Non-Alcoholic Fatty Liver Disease Is Associated with Kidney Glomerular Hyperfiltration in Adults with Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
3. Subjects
4. Ethics
4.1. Anthropometric Measurements
4.2. General Data
4.3. Adherence to the Mediterranean Diet
4.4. Blood Collection and Analysis
4.5. Estimated GFR
4.6. Imaging
5. Statistical Analyses
6. Results
7. Discussion
8. Strengths and Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunt, E.M.; Kleiner, D.E.; Wilson, L.A.; Belt, P.; Neuschwander-Tetri, B.A. Nonalcoholic Fatty Liver Disease (NAFLD) Activity Score and the Histopathologic Diagnosis in NAFLD: Distinct Clinicopathologic Meanings. Hepatology 2011, 53, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and Nonalcoholic Fatty Liver Disease: Biochemical, Metabolic, and Clinical Implications. Hepatology 2010, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Zaza, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Bonora, E.; Targher, G. Nonalcoholic Fatty Liver Disease Increases Risk of Incident Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Metabolism 2018, 79, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Byrne, C.D. Non-Alcoholic Fatty Liver Disease: An Emerging Driving Force in Chronic Kidney Disease. Nat. Rev. Nephrol. 2017, 297–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Athyros, V.G.; Tziomalos, K.; Katsiki, N.; Doumas, M.; Karagiannis, A.; Mikhailidis, D.P. Cardiovascular Risk across the Histological Spectrum and the Clinical Manifestations of Non-Alcoholic Fatty Liver Disease: An Update. World J. Gastroenterol. 2015, 21, 6820–6834. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wu, F.; Ding, Y.; Hou, J.; Bi, J.; Zhang, Z. Association of Non-Alcoholic Fatty Liver Disease with Major Adverse Cardiovascular Events: A Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Chacko, K.R.; Reinus, J. Extrahepatic Complications of Nonalcoholic Fatty Liver Disease. Clin. Liver Dis. 2016, 387–401. [Google Scholar] [CrossRef]
- KDIGO. Official Journal of the International Society OF Nephrology KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease KDIGO Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. Suppl. 2012, 2, 3. [Google Scholar]
- Neild, G.H. Chronic Renal Failure. In The Scientific Basis of Urology, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 257–264. [Google Scholar] [CrossRef]
- Stefansson, V.T.N.; Schei, J.; Jenssen, T.G.; Melsom, T.; Eriksen, B.O. Central Obesity Associates with Renal Hyperfiltration in the Non-Diabetic General Population: A Cross-Sectional Study. BMC Nephrol. 2016, 17, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasson, A.N. Renal Hyperfiltration Related to Diabetes Mellitus and Obesity in Human Disease. World J. Diabetes 2012, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Chagnac, A.; Weinstein, T.; Korzets, A.; Ramadan, E.; Hirsch, J.; Gafter, U. Glomerular Hemodynamics in Severe Obesity. Am. J. Physiol. Ren. Physiol. 2000, 278, F817–F822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.G.; Bennett, P.H.; Beck, G.J.; Tan, M.; Knowler, W.C.; Mitch, W.E.; Hirschman, G.H.; Myers, B.D. Development and Progression of Renal Disease in Pima Indians with Non-Insulin-Dependent Diabetes Mellitus. N. Engl. J. Med. 1996, 335, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Ruggenenti, P.; Remuzzi, G. Time to Abandon Microalbuminuria? Kidney Int. 2006, 1214–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbiah, A.K.; Chhabra, Y.K.; Mahajan, S. Cardiovascular Disease in Patients with Chronic Kidney Disease: A Neglected Subgroup. Heart Asia 2016, 8, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targher, G.; Chonchol, M.B.; Byrne, C.D. CKD and Nonalcoholic Fatty Liver Disease. Am. J. Kidney Dis. 2014, 638–652. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagströ, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of Non-Alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLoS Med. 2014. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Ryu, S.; Sung, E.; Woo, H.Y.; Oh, E.; Cha, K.; Jung, E.; Kim, W.S. Nonalcoholic Fatty Liver Disease Predicts Chronic Kidney Disease in Nonhypertensive and Nondiabetic Korean Men. Metabolism 2008, 57, 569–576. [Google Scholar] [CrossRef]
- Targher, G.; Chonchol, M.; Bertolini, L.; Rodella, S.; Zenari, L.; Lippi, G.; Franchini, M.; Zoppini, G.; Muggeo, M. Increased Risk of CKD among Type 2 Diabetics with Nonalcoholic Fatty Liver Disease. J. Am. Soc. Nephrol. 2008, 19, 1564–1570. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, M.; Charchar, F.J.; Maric, C.; McClure, J.; Crawford, L.; Grzeszczak, W.; Sattar, N.; Zukowska-Szczechowska, E.; Dominiczak, A.F. Glomerular Hyperfiltration: A New Marker of Metabolic Risk. Kidney Int. 2007, 71, 816–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yodoshi, T.; Arce-Clachar, A.C.; Sun, Q.; Fei, L.; Bramlage, K.; Xanthakos, S.A.; Flores, F.; Mouzaki, M. Glomerular Hyperfiltration Is Associated with Liver Disease Severity in Children with Nonalcoholic Fatty Liver Disease. J. Pediatr. 2020, 222, 127–133. [Google Scholar] [CrossRef]
- I.D.F. Consensus Statement—The IDF Consensus Worldwide Definition of the Metabolic Syndrome; IDF: Brussels, Belgium, 2006; p. 24. [Google Scholar]
- Wedemeyer, H.; Thursz, M. The Role of Different EASL-Papers: Clinical Practice Guidelines vs. Position Papers vs. Conference Summaries. J. Hepatol. 2010, 372–384. [Google Scholar] [CrossRef] [Green Version]
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Women. Med. Sci. Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish Men. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clnical Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and β-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and New CKD-EPI Formulas in Relation to GFR, Age, and Body Size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef] [Green Version]
- Redal-Baigorri, B.; Rasmussen, K.; Heaf, J.G. The Use of Absolute Values Improves Performance of Estimation Formulae: A Retrospective Cross Sectional Study. BMC Nephrol. 2013, 14. [Google Scholar] [CrossRef] [Green Version]
- Delanaye, P.; Radermecker, R.P.; Rorive, M.; Depas, G.; Krzesinski, J.M. Indexing Glomerular Filtration Rate for Body Surface Area in Obese Patients Is Misleading: Concept and Example. Nephrol. Dial. Transplant. 2005, 2024–2028. [Google Scholar] [CrossRef] [Green Version]
- López-Martínez, M.; Luis-Lima, S.; Morales, E.; Navarro-Díaz, M.; Negrín-Mena, N.; Folgueras, T.; Escamilla, B.; Estupiñán, S.; Delgado-Mallén, P.; Marrero-Miranda, D.; et al. The Estimation of GFR and the Adjustment for BSA in Overweight and Obesity: A Dreadful Combination of Two Errors. Int. J. Obes. 2020, 44, 1129–1140. [Google Scholar] [CrossRef]
- Du Bois, D.; Du Bois, E.F. A Formula to Estimate the Approximate Surface Area If Height and Weight Be Known. 1916. Nutrition 1989, 5, 303–311. [Google Scholar] [PubMed]
- Sunder-Plassmann, G.; Hörl, W.H.; Levey, A.S.; Coresh, J. A Critical Appraisal for Definition of Hyperfiltration (Multiple Letters). Am. J. Kidney Dis. 2004, 396–397. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Altbach, M.; Galons, J.P.; Kalb, B.; Martin, D.R. Measurement of Liver Fat Fraction and Iron with MRI and MR Spectroscopy Techniques. Diagn. Int. Radiol. 2014, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Tan, J.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic Fatty Liver Disease: MR Imaging of Liver Proton Density Fat Fraction to Assess Hepatic Steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Tonneijck, L.; Muskiet, M.H.A.; Smits, M.M.; Van Bommel, E.J.; Heerspink, H.J.L.; Van Raalte, D.H.; Joles, J.A. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J. Am. Soc. Nephrol. 2017, 1023–1039. [Google Scholar] [CrossRef] [Green Version]
- De Jong, P.E.; Curhan, G.C. Screening, Monitoring, and Treatment of Albuminuria: Public Health Perspectives. J. Am. Soc. Nephrol. 2006, 2120–2126. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Porrini, E.L.; Gaspari, F.; Motterlini, N.; Cannata, A.; Carrara, F.; Cella, C.; Ferrari, S.; Stucchi, N.; Parvanova, A.; et al. Glomerular Hyperfiltration and Renal Disease Progression in Type 2 Diabetes. Diabetes Care 2012, 35, 2061–2068. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lerman, L.O. The Metabolic Syndrome and Chronic Kidney Disease. Transl. Res. 2017, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Ruggenenti, P.; Abbate, M.; Ruggiero, B.; Rota, S.; Trillini, M.; Aparicio, C.; Parvanova, A.; Iliev, I.P.; Pisanu, G.; Perna, A.; et al. Renal and Systemic Effects of Calorie Restriction in Patients with Type 2 Diabetes with Abdominal Obesity: A Randomized Controlled Trial. Diabetes 2017, 66, 75–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praga, M.; Morales, E. Weight Loss and Proteinuria. Contrib. Nephrol. 2006, 221–229. [Google Scholar] [CrossRef]
- Mansour-Ghanaei, R.; Mansour-Ghanaei, F.; Naghipour, M.; Joukar, F. Biochemical Markers and Lipid Profile in Nonalcoholic Fatty Liver Disease Patients in the PERSIAN Guilan Cohort Study (PGCS), Iran. J. Fam. Med. Prim. Care 2019, 8, 923. [Google Scholar] [CrossRef] [PubMed]
Variables | n (%) |
---|---|
n | 154 |
Female | 61 (39.6) |
Of which have the menopause | 33 (54.1) |
Age (y) (mean ± SD) | 52.27 ± 7.46 |
Marital Status | |
Single | 14 (9.1) |
Married/domestic partnership | 116 (75.3) |
Divorced/separated/widowed | 24 (15.6) |
Employment | |
Working | 115 (74.7) |
Unemployed/retired/housewife | 39 (25.3) |
Education Level | |
University/post-university | 44 (28.6) |
Secondary education | 61 (39.6) |
Primary education | 41 (26.6) |
None | 8 (5.2) |
Currently smoking | 25 (16.1) |
Alcohol ≥ 7 drinks/w | 26 (16.9) |
Regular Physical Activity | |
None | 66 (43.1) |
Light | 53 (34.6) |
Moderate | 25 (16.3) |
Heavy | 9 (5.9) |
T2DM | 33 (21.4) |
High BP | 62 (40.3) |
Concomitant drugs | |
Hypoglycemic agents | |
Any | 30 (19.6) |
Oral hypoglycemic agents alone | 26 (16.9) |
Insulin and oral hypoglycemic agents | 4 (2.6) |
Antihypertensive Agents | |
Any | 53 (34.4) |
Diuretic | 17 (11.1) |
β-Blocker | 8 (5.2) |
Calcium-channel blockers | 9 (5.9) |
ACE inhibitors/ARBs | 47 (30.7) |
Lipid-Lowering Agents | |
Any | 43 (28.1) |
Statin alone | 27 (17.6) |
Fibrate alone | 8 (5.2) |
Statin and fibrate | 4 (2.6) |
Antiplatelet agent | 7 (4.6) |
Concomitant Drugs–Other | |
Any | 82 (53.6) |
Thyroid medications | 10 (6.5) |
Depression/anxiety/insomnia | 26 (17.0) |
Gout medications | 10 (6.5) |
NO NAFLD | NAFLD | p | |
---|---|---|---|
n | 40 | 109 | |
Age | 53.2 ± 7.4 | 51.7 ± 7.4 | 0.280 |
Anthropometric Variables | |||
Waist circumference (cm) | 91.6 ± 11.4 | 96.5 ± 13.4 | 0.040 |
Hip circumference (cm) | 107.2 ± 8.4 | 113.6 ± 8.7 | <0.001 |
Weight (kg) | 32.1 ± 3.2 | 34.2 ± 3.7 | 0.002 |
BMI (kg/m2) | 34.9 ± 7.1 | 35.7 ± 6.9 | 0.530 |
Fat mass (%) | 91.6 ± 11.4 | 96.5 ± 13.4 | 0.040 |
Clinical Parameters | |||
Systolic BP (mmHg) | 131.1 ± 14.8 | 136.5 ± 15.0 | 0.050 |
Diastolic BP (mmHg) | 85.4 ± 8.1 | 85.2 ± 9.7 | 0.880 |
HR (bpm) | 67.6 ± 10.4 | 71.6 ± 11.4 | 0.060 |
Metabolic Variables | |||
Fasting glucose (mg/dL) | 104.3 ± 20.2 | 119.1 ± 47.0 | 0.007 |
Fasting insulin (μUI/mL) | 14.5 ± 6.0 | 21.7 ± 10.7 | <0.001 |
HbA1c (%) | 5.7 ± 0.6 | 6.2 ± 1.4 | 0.001 |
HOMA-IR | 3.7 ± 1.7 | 6.5 ± 4.0 | <0.001 |
TyG | 4.8 ± 0.2 | 5.0 ± 0.3 | 0.001 |
Blood Lipids | |||
Total cholesterol (mg/dL) | 191.4 ± 38.6 | 202.1 ± 51.0 | 0.230 |
HDL-cholesterol (mg/dL) | 47.6 ± 13.2 | 43.1 ± 10.1 | 0.030 |
LDL-cholesterol (mg/dL) | 114.0 ± 32.2 | 116.8 ± 35.6 | 0.670 |
Triglycerides (mg/dL) # | 149.2 ± 70.2 | 221.4 ± 245.8 | 0.003 |
Hepatic Variables | |||
NAFLD (mean fat %) | 4.3 ± 1.5 | 17.0 ± 11.0 | <0.001 |
ALT (U/L) | 22.6 ± 9.7 | 41.5 ± 33.6 | 0.001 |
AST (U/L) | 20.1 ± 4.6 | 28.0 ± 14.5 | 0.001 |
GGT (U/L) | 35.6 ± 26.2 | 54.1 ± 61.2 | 0.070 |
Renal Variables | |||
UACR (mg/g) | 11.7 ± 13.3 | 17.7 ± 37.3 | 0.350 |
UACR < 30 mg/g (n (%)) | 32 (22.7) | 90 (63.8) | 0.990 |
UACR 30–300 mg/g (n (%)) | 5 (3.5) | 14 (9.9) | |
eGFR (mL/min/1.73 m2) | 104.3 ± 20.1 | 116.9 ± 21.6 | 0.002 |
eGFR (mL/min) | 121.5 ± 24.4 | 139.0 ± 32.7 | 0.002 |
eGFR < 90 mL/min (n (%)) | 17 (42.5) * | 28 (25.7) | 0.030 |
eGFR 90–120 mL/min (n (%)) | 15 (37.5) | 39 (35.8) | |
eGFR ≥ 120 mL/min (n (%)) | 8 (20.0) | 42 (73.2) * | |
Other Variables | |||
Uric acid (mg/dL) | 5.6 ± 1.4 | 6.12 ± 1.5 | 0.070 |
Serum ferritin (ng/mL) | 111.0 ± 100.3 | 167.16 ± 155.1 | 0.020 |
METs (min/week) | 3406 ± 2864 | 3220 ± 3358 | 0.760 |
MedDiet adhesion | 7 ± 3 | 7 ± 3 | 0.710 |
Variables | OR Crude (95% CI) | p | OR Adjusted (95% CI) | p |
---|---|---|---|---|
Age | 0.946 (0.898–0.996) | 0.030 | 0.979 (0.923–1.038) | 0.470 |
Gender | 0.002 | 0.102 | ||
Male | 4.583 (1.779–11.810) | 2.375 (0.843–6.690) | ||
Female | 0.218 (0.085–0.562) | 0.421 (0.149–1.187) | ||
NAFLD | 0.010 | 0.042 | ||
No | 0.195 (0.056–0.697) | 0.256 (0.069–0.953) | ||
Yes | 5.126 (1.473–17.831) | 3.901 (1.043–14.502) | ||
Weight (kg) | 1.088 (1.050–1.128) | <0.001 | 1.068 (1.027–1.111) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbate, M.; Mascaró, C.M.; Montemayor, S.; Casares, M.; Gómez, C.; Ugarriza, L.; Tejada, S.; Abete, I.; Zulet, M.A.; Sureda, A.; et al. Non-Alcoholic Fatty Liver Disease Is Associated with Kidney Glomerular Hyperfiltration in Adults with Metabolic Syndrome. J. Clin. Med. 2021, 10, 1717. https://doi.org/10.3390/jcm10081717
Abbate M, Mascaró CM, Montemayor S, Casares M, Gómez C, Ugarriza L, Tejada S, Abete I, Zulet MA, Sureda A, et al. Non-Alcoholic Fatty Liver Disease Is Associated with Kidney Glomerular Hyperfiltration in Adults with Metabolic Syndrome. Journal of Clinical Medicine. 2021; 10(8):1717. https://doi.org/10.3390/jcm10081717
Chicago/Turabian StyleAbbate, Manuela, Catalina M. Mascaró, Sofía Montemayor, Miguel Casares, Cristina Gómez, Lucia Ugarriza, Silvia Tejada, Itziar Abete, Maria Angeles Zulet, Antoni Sureda, and et al. 2021. "Non-Alcoholic Fatty Liver Disease Is Associated with Kidney Glomerular Hyperfiltration in Adults with Metabolic Syndrome" Journal of Clinical Medicine 10, no. 8: 1717. https://doi.org/10.3390/jcm10081717
APA StyleAbbate, M., Mascaró, C. M., Montemayor, S., Casares, M., Gómez, C., Ugarriza, L., Tejada, S., Abete, I., Zulet, M. A., Sureda, A., Martínez, J. A., & Tur, J. A. (2021). Non-Alcoholic Fatty Liver Disease Is Associated with Kidney Glomerular Hyperfiltration in Adults with Metabolic Syndrome. Journal of Clinical Medicine, 10(8), 1717. https://doi.org/10.3390/jcm10081717