, e004948. [Google Scholar] [CrossRef] [Green Version]
- Starkstein, S.E.; Robinson, R.G.; Price, T.R. Comparison of patients with and without poststroke major depression matched for size and location of lesion. Arch. Gen. Psychiatry 1988, 45, 247–252. [Google Scholar] [CrossRef]
- De Ryck, A.; Fransen, E.; Brouns, R.; Geurden, M.; Peij, D.; Marien, P.; De Deyn, P.P.; Engelborghs, S. Poststroke depression and its multifactorial nature: Results from a prospective longitudinal study. J. Neurol. Sci. 2014, 347, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G.; Azzoni, A.; Gasparini, F.; Marra, C.; Razzano, C. Relation of lesion location to verbal and nonverbal mood measures in stroke patients. Stroke 1997, 28, 2145–2149. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, D.; Marra, C.; Gainotti, G. Post-stroke depression: Main phenomenological clusters and their relationships with clinical measures. Behav. Neurol. 2012, 25, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Aben, I.; Lodder, J.; Honig, A.; Lousberg, R.; Boreas, A.; Verhey, F. Focal or generalized vascular brain damage and vulnerability to depression after stroke: A 1-year prospective follow-up study. Int. Psychogeriatr. 2006, 18, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.K.; Lu, J.Y.; Chen, Y.K.; Chu, W.C.; Mok, V.; Ungvari, G.S.; Wong, K.S. Association of frontal subcortical circuits infarcts in poststroke depression: A magnetic resonance imaging study of 591 Chinese patients with ischemic stroke. J. Geriatr. Psychiatry Neurol. 2011, 24, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Metoki, N.; Sugawara, N.; Hagii, J.; Saito, S.; Shiroto, H.; Tomita, T.; Yasujima, M.; Okumura, K.; Yasui-Furukori, N. Relationship between the lesion location of acute ischemic stroke and early depressive symptoms in Japanese patients. Ann. Gen. Psychiatry 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Murakami, T.; Hama, S.; Yamashita, H.; Onoda, K.; Kobayashi, M.; Kanazawa, J.; Yamawaki, S.; Kurisu, K. Neuroanatomic pathways associated with poststroke affective and apathetic depression. Am. J. Geriatr. Psychiatry 2013, 21, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.G.; Starr, L.B.; Kubos, K.L.; Price, T.R. A two-year longitudinal study of post-stroke mood disorders: Findings during the initial evaluation. Stroke 1983, 14, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Taylor-Piliae, R.E.; Hepworth, J.T.; Coull, B.M. Predictors of depressive symptoms among community-dwelling stroke survivors. J. Cardiovasc. Nurs. 2013, 28, 460–467. [Google Scholar] [CrossRef]
- Wichowicz, H.M.; Gasecki, D.; Landowski, J.; Lass, P.; Swierkocka, M.; Wisniewski, G.; Nyka, W.N.; Wilkowska, A. Clinical utility of chosen factors in predicting post-stroke depression: A one year follow-up. Psychiatr. Pol. 2015, 49, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jing, X.; Zhao, X.; Wang, C.; Liu, Z.; Zhou, Y.; Wang, Y.; Wang, Y. A prospective cohort study of lesion location and its relation to post-stroke depression among Chinese patients. J. Affect. Disord. 2012, 136, e83–e87. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-r.; Hua, P.; Shang, X.-y.; Hu, R.; Mo, X.-e.; Pan, X.-p. Predictors of early post ischemic stroke apathy and depression: A cross-sectional study. BMC Psychiatry Vol 13 2013, ArtID 164 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauterbach, E.C.; Jackson, J.G.; Wilson, A.N.; Dever, G.E.; Kirsh, A.D. Major depression after left posterior globus pallidus lesions. Neuropsychol. Behav. Neurol. 1997, 10, 9–16. [Google Scholar]
- Vataja, R.; Leppavuori, A.; Pohjasvaara, T.; Mantyla, R.; Aronen, H.J.; Salonen, O.; Kaste, M.; Erkinjuntti, T. Poststroke depression and lesion location revisited. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Nestler, E.J.; Carlezon, W.A. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Mayberg, H.S. Limbic-cortical dysregulation: A proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 471–481. [Google Scholar] [PubMed]
- Mayberg, H. Depression and Frontal-Subcortical Circuits: Focus on Prefrontal-Limbic Interactions; Guilford Press: New York, NY, USA, 2001. [Google Scholar]
- Mayberg, H.S.; Liotti, M.; Brannan, S.K.; McGinnis, S.; Mahurin, R.K.; Jerabek, P.A.; Silva, J.A.; Tekell, J.L.; Martin, C.C.; Lancaster, J.L. Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am. J. Psychiatry 1999, 156, 675–682. [Google Scholar]
- Fava, M.; Kendler, K.S. Major depressive disorder. Neuron 2000, 28, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Choi-Kwon, S.; Han, K.; Choi, S.; Suh, M.; Kim, Y.J.; Song, H.; Cho, K.H.; Nah, H.W.; Kwon, S.U.; Kang, D.W.; et al. Poststroke depression and emotional incontinence: Factors related to acute and subacute stages. Neurology 2012, 78, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Guo, Y.; Yang, D.; Yang, T.; Meng, X. Serotonin Transporter Gene 5-HTTLPR Polymorphism as a Protective Factor Against the Progression of Post-Stroke Depression. Mol. Neurobiol. 2016, 53, 1699–1705. [Google Scholar] [CrossRef]
- Queirazza, F.; Cavanagh, J. Poststroke depression and 5-HTTLPR. J. Neurol. Neurosurg. Psychiatry 2013, 85, 241–243. [Google Scholar] [CrossRef]
- Bora, E.; Fornito, A.; Pantelis, C.; Yücel, M. Gray matter abnormalities in major depressive disorder: A meta-analysis of voxel based morphometry studies. J. Affect. Disord. 2012, 138, 9–18. [Google Scholar] [CrossRef]
- Frodl, T.S.; Koutsouleris, N.; Bottlender, R.; Born, C.; Jäger, M.; Scupin, I.; Reiser, M.; Möller, H.-J.; Meisenzahl, E.M. Depression-related variation in brain morphology over 3 years: Effects of stress? Arch. Gen. Psychiatry 2008, 65, 1156–1165. [Google Scholar] [CrossRef] [Green Version]
- Cotter, D.; Mackay, D.; Chana, G.; Beasley, C.; Landau, S.; Everall, I.P. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb. Cortex 2002, 12, 386–394. [Google Scholar] [CrossRef]
- Alexopoulos, G.S.; Meyers, B.S.; Young, R.C.; Campbell, S.; Silbersweig, D.; Charlson, M. ‘Vascular depression’hypothesis. Arch. Gen. Psychiatry 1997, 54, 915–922. [Google Scholar] [CrossRef]
- Taylor, W.D.; Aizenstein, H.J.; Alexopoulos, G.S. The vascular depression hypothesis: Mechanisms linking vascular disease with depression. Mol. Psychiatry 2013, 18, 963. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, G.S.; Kiosses, D.N.; Klimstra, S.; Kalayam, B.; Bruce, M.L. Clinical presentation of the “depression–executive dysfunction syndrome” of late life. Am. J. Geriatr. Psychiatry 2002, 10, 98–106. [Google Scholar]
- Alexopoulos, G.S. Depression in the elderly. Lancet 2005, 365, 1961–1970. [Google Scholar] [CrossRef]
- Direk, N.; Perez, H.S.; Akoudad, S.; Verhaaren, B.F.; Niessen, W.J.; Hofman, A.; Vernooij, M.W.; Ikram, M.A.; Tiemeier, H. Markers of cerebral small vessel disease and severity of depression in the general population. Psychiatry Res. Neuroimaging 2016, 253, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K.R.; Hays, J.C.; Blazer, D.G. MRI-defined vascular depression. Am. J. Psychiatry 1997, 154, 497–501. [Google Scholar] [CrossRef]
- Robinson, R.G.; Jorge, R.E. Post-Stroke Depression: A Review. Am. J. Psychiatry 2016, 173, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.K.; Chan, S.S.; Chiu, H.F.; Ungvari, G.S.; Wong, K.S.; Kwok, T.C.; Mok, V.; Wong, K.; Richards, P.S.; Ahuja, A.T. Poststroke Depression in Chinese Patients: Frequency, Psychosocial, Clinical, and Radiological Determinants. J. Geriatr. Psychiatry Neurol. 2005, 18, 45–51. [Google Scholar] [CrossRef]
- Nickel, A.; Thomalla, G. Post-stroke depression: Impact of lesion location and methodological limitations-a topical review. Front. Neurol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.E.; Crutcher, M.D.; DeLong, M.R. Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 1990, 85, 119–146. [Google Scholar]
- Bonelli, R.M.; Cummings, J.L. Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci. 2007, 9, 141. [Google Scholar]
- Robinson, R.G.; Shoemaker, W.J.; Schlumpf, M.; Valk, T.; Bloom, F.E. Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature 1975, 255, 332–334. [Google Scholar] [CrossRef] [PubMed]
- Ilut, S.; Stan, A.; Blesneag, A.; Vacaras, V.; Vesa, S.; Fodoreanu, L. Factors that influence the severity of post-stroke depression. J. Med. Life 2017, 10, 167–171. [Google Scholar] [PubMed]
- Shi, Y.; Yang, D.; Zeng, Y.; Wu, W. Risk Factors for Post-stroke Depression: A Meta-analysis. Front. Aging Neurosci. 2017, 9, 218. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, Y.; Komaba, Y.; Ueda, M.; Nagayama, H.; Amemiya, S.; Katayama, Y. Early depressive symptoms after ischemic stroke are associated with a left lenticulocapsular area lesion. J. Stroke Cerebrovasc. Dis. 2010, 19, 184–189. [Google Scholar] [CrossRef]
- Shi, Y.; Zeng, Y.; Wu, L.; Liu, Z.; Zhang, S.; Yang, J.; Wu, W. A Study of the Brain Functional Network of Post-Stroke Depression in Three Different Lesion Locations. Sci. Rep. 2017, 7, 14795. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.-Y.; Fan, Z.-X.; Wang, L.; Cui, S.; Niu, J.-L. Altered white matter microstructure in patients with post-stroke depression detected by diffusion kurtosis imaging. Neurol. Sci. 2019, 40, 2097–2103. [Google Scholar] [CrossRef]
- Yasuno, F.; Taguchi, A.; Yamamoto, A.; Kajimoto, K.; Kazui, H.; Kudo, T.; Kikuchi-Taura, A.; Sekiyama, A.; Kishimoto, T.; Iida, H.; et al. Microstructural abnormality in white matter, regulatory T lymphocytes, and depressive symptoms after stroke. Psychogeriatrics 2014, 14, 213–221. [Google Scholar] [CrossRef]
- Guo, W.Y.; Zhang, Z.H.; Mu, J.L.; Liu, D.; Zhao, L.; Yao, Z.Y.; Song, J.G. Relationship between 5-HTTLPR polymorphism and post-stroke depression. Gen. Mol. Res. 2016, 15, 1–6. [Google Scholar] [CrossRef]
- Kulikova, E.A.; Kulikov, A.V. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets 2019, 23, 655–667. [Google Scholar] [CrossRef]
- Kohen, R.; Cain, K.C.; Mitchell, P.H.; Becker, K.; Buzaitis, A.; Millard, S.P.; Navaja, G.P.; Teri, L.; Tirschwell, D.; Veith, R. Association of serotonin transporter gene polymorphisms with poststroke depression. Arch. Gen. Psychiatry 2008, 65, 1296–1302. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.; Choi-Kwon, S.; Jun, S.-E.; Kim, J.H.; Cho, K.-H.; Nah, H.-W.; Song, H.; Kim, J.S. Poststroke emotional disturbances and a tryptophan hydroxylase 2 gene polymorphism. Brain Behav. 2018, 8, e00892. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.J.; Hong, C.J.; Liou, Y.J.; Younger, W.Y.; Chen, T.J.; Hou, S.J.; Yen, F.C. Tryptophan hydroxylase 2 gene is associated with major depression and antidepressant treatment response. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2009, 33, 637–641. [Google Scholar] [CrossRef]
- Park, H.; Poo, M.M. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 2013, 14, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Björkholm, C.; Monteggia, L.M. BDNF—a key transducer of antidepressant effects. Neuropharmacology 2016, 102, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-M.; Stewart, R.; Kang, H.-J.; Kim, S.-Y.; Kim, S.-W.; Shin, I.-S.; Park, M.-S.; Kim, H.-R.; Shin, M.-G.; Cho, K.-H.; et al. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J. Affect. Disord. 2013, 149, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Wu, L.N.; Song, J.G.; Li, W.Q. Correlations between cognitive impairment and brain-derived neurotrophic factor expression in the hippocampus of post-stroke depression rats. Mol. Med. Rep. 2012, 6, 889–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, H.; Li, X.; Tang, Q.; Zhang, W.; Li, Q.; Sun, X.; Zhao, R.; Ma, C.; Liu, H.; Gao, Y.; et al. Yi-nao-jie-yu Prescription Exerts a Positive Effect on Neurogenesis by Regulating Notch Signals in the Hippocampus of Post-stroke Depression Rats. Front. Psychiatry 2018, 9, 483. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.-J.; Pei, L.; Li, Y.-N.; Zheng, H.; Yang, S.; Wan, Y.; Mao, L.; Xia, Y.-P.; He, Q.-W.; Li, M.; et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci. Rep. 2017, 7, 14926. [Google Scholar] [CrossRef]
- Verma, R.; Cronin, C.G.; Hudobenko, J.; Venna, V.R.; McCullough, L.D.; Liang, B.T. Deletion of the P2X4 receptor is neuroprotective acutely, but induces a depressive phenotype during recovery from ischemic stroke. Brain Behav. Immun. 2017, 66, 302–312. [Google Scholar] [CrossRef]
- Khoja, S.; Shah, V.; Garcia, D.; Asatryan, L.; Jakowec, M.W.; Davies, D.L. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors. J. Neurochem. 2016, 139, 134–148. [Google Scholar] [CrossRef] [Green Version]
- Franklin, K.M.; Asatryan, L.; Jakowec, M.W.; Trudell, J.R.; Bell, R.L.; Davies, D.L. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders. Front. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Li, L.P.; Wang, Q.; Wu, Q.; Hu, H.H.; Zhang, M.; Fang, Y.Y.; Zhang, J.; Li, S.J.; Xiong, W.C.; et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 2013, 19, 773–777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mu, J.; Li, J.; Li, W.; Song, J. Aberrant apolipoprotein E expression and cognitive dysfunction in patients with poststroke depression. Genet. Test. Mol. Biomark. 2013, 17, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-B.; Wang, J.; Xu, A.-D.; Huang, J.-M.; Meng, L.-Q.; Huang, R.-Y.; Wang, J.-L. Apolipoprotein E polymorphisms increase the risk of post-stroke depression. Neural Regene. Res. 2016, 11, 1790–1796. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.-Z.; Wang, A.-R.; Zhao, Z.-Y.; Chen, X.-Y.; Li, Y.-B.; Liu, B. Antidepressant-like effects of paeoniflorin on post-stroke depression in a rat model. Neurol. Res. 2019, 41, 446–455. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, X.; Zhang, J.; Chen, Y. Treatment of depression with Chai Hu Shu Gan San: A systematic review and meta-analysis of 42 randomized controlled trials. BMC Complement. Altern. Med. 2018, 18, 66. [Google Scholar] [CrossRef] [Green Version]
- Kwon, C.-Y.; Lee, B.; Chung, S.-Y.; Kim, J.W.; Shin, A.; Choi, Y.-Y.; Yun, Y.; Leem, J. Herbal medicine Sihogayonggolmoryeo-tang or Chai-Hu-Jia-Long-Gu-Mu-Li-Tang for the treatment of post-stroke depression: A protocol for a systematic review and meta-analysis. Medicine 2018, 97, e12384. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Q.; Xiao, Y.; Li, P. Radix Bupleuri ameliorates depression by increasing nerve growth factor and brain-derived neurotrophic factor. Int. J. Clin. Exp. Med. 2015, 8, 9205–9217. [Google Scholar]
- Wang, Z.; Ren, W.; Zhao, F.; Han, Y.; Liu, C.; Jia, K. Curcumin amends Ca(2+) dysregulation in microglia by suppressing the activation of P2X7 receptor. Mol. Cell Biochem. 2020, 465, 65–73. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, C.; Wu, J.; Zheng, R.; Cao, H. Comparison between herbal medicine and fluoxetine for depression: A systematic review of randomized controlled trials. Complement. Ther. Med. 2015, 23, 674–684. [Google Scholar] [CrossRef]
- Tian, M.; Yang, M.; Li, Z.; Wang, Y.; Chen, W.; Yang, L.; Li, Y.; Yuan, H. Fluoxetine suppresses inflammatory reaction in microglia under OGD/R challenge via modulation of NF-κB signaling. Biosci. Rep. 2019, 39, BSR20181584. [Google Scholar] [CrossRef]
- Khodanovich, M.; Kisel, A.; Kudabaeva, M.; Chernysheva, G.; Smolyakova, V.; Krutenkova, E.; Wasserlauf, I.; Plotnikov, M.; Yarnykh, V. Effects of Fluoxetine on Hippocampal Neurogenesis and Neuroprotection in the Model of Global Cerebral Ischemia in Rats. Int. J. Mol. Sci. 2018, 19, 162. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Upadhayay, D.; Sharma, U.; Jagannathan, N.R.; Gupta, Y.K. Citalopram attenuated neurobehavioral, biochemical, and metabolic alterations in transient middle cerebral artery occlusion model of stroke in male Wistar rats. J. Neurosci. Res. 2018, 96, 1277–1293. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; He, J.; Zhang, H.; Xiao, L.; Nazarali, A.; Zhang, Z.; Zhang, D.; Tan, Q.; Kong, J.; et al. Hyperforin promotes mitochondrial function and development of oligodendrocytes. J. Neurochem. 2011, 119, 555–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Yu, P.; Liu, H.; Yao, H.; Yao, S.; Yuan, S.-Y.; Zhang, J.-C. Hyperforin improves post-stroke social isolation-induced exaggeration of PSD and PSA via TGF-β. Int. J. Mol. Med. 2019, 43, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, N.; Bijak, M.; Miller, E.; Niwald, M.; Saluk, J. Poststroke Depression as a Factor Adversely Affecting the Level of Oxidative Damage to Plasma Proteins during a Brain Stroke. Oxidative Med. Cell. Longevity 2015, 2015, 408745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabavi, S.F.; Dean, O.M.; Turner, A.; Sureda, A.; Daglia, M.; Nabavi, S.M. Oxidative stress and post-stroke depression: Possible therapeutic role of polyphenols? Curr. Med. Chem. 2015, 22, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M.; Di Lorenzo, A.; Nabavi, S.F.; Sureda, A.; Khanjani, S.; Moghaddam, A.H.; Braidy, N.; Nabavi, S.M. Improvement of Antioxidant Defences and Mood Status by Oral GABA Tea Administration in a Mouse Model of Post-Stroke Depression. Nutrients 2017, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Camargos, Q.M.; Silva, B.C.; Silva, D.G.; Toscano, E.C.B.; Oliveira, B.D.S.; Bellozi, P.M.Q.; Jardim, B.L.O.; Vieira, É.L.M.; de Oliveira, A.C.P.; Sousa, L.P.; et al. Minocycline treatment prevents depression and anxiety-like behaviors and promotes neuroprotection after experimental ischemic stroke. Brain Res. Bull. 2020, 155, 1–10. [Google Scholar] [CrossRef]
- Naderi, Y.; Panahi, Y.; Barreto, G.E.; Sahebkar, A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: A systematic review. Neural. Regen. Res. 2020, 15, 773–782. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Design, Sample Size | Biomarker | Biomarker Extraction (With Respect to Stroke) | PSD Scale Used | PSD Assessment (With Respect to Stroke) | Findings |
---|---|---|---|---|---|---|
Yang et al., 2010 [98] | Prospective N = 100 | IL-6, IL-18 and TNF- α | D1 and D7 | HAM-D, MADRS | 6 months | Serum IL-18 on day 7 after admission may predict the risk of post-stroke depression both at the acute stage of stroke and at 6 months post-stroke. |
Su et al., 2012 [103] | Prospective N = 104 | IL-6/IL-10 and TNF-α/IL-10 | 1st, 3rd, 6th, 9th and 12th month after stroke. | HAM-D | 1st, 3rd, 6th, 9th and 12th month after stroke. | There were significant increases in the cytokine’s interleukin-6 (IL-6), interleukin-10 (IL-10), tumour necrosis factor α (TNF-α) and interferon-γ, and the ratios of IL-6/IL-10 and TNF-α/IL-10 were also elevated. |
Spalletta et al., 2013 [100] | Prospective N = 48 | IL-6 | D3 | HAM-D | D3, 6, 14 | Increased IL−6 plays a key role in the onset of depressive disorders, apathy/amotivation, somatic symptoms of depression, and neurological/functional symptoms, resulting in higher disability and poor outcome of stroke patients. |
Kang et al., 2016 [101] | Prospective N = 286 | IL-6 and IL-18 | 1 week | DSM IV, HAM-D | 2 weeks | Higher IL-6 and IL-18 levels were independently associated with depressive disorders within 2 weeks and at 1 year after stroke. |
Jiao et al., 2016 [105] | Prospective N = 355 | CRP, IL-1β, IL-2, IL-6 and TNF-α | D2 | BDI | 12 months | The risk of PSD elevated with increased interleukin (IL)-6 expression levels [hazard ratio (HR) = 3.18; 95% confidence interval (CI), 1.37–7.36]. |
Kim et al., 2017 [102] | Prospective N = 286 | TNF-α, IL-1B | 2 weeks | DSM IV | 2 weeks and 1 year | Higher TNF-α levels were associated with PSD at 2 weeks in the presence of the -850T allele with a significant interaction term; higher IL-1β levels were associated with PSD at 2 weeks in the presence of the -511T allele with a borderline significant interaction term and with any +3953C/T polymorphism without a significant interaction term. |
Li et al., 2017 [110] | Prospective N = 280 | hSCRP, TNF-α, IL-6 | - | HAM D | 3 months | TNF-α, IL-6 and Barthel index are the independent risk factors of PSD in acute phase, so do NIHSS score and Barthel index in recovery period. |
Meng et al., 2017 [111] | Prospective N = 83 | TNF-α | D1 | HAM-D | 1 week | High HAMD scores (OR: 2.38, 95% CI: 1.61–3.50, p < 0.001) were independent risk predictors for PSD and so were lower dopamine levels (OR: 0.64, 95% CI: 0.45–0.91, p = 0.014), lower 5-hydroxytryptamine levels (OR: 0.99, 95% CI: 0.98–1.00, p = 0.046), higher tumour necrosis factor-α levels (OR: 1.05, 95% CI: 1.00–1.09, p = 0.044), and lower nerve growth factor levels (OR: 0.06, 95% CI: 0.01–0.67, p = 0.022). |
Wang et al., 2018 [108] | Prospective N = 152 | IL-6, hsCRP, vitamin D | D0 | HAM-D | 1 month | Serum levels of vitamin D and interleukin-6 were associated with the development of PSD after adjusted possible variables (OR = 0.976, 95% CI: 0.958-0.994, p = 0.009; OR = 1.029, 95% CI: 1.003-1.055, p = 0.027). |
Xu et al., 2018 [112] | Prospective N = 333 | MIF, HCY, CRP and (IL-6) | D1 | BDI | 3 months | In the patients with major depression, plasma levels of MIF were higher compared with those in patients free from depression [27.3(IQR, 23.5-34.9) ng/mL vs. 20.9(IQR, 17.0–24.8) ng/mL; Z = 8.369, p < 0.001]. For each 1 unit increase in MIF, the unadjusted and adjusted risk of PSD increased by 18% (odds ratios [OR]: 1.18; 95% confidence interval [CI], 1.13–1.23, p < 0.001) and 11% (1.11; 1.02–1.16, p = 0.001), respectively. |
Kozak et al., 2019 [113] | Cross-sectional | TNF-α, IL-1 β, IL-18, BDNF, and NSE | D0 | DSM IV | - | There is no significant relationship between major depression and basal proinflammatory cytokines (TNF-α, IL-1 β, IL-18), BDNF and NSE. |
Hu et al., 2019 [114] | Prospective N = 376 | IL-17 and IL-6 | 2 weeks | DSM IV HAM-D 17 | 3 months | IL-17 and IL-6 at 2 weeks after admission are all independent predictors of the occurrence of PSD at 3 months after stroke. |
Chen, 2020 [104] | Metanalysis N = 889 | IL-6 | - | DSM IV HAM D | - | The serum concentrations of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) were higher in the PSD group, compared with the non-PSD group (IL-6: SMD = 1.26, 95% CI = [0.55, 1.97], p < 0.001; TNF-α: SMD = 0.61, 95% CI = [0.13, 1.10], p = 0.010). |
Lesion Locations | Studies (N = 42) |
---|---|
No significant associations (N = 14) | [117,118,119,133,138,142,146,152,153,154,155,156] |
Anterior/ACA vascular territory (N = 5) | [121,125,127,157,158] |
Left anterior (N = 1) | [157] |
Posterior (N = 1) | [109,159] |
Proximity to the frontal pole (N = 2) | [121,145] |
Frontal lobe (N= 10) | [137,140,141,155,160,161,162,163,164,165] |
Left frontal lobe (N = 3) | [141,161,162] |
Inferior frontal lobe (N = 1) | [163] |
Left prefrontal cortex (N= 2) | [22,27] |
Temporal lobe (N= 4) | [141,160,165,166] |
Left temporal lobe (N = 1) | [141] |
Basal ganglia (N = 8) | [22,115,147,161,164,165,167,168] |
Left basal ganglia (N = 3) | [115,141,161] |
Caudate (N = 2) | [147,168] |
Putamen (N = 1) | [168] |
Pallidum (N = 2) | [167,168] |
Left posterior pallidum (N = 1) | [167] |
Lentiform (N = 2) | [115,147] |
Internal capsule N = 4) | [120,147,165,169] |
Left internal capsule (N= 1) | [123,169] |
Anterior limb of internal capsule (N = 1) | [147] |
Posterior corona radiata (N = 1) | [168] |
Brainstem (N = 1) | [161] |
Occipital lobe (N = 1) | [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijeratne, T.; Sales, C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J. Clin. Med. 2021, 10, 1674. https://doi.org/10.3390/jcm10081674
Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. Journal of Clinical Medicine. 2021; 10(8):1674. https://doi.org/10.3390/jcm10081674
Chicago/Turabian StyleWijeratne, Tissa, and Carmela Sales. 2021. "Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression" Journal of Clinical Medicine 10, no. 8: 1674. https://doi.org/10.3390/jcm10081674
APA StyleWijeratne, T., & Sales, C. (2021). Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. Journal of Clinical Medicine, 10(8), 1674. https://doi.org/10.3390/jcm10081674