Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Inflammatory Cytokines
3.2. Interferon Gamma (IFN-γ)
3.3. Interleukin-1 (IL-1)
3.4. Interleukin-6 (IL-6)
3.5. Interleukin-8 (IL-8)
3.6. Tumour Necrosis Factor (TNF)
3.7. Interleukin-10 (IL-10)
3.8. C-Reactive Protein (CRP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maes, M. Major depression and activation of the inflammatory response system. Adv. Exp. Med. Biol. 1999, 461, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Major depression and activation of the inflammatory response system. In Cytokines, Stress and Depression; Dantzer, R., Wollman, E.E., Yirmiya, R., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; pp. 25–46. [Google Scholar]
- Maes, M.; Leonard, B.E.; Myint, A.M.; Kubera, M.; Verkerk, R. The new 5-HT hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 702–721. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Dantzer, R. Cytokines and depression: The need for a new paradigm. Brain Behav. Immun. 2003, 17, S119–S124. [Google Scholar] [CrossRef]
- Schiepers, O.J.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 201–217. [Google Scholar] [CrossRef]
- Raison, C.L.; Capuron, L.; Miller, A.H. Cytokines sing the blues: Inflammation and the pathogenesis of depression. Trends Immunol. 2006, 27, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Torres-Aleman, I. Toward a comprehensive neurobiology of IGF-I. Dev. Neurobiol. 2010, 70, 384–396. [Google Scholar] [CrossRef]
- Raedler, T.J. Inflammatory mechanisms in major depressive disorder. Curr. Opin. Psychiatry 2011, 24, 519–525. [Google Scholar] [CrossRef]
- Behr, G.A.; Moreira, J.C.; Frey, B.N. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: Implications for the pathophysiology of major depressive disorder. Oxid Med. Cell. Longev. 2012, 2012, 609421. [Google Scholar] [CrossRef]
- Crupi, R.; Cuzzocrea, S. Neuroinflammation and immunity: A new pharmacological target in depression. CNS Neurol. Disord. Drug Targets 2016, 15, 464–476. [Google Scholar] [CrossRef]
- Gałecki, P.; Mossakowska-Wójcik, J.; Talarowska, M. The anti-inflammatory mechanism of antidepressants—SSRIs, SNRIs. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 291–294. [Google Scholar] [CrossRef]
- Gałecki, P.; Talarowska, M. Inflammatory theory of depression. Psychiatr. Pol. 2018, 52, 437–447. [Google Scholar] [CrossRef]
- Gałecki, P.; Talarowska, M. Neurodevelopmental theory of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 267–272. [Google Scholar] [CrossRef]
- Kanchanatawan, B.; Sirivichayakul, S.; Thika, S.; Ruxrungtham, K.; Carvalho, A.F.; Geffard, M. Physio-somatic symptoms in schizophrenia: Association with depression, anxiety, neurocognitive deficits and the tryptophan catabolite pathway. Metab. Brain Dis. 2017, 32, 1003–1016. [Google Scholar] [CrossRef]
- Anderson, G. Editorial: The Kynurenine and Melatonergic Pathways in psychiatric and CNS disorders. Curr. Pharm. Des. 2016, 22, 947–948. [Google Scholar] [CrossRef] [PubMed]
- Inserra, A.; Mastronardi, C.A.; Rogers, G.; Licinio, J.; Wong, M.L. Neuroimmunomodulation in major depressive disorder: Focus on Caspase 1, inducible nitric oxide synthase, and interferon-γ. Mol. Neurobiol. 2019, 56, 4288–4305. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Yeh, Y.W.; Kuo, S.C.; Liang, C.S.; Ho, P.S.; Huang, C.C.; Yen, C.H.; Shyu, J.F.; Lu, R.B.; Huang, S.Y. Differences in immunomodulatory properties between venlafaxine and paroxetine in patients with major depressive disorder. Psychoneuroendocrinology 2018, 87, 108–118. [Google Scholar] [CrossRef]
- Dahl, J.; Ormstad, H.; Aass, H.C.; Malt, U.F.; Bendz, L.T.; Sandvik, L.; Brundin, L.; Andreassen, O.A. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 2014, 45, 77–86. [Google Scholar] [CrossRef]
- Hernandez, M.E.; Mendieta, D.; Pérez-Tapia, M.; Bojalil, R.; Estrada-Garcia, I.; Estrada-Parra, S.; Pavón, L. Effect of selective serotonin reuptake inhibitors and immunomodulator on cytokines levels: An alternative therapy for patients with major depressive disorder. Clin. Develop. Immunol. 2013, 2013, 267871. [Google Scholar] [CrossRef] [Green Version]
- Brunoni, A.R.; Machado-Vieira, R.; Zarate, C.A.; Valiengo, L.; Vieira, E.L.; Benseñor, I.M.; Lotufo, P.A.; Gattaz, W.F.; Teixeira, A.L. Cytokines plasma levels during antidepressant treatment with sertraline and transcranial direct current stimulation (tDCS): Results from a factorial, randomized, controlled trial. Psychopharmacology 2014, 231, 1315–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fornaro, M.; Rocchi, G.; Escelsior, A.; Contini, P.; Martino, M. Might different cytokine trends in depressed patients receiving duloxetine indicate differential biological backgrounds. J. Affect. Disord. 2013, 145, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, R.; Liu, L.; Qiao, D.; Baldwin, D.S.; Hou, R. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav. Immun. 2019, 79, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Więdłocha, M.; Marcinowicz, P.; Krupa, R.; Janoska-Jaździk, M.; Janus, M.; Dębowska, W.; Mosiołek, A.; Waszkiewicz, N.; Szulc, A. Effect of antidepressant treatment on peripheral inflammation markers—A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 80, 217–226. [Google Scholar] [CrossRef]
- Köhler, C.A.; Freitas, T.H.; Stubbs, B.; Maes, M.; Solmi, M.; Veronese, N.; de Andrade, N.Q.; Morris, G.; Fernandes, B.S.; Brunoni, A.R.; et al. Peripheral alterations in cytokine and chemokine levels after antidepressant drug treatment for major depressive disorder: Systematic review and meta-analysis. Mol. Neurobiol. 2018, 55, 4195–4206. [Google Scholar] [CrossRef] [Green Version]
- Carboni, L.; McCarthy, D.J.; Delafont, B.; Filosi, M.; Ivanchenko, E.; Ratti, E.; Learned, S.M.; Alexander, R.; Domenici, E. Biomarkers for response in major depression: Comparing paroxetine and venlafaxine from two randomised placebo-controlled clinical studies. Transl. Psychiatry 2019, 9, 182. [Google Scholar] [CrossRef]
- Manoharan, A.; Rajkumar, R.P.; Shewade, D.G.; Sundaram, R.; Muthuramalingam, A.; Paul, A. Evaluation of interleukin-6 and serotonin as biomarkers to predict response to fluoxetine. Hum. Psychopharmacol. Clin. Exp. 2016, 31, 178–184. [Google Scholar] [CrossRef]
- Jazayeri, S.; Keshavarz, S.A.; Tehrani-Doost, M.; Djalali, M.; Hosseini, M.; Amini, H.; Chamari, M.; Djazayery, A. Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1β and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res. 2010, 178, 112–115. [Google Scholar] [CrossRef]
- Halaris, A.; Myint, A.-M.; Savant, V.; Meresh, E.; Lim, E.; Guillemin, G.; Sinacore, J. Does escitalopram reduce neurotoxicity in major depression? J. Psychiatric Res. 2015, 66, 118–126. [Google Scholar] [CrossRef]
- Eller, T.; Vasar, V.; Shlik, J.; Maron, E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 445–450. [Google Scholar] [CrossRef]
- Chang, H.H.; Lee, I.H.; Gean, P.W.; Lee, S.Y.; Chi, M.H.; Yang, Y.K.; Lu, R.B.; Chen, P.S. Treatment response and cognitive impairment in major depression: Association with C-reactive protein. Brain Behav. Immun. 2012, 26, 90–95. [Google Scholar] [CrossRef]
- Yang, C. An Inflamed Mood: Studies on the Role of Inflammation in the Pathophysiology and Treatment Outcome of Major Depressive Disorder; University of Groningen: Groningen, The Netherlands, 2019. [Google Scholar]
- Papakostas, G.I.; Shelton, R.C.; Zajecka, J.M.; Bottiglieri, T.; Roffman, J.; Cassiello, C.; Stahl, S.M.; Fava, M. Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: Results from a randomized clinical trial. J. Clin. Psychiatry 2014, 75, 855–863. [Google Scholar] [CrossRef]
- Kruse, J.L.; Congdon, E.; Olmstead, R.; Njau, S.; Breen, E.C.; Narr, K.L.; Espinoza, R.; Irwin, M.R. Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J. Clin. Psychiatry 2018, 79, 17m11597. [Google Scholar] [CrossRef]
- Tuglu, C.; Kara, S.H.; Caliyurt, O.; Vardar, E.; Abay, E. Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology 2003, 170, 429–433. [Google Scholar] [CrossRef]
- Sims, J.E.; Smith, D.E. The IL-1 family: Regulators of immunity. Nat. Rev. Immunol. 2010, 10, 89–102. [Google Scholar] [CrossRef]
- Licinio, J.; Wong, M.L. The role of inflammatory mediators in the biology of major depression: Central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol. Psychiatry 1999, 4, 317–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.J.; Wei, Y.B.; Strawbridge, R.; Bao, Y.; Chang, S.; Shi, L.; Que, J.; Gadad, B.S.; Trivedi, M.H.; Kelsoe, J.R.; et al. Peripheral cytokine levels and response to antidepressant treatment in depression: A systematic review and meta-analysis. Mol. Psychiatry 2020, 25, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Piletz, J.E.; Halaris, A.; Iqbal, O.; Hoppensteadt, D.; Fareed, J.; Zhu, H.; DeVane, C.L. Pro-inflammatory biomakers in depression: Treatment with venlafaxine. World J. Biol. Psychiatry 2009, 10, 313–323. [Google Scholar] [CrossRef]
- Pérez-Sánchez, G.; Becerril-Villanueva, E.; Arreola, R.; Martínez-Levy, G.; Hernández-Gutiérrez, M.E.; Velasco-Velásquez, M.A.; Pavón, L. Inflammatory profiles in depressed adolescents treated with fluoxetine: An 8-week follow-up open study. Mediat. Inflamm. 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mössner, R.; Mikova, O.; Koutsilieri, E.; Saoud, M.; Ehlis, A.C.; Müller, N.; Fallgatter, A.J.; Riederer, P. Consensus paper of the WFSBP task force on biological markers: Biological markers in depression. World J. Biol. Psychiatry 2007, 8, 141–174. [Google Scholar] [CrossRef]
- Yoshimura, R.; Hori, H.; Ikenouchi-Sugita, A.; Umene-Nakano, W.; Katsuki, A.; Atake, K.; Nakamura, J. Plasma levels of interleukin-6 and selective serotonin reuptake inhibitor response in patients with major depressive disorder. Hum. Psychopharmacol. Clin. Exp. 2013, 28, 466–470. [Google Scholar] [CrossRef]
- Almond, M. Depression and inflammation: Examining the link. Curr. Psychiatr. 2013, 12, 24–32. [Google Scholar]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Köhler-Forsberg, O.; Buttenschøn, H.N.; Tansey, K.E.; Maier, W.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; Rietschel, M.; et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun. 2017, 62, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Mocking, R.J.T.; Nap, T.S.; Westerink, A.M.; Assies, J.; Vaz, F.M.; Koeter, M.W.J.; Ruhé, H.G.; Schene, A.H. Biological profiling of prospective antidepressant response in major depressive disorder: Associations with (neuro)inflammation, fatty acid metabolism, and amygdala reactivity. Psychoneuroendocrinology 2017, 79, 84–92. [Google Scholar] [CrossRef]
- Jacobs, B.L.; Fornal, C.A. Chronic fluoxetine treatment increases hippocampal neurogenesis in rats: A novel theory of depression. Soc. Neurosci. Abstr. 1999, 25, 714. [Google Scholar]
- Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014, 38, 173–192. [Google Scholar] [CrossRef]
- Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 2000, 20, 9104–9110. [Google Scholar] [CrossRef]
- Lucassen, P.J.; Stumpel, M.W.; Wang, Q.; Aronica, E. Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 2010, 58, 940–949. [Google Scholar] [CrossRef] [PubMed]
Study | Publication Year | Number of Patients | Duration of the Study | Markers | Medications | Influence of Drugs on Markers | Results |
---|---|---|---|---|---|---|---|
Fornaro et al. [23] | 2013 | N = 30 | 6 weeks, 12 weeks | IL-1b, IL-2, IL-4, IL-10, IL-12, IFN-g, TNF-α | duloxetine | NO | 6 weeks of treatment: no significant variations in mean cytokine plasma values; in early responders (ER) TNF-α levels decreased; in non-responders (ENR) IL-10 values decreased and IL-1b, IL-12, and IFN-g levels increased. Compared with controls, ER showed lower levels of IFN-g and TNF-α while ENR showed lower levels of IFN-g and IL-1b. 12 weeks: ENR—lower levels of IL-1b, IFN-g, and TNF-α compared with controls. |
Wang et al. [24] | 2019 | N = 123 | meta-analysis | IL-1β, IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ | escitalopram, citalopram, sertraline, fluoxetine, fluvoxamine, paroxetine | NO | Non-significant treatment effect. |
Więdłocha et al. [25] | 2017 | N = 154 | meta-analysis | IL-1ß, IL-2, IL-5, IL-6, IL-8, IL-10, CRP, TNF-α, IFN-γ | escitalopram, citalopram, sertraline, fluoxetine, fluvoxamine, venlafaxine, duloxetine, paroxetine, amitriptiline, clomipramine, nortriptiline, mirtazapine | NO | There was no statistically significant effect of antidepressant treatment on cytokines levels. |
Köhler et al. [26] | 2017 | N = 242 | meta-analisys | IL-6, TNF-α, IL-1b, IL-10, IL-4, IFN-y, IL-2, IL-8, CCL-2, CCL-3, IL-13, IL-17, IL-5, IL-7, IL-1R, sIL-2 receptor | escitalopram, citalopram, sertraline, fluoxetine, fluvoxamine, paroxetine, venlafaxine, duloxetine | NO | Levels of cytokine/chemokines were not significantly altered after antidepressant drug treatment. |
Chen et al. [19] | 2018 | 91 were completers for 8-week paroxetine (n = 50) or 8-week venlafaxine treatment (n = 41) | 8 weeks | IFN-γ, TNF-α, IL-1β, IL-2, IL-4, IL5, IL-6, IL-8, IL-10, and GM-CSF | venlafaxine, paroxetine | IFN-y YES Venlafaxine: IL-5, IL-8 YES; IL-1 NO Paroxetine: IL-4 NO | 8 weeks of treatment: venlafaxine—the mean IFN-γ, TNF-α, IL-4, IL-5, and IL-8 levels were significantly lower than in the paroxetine-treated group. Levels of the Th1 cytokines, IFN-γ, and TNF-α decreased after venlafaxine treatment, whereas IFN-γ and TNF-α increased after paroxetine treatment. Significant differences between paroxetine and venlafaxine treatment were observed in the change of cytokine levels such as IFN-γ, TNF-α, IL-4, IL-5, IL-8, and GM-CSF. After the 8-week paroxetine treatment, the mean IFN-γ and TNF-α levels increased in the ENR. IL-6 levels increased more in the ENR than in the ER. In the venlafaxine-treated group, the mean changes in cytokine levels did not differ significantly between ENR and ER. For levels of the Th2 and other cytokines, venlafaxine treatment caused a greater decrease in IL-4, IL-5, and IL-8 levels than did paroxetine treatment. After the 8-week venlafaxine treatment, the mean IL-1β and IL-8 levels had decreased and did not differ significantly from those of the healthy controls. The levels of IFN-γ and TNF-α increased after paroxetine treatment. |
Dahl et al. [20] | 2014 | N = 50 | 12 weeks | IL-1b, IL-1Ra, IL-2, IL-5, IL-6, IL-7, IL-8, IL-10, IL-15, G-CSF, MIP-1a, TNF-α, (IFNg) | sertraline, escitalopram, citalopram, venlafaxine, mirtazapine, benzodiazepines, lamotrigine, psychotherapy | YES | Seven of the nine cytokines that were elevated at baseline were significantly reduced after the 12 weeks of therapy compared with baseline: IL-1Ra, IL-6, IL-7, IL-8, IL-10, G-CSF, and IFNg. The levels of IL-1b and IL-5 were not significantly reduced. |
Brunoni et al. [22] | 2013 | N = 18 | 6 weeks | IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, TNF-α | sertraline | YES/no | The plasma levels of all cytokines (except TNF-α) decreased during the treatment. No significant results were found comparing cytokine plasma levels at baseline according to clinical response. |
Hernandez et al. [21] | 2013 | N = 31 | 52 weeks | IL-1β, IL-2, IFN-γ, IL-4, IL-10, and IL-13 | fluoxetine, setraline, paroxetine | YES | IFN-γ levels fluctuated during the treatments and showed significant changes. Before treatment, patients had lower IFN-γ levels. At the end of treatment, IFN-γ levels were comparable with those of healthy volunteers. |
Carboni et al. [27] | 2019 | N = 103 | 10 | IL-6, IL- 10, TNF-α, TNFRII, BDNF, CRP, MMP9, and PAI1 | venlafaxine (51), paroxetine (52) | YES | Paroxetine: increase in biomarker levels after treatment correlated with reduction in depression symptomatology for TNF-α, IL-6, IL-10, and CRP. Responders showed higher baseline IL-10 levels compared with non-responders. Venlafaxine—significant association between baseline levels of CRP and changes in HAM-D in males. |
Manoharan et al. [28] | 2016 | N = 73 MDD patients (39 responders and 34 non-responders) | 6 | IL-6 | fluoxetine | NO | IL-6 levels were significantly higher in MDD patients when compared with controls. Pre-treatment serum IL-6 concentrations did not significantly differ between responders and nonresponders. Both groups also did not show significant reduction in the IL-6 levels post-treatment. A significant correlation was observed between the percentage change in IL-6 and percentage change in depression score in responders. |
Jazayeri et al. [29] | 2010 | N = 14 | 8 | IL-1, IL-6 | fluoxetine | NO | Serum concentrations of IL-1β and IL-6 did not change significantly after intervention based on repeated-measures ANOVA. |
Halaris et al. [30] | 2015 | N = 20 | 8 and 12 weeks | CRP, TNF-α, IL-1, IL-4, IL-6, IL-8, IL-10 | escitalopram | NO | Closer inspection of the averages indicates a tendency for some biomarkers to decline at week 8 but to bounce back up again at week 12 (e.g., IL-6, hsCRP, TNF-α). At 8 weeks of ESC monotherapy, when the HAM-D and related scores improved significantly, hsCRP, TNF-α, IL-6, IL-8, IL-10, and MCP1 trended lower. |
Eller, et al. [31] | 2008 | N = 100 74 responders 45 HV | 4 and 12 weeks | IL-8, TNF-α | escitalopram | TNF—YES, The rest NO | The comparison of baseline cytokine levels between responders, non-responders, and healthy subjects demonstrated statistically significant between-groups difference for TNF-α but not for other cytokines. Escitalopram: the concentration of TNF-α did not significantly change during 12 weeks of treatment; however, it increased to normal levels in the group of responders. Week 12, ANCOVA did not show differences in cytokine levels between treatment groups and healthy volunteers. |
Chang et al. [32] | 2020 | N = 149 | 6 | CRP | venlafaxine (n = 76) fluoxetine (n = 73) | NO | The baseline CRP levels were significantly correlated with treatment response at week 2. Patients with higher CRP levels had a poorer treatment response. CRP level had increased significantly after six weeks of treatment in patients receiving either antidepressant. The CRP level remained significantly high after six weeks of treatment in patients with a higher baseline level. |
Yang et al. [33] | 2019 | review | Raison et al. (2013) [7]—baseline values of hsCRP > 5 mg/L predicted a greater decrease in HAMD-17 scores in infliximab-treated patients than placebo-treated subjects. Papakostas et al. (2014) [34]—changes on the HAMD28 scoring list were significantly greater than baseline scores in a subpopulation with hsCRP levels above the study median value when comparing L-methylfolate with placebo treatment. Kruse et al. (2018) [35]—baseline CRP was not associated with changes of MADRS scores, but it was significantly correlated with the end-of-treatment scores for women. Chen et al. (2018) [19]—log-transformed CRP levels were not predictive for ketamine treatment response. | ||||
Tuglu et al. [36] | 2003 | N = 26 | 6 | TNF-α, CRP | citalopram, sertraline, fluoxetine, fluvoxamine, paroxetine | YES | CRP levels after treatment were significantly lower than those on admission. Comparison of pre- and post-treatment measurements revealed that TNF-α, CRP, and leukocyte count decreased to levels comparable with those of the control subjects. |
Study | Medication | Effect * |
---|---|---|
IL-1 | ||
Chen et al. [19] | venlafaxine | − |
paroxetine | − | |
Piletz et al. [40] | venlafaxine | + |
Jazayeri et al. [29] | fluoxetine | N/C |
Hernandez et al. [21] | SSRIs (fluoxetine, paroxetine, sertraline) | + |
Fornaro et al. [23] | duloxetine | +/−, +(non responders) |
Halaris et al. [30] | escitalopram | N/C |
IL-6 | ||
Carboni et al. [27] | venlafaxine | N/C |
paroxetine | + | |
Pérez–Sánchez et al. [41] | fluoxetine | − after 6 weeks, +/− after 8 weeks |
Manoharanet et al. [36] | fluoxetine | N/C |
Yoshimura et al. [43] | Sertraline | − (responders) |
paroxetine | − (responders) | |
Jazayeri et al. [29] | fluoxetine | N/C |
Halaris et al. [30] | escitalopram | 8 week − ; later N/C |
IL-8 | ||
Chen et al. [19] | venlafaxine | − |
paroxetine | − | |
Eller et al. [31] | escitalopram | N/C |
Halaris et al. [30] | escitalopram | N/C |
IL-10 | ||
Carboni et al. [27] | venlafaxine | N/C |
paroxetine | +/−, + (responders) | |
Fornaro et al. [23] | duloxetine | +/−, − (non responders) |
Halaris et al. [30] | escitalopram | N/C |
Chen et.al. [19] | venlafaxine | − |
paroxetine | N/C | |
TNF | ||
Eller et al. [31] | escitalopram | N/C |
Carboni et al. [27] | venlafaxine | N/C |
paroxetine | + u responders | |
Pérez–Sánchez et al. [41] | fluoxetine | +/− |
Fornaro et al. [23] | duloxetine | +/−, − u responders vs. nr |
Halaris et al. [30] | escitalopram | 8 week − ; 12 week N/C |
Chen et.al. [19] | venlafaxine | − |
IFN-y | ||
Fornaro et al. [23] | duloxetine | + |
Chen et al. [19] | paroxetine | + |
venlafaxine | − | |
Brunoni et al. [22] | sertraline | − |
CRP | ||
Chang et al. [32] | venlafaxine | + |
fluoxetine | + | |
Carboni et al. [27] | paroxetine | + |
Tugku et al. [36] | SSRI (citalopram, sertraline, fluoxetine, fluvoxamine, paroxetine) | − |
Więdłocha et al. [25] | SSRI (escitalopram, citalopram, sertraline, fluoxetine, fluvoxamine, paroxetine) | N/C |
SNRI (venlafaxine, duloxetine) | N/C | |
TCA (amitriptiline, clomipramine, nortriptiline) | N/C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosiołek, A.; Pięta, A.; Jakima, S.; Zborowska, N.; Mosiołek, J.; Szulc, A. Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). J. Clin. Med. 2021, 10, 1706. https://doi.org/10.3390/jcm10081706
Mosiołek A, Pięta A, Jakima S, Zborowska N, Mosiołek J, Szulc A. Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). Journal of Clinical Medicine. 2021; 10(8):1706. https://doi.org/10.3390/jcm10081706
Chicago/Turabian StyleMosiołek, Anna, Aleksandra Pięta, Sławomir Jakima, Natalia Zborowska, Jadwiga Mosiołek, and Agata Szulc. 2021. "Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD)" Journal of Clinical Medicine 10, no. 8: 1706. https://doi.org/10.3390/jcm10081706
APA StyleMosiołek, A., Pięta, A., Jakima, S., Zborowska, N., Mosiołek, J., & Szulc, A. (2021). Effects of Antidepressant Treatment on Peripheral Biomarkers in Patients with Major Depressive Disorder (MDD). Journal of Clinical Medicine, 10(8), 1706. https://doi.org/10.3390/jcm10081706