The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities
Abstract
:1. Introduction
2. Primary Biliary Cholangitis
2.1. Therapies in Clinical Use
2.1.1. UDCA
2.1.2. Steroidal FXR Agonist: Obethicolic Acid (OCA)
2.1.3. PPARs Agonist: Bezafibrate
2.1.4. Corticosteroid: Budesonide
2.2. Therapies Evaluated in Clinical Trials
2.2.1. Non-Bile Acids FXR Agonists
2.2.2. PPAR Agonists
2.2.3. Fibroblast Growth Factor 19 (FGF19) Analogues
2.2.4. Antifibrotic Agent
2.2.5. Immunomodulatory Strategies
2.2.6. Other Treatment
2.3. Therapies Evaluated in Pre-Clinical Studies
3. Primary Sclerosing Cholangitis
3.1. Therapies in Clinical Use
UDCA
3.2. Therapies Evaluated in Clinical Trials
3.2.1. 24-Norursodeoxycholic Acid (norUDCA)
3.2.2. FXR Agonists
3.2.3. PPAR Agonists
3.2.4. Antifibrotic Therapy
3.2.5. Immunomodulators
3.2.6. Modulation of the Gut Microbiome
3.2.7. Other Treatments
4. Current Therapeutic Management with Patients Newly Diagnosed with PBC and PSC
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L: EASL Clinical Practice Guidelines: The diagnosis and management of patients with primary biliary cholangitis. J. Hepatol. 2017, 67, 145–172. [Google Scholar] [CrossRef]
- Beuers, U.; Trauner, M.; Jansen, P.; Poupon, R. New paradigms in the treatment of hepatic cholestasis: From UDCA to FXR, PXR and beyond. J. Hepatol. 2015, 62 (Suppl. 1), S25–S37. [Google Scholar] [CrossRef] [Green Version]
- Wagner, M.; Fickert, P. Drug Therapies for Chronic Cholestatic Liver Diseases. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U. Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Paumgartner, G.; Beuers, U. Ursodeoxycholic acid in cholestatic liver disease: Mechanisms of action and therapeutic use revisited. Hepatology 2002, 36, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U.; Maroni, L.; Elferink, R.O. The biliary HCO(3)(-) umbrella: Experimental evidence revisited. Curr. Opin. Gastroenterol. 2012, 28, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Floreani, A.; Mangini, C. Primary biliary cholangitis: Old and novel therapy. Eur. J. Intern. Med. 2018, 47, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ter Borg, P.C.; Schalm, S.W.; Hansen, B.E.; van Buuren, H.R.; Dutch, P.B.C.S.G. Prognosis of ursodeoxycholic Acid-treated patients with primary biliary cirrhosis. Results of a 10-yr cohort study involving 297 patients. Am. J. Gastroenterol. 2006, 101, 2044–2050. [Google Scholar] [CrossRef]
- Corpechot, C.; Carrat, F.; Bonnand, A.M.; Poupon, R.E.; Poupon, R. The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology 2000, 32, 1196–1199. [Google Scholar] [CrossRef]
- Harms, M.H.; van Buuren, H.R.; Corpechot, C.; Thorburn, D.; Janssen, H.L.A.; Lindor, K.D.; Hirschfield, G.M.; Pares, A.; Floreani, A.; Mayo, M.J.; et al. Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J. Hepatol. 2019, 71, 357–365. [Google Scholar] [CrossRef]
- Carbone, M.; Nardi, A.; Flack, S.; Carpino, G.; Varvaropoulou, N.; Gavrila, C.; Spicer, A.; Badrock, J.; Bernuzzi, F.; Cardinale, V.; et al. Pretreatment prediction of response to ursodeoxycholic acid in primary biliary cholangitis: Development and validation of the UDCA Response Score. Lancet Gastroenterol. Hepatol. 2018, 3, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Carbone, M.; Mells, G.F.; Pells, G.; Dawwas, M.F.; Newton, J.L.; Heneghan, M.A.; Neuberger, J.M.; Day, D.B.; Ducker, S.J.; Consortium, U.P.; et al. Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and response to ursodeoxycholic acid. Gastroenterology 2013, 144, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, P.; Floreani, A.; Carbone, M.; Marzioni, M.; Craxi, A.; Muratori, L.; Vespasiani Gentilucci, U.; Gardini, I.; Gasbarrini, A.; Kruger, P.; et al. Primary Biliary Cholangitis: Advances in management and treatment of the disease. Dig. Liver Dis. 2017, 49, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschfield, G.M.; Mason, A.; Luketic, V.; Lindor, K.; Gordon, S.C.; Mayo, M.; Kowdley, K.V.; Vincent, C.; Bodhenheimer, H.C., Jr.; Pares, A.; et al. Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 2015, 148, 751–761.e758. [Google Scholar] [CrossRef] [Green Version]
- Nevens, F.; Andreone, P.; Mazzella, G.; Strasser, S.I.; Bowlus, C.; Invernizzi, P.; Drenth, J.P.; Pockros, P.J.; Regula, J.; Beuers, U.; et al. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N. Engl. J. Med. 2016, 375, 631–643. [Google Scholar] [CrossRef]
- Trauner, M.; Nevens, F.; Shiffman, M.L.; Drenth, J.P.H.; Bowlus, C.L.; Vargas, V.; Andreone, P.; Hirschfield, G.M.; Pencek, R.; Malecha, E.S.; et al. Long-term efficacy and safety of obeticholic acid for patients with primary biliary cholangitis: 3-year results of an international open-label extension study. Lancet Gastroenterol. Hepatol. 2019, 4, 445–453. [Google Scholar] [CrossRef]
- Bowlus, C.L.; Pockros, P.J.; Kremer, A.E.; Pares, A.; Forman, L.M.; Drenth, J.P.H.; Ryder, S.D.; Terracciano, L.; Jin, Y.; Liberman, A.; et al. Long-Term Obeticholic Acid Therapy Improves Histological Endpoints in Patients with Primary Biliary Cholangitis. Clin. Gastroenterol. Hepatol. 2020, 18, 1170–1178.e1176. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Luketic, V.; Chapman, R.; Hirschfield, G.M.; Poupon, R.; Schramm, C.; Vincent, C.; Rust, C.; Parés, A.; Mason, A.; et al. A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 2018, 67, 1890–1902. [Google Scholar] [CrossRef] [Green Version]
- Hirschfield, G.M.; Dyson, J.K.; Alexander, G.J.M.; Chapman, M.H.; Collier, J.; Hübscher, S.; Patanwala, I.; Pereira, S.P.; Thain, C.; Thorburn, D.; et al. The British Society of Gastroenterology/UK-PBC primary biliary cholangitis treatment and management guidelines. Gut 2018, 67, 1568–1594. [Google Scholar] [CrossRef] [Green Version]
- Lindor, K.D.; Bowlus, C.L.; Boyer, J.; Levy, C.; Mayo, M. Primary Biliary Cholangitis: 2018 Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology 2019, 69, 394–419. [Google Scholar]
- Kok, T.; Bloks, V.W.; Wolters, H.; Havinga, R.; Jansen, P.L.; Staels, B.; Kuipers, F. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochem. J. 2003, 369 Pt 3, 539–547. [Google Scholar] [CrossRef]
- Mukundan, L.; Odegaard, J.I.; Morel, C.R.; Heredia, J.E.; Mwangi, J.W.; Ricardo-Gonzalez, R.R.; Goh, Y.P.; Eagle, A.R.; Dunn, S.E.; Awakuni, J.U.; et al. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 2009, 15, 1266–1272. [Google Scholar] [CrossRef]
- Nozaki, Y.; Harada, K.; Sanzen, T.; Nakanuma, Y. PPARgamma ligand attenuates portal inflammation in the MRL-lpr mouse: A new strategy to restrain cholangiopathy in primary biliary cirrhosis. Med. Mol. Morphol. 2013, 46, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corpechot, C.; Chazouillères, O.; Rousseau, A.; Le Gruyer, A.; Habersetzer, F.; Mathurin, P.; Goria, O.; Potier, P.; Minello, A.; Silvain, C.; et al. A Placebo-Controlled Trial of Bezafibrate in Primary Biliary Cholangitis. N. Engl. J. Med. 2018, 378, 2171–2181. [Google Scholar] [CrossRef] [PubMed]
- Reig, A.; Sese, P.; Pares, A. Effects of Bezafibrate on Outcome and Pruritus in Primary Biliary Cholangitis with Suboptimal Ursodeoxycholic Acid Response. Am. J. Gastroenterol. 2018, 113, 49–55. [Google Scholar] [CrossRef]
- Cheung, A.C.; Lapointe-Shaw, L.; Kowgier, M.; Meza-Cardona, J.; Hirschfield, G.M.; Janssen, H.L.; Feld, J.J. Combined ursodeoxycholic acid (UDCA) and fenofibrate in primary biliary cholangitis patients with incomplete UDCA response may improve outcomes. Aliment. Pharm. Ther. 2016, 43, 283–293. [Google Scholar] [CrossRef]
- Duan, W.; Ou, X.; Wang, X.; Wang, Y.; Zhao, X.; Wang, Q.; Wu, X.; Zhang, W.; Ma, H.; You, H.; et al. Efficacy and safety of fenofibrate add-on therapy for patients with primary biliary cholangitis and a suboptimal response to UDCA. Rev. Esp. Enferm. Dig. 2018, 110, 557–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rautiainen, H.; Karkkainen, P.; Karvonen, A.L.; Nurmi, H.; Pikkarainen, P.; Nuutinen, H.; Farkkila, M. Budesonide combined with UDCA to improve liver histology in primary biliary cirrhosis: A three-year randomized trial. Hepatology 2005, 41, 747–752. [Google Scholar] [CrossRef]
- Leuschner, M.; Maier, K.P.; Schlichting, J.; Strahl, S.; Herrmann, G.; Dahm, H.H.; Ackermann, H.; Happ, J.; Leuschner, U. Oral budesonide and ursodeoxycholic acid for treatment of primary biliary cirrhosis: Results of a prospective double-blind trial. Gastroenterology 1999, 117, 918–925. [Google Scholar] [CrossRef]
- Hirschfield, G.M.; Beuers, U.; Kupcinskas, L.; Ott, P.; Bergquist, A.; Farkkila, M.; Manns, M.P.; Pares, A.; Spengler, U.; Stiess, M.; et al. A placebo-controlled randomised trial of budesonide for PBC following an insufficient response to UDCA. J. Hepatol. 2021, 74, 321–329. [Google Scholar] [CrossRef]
- Hempfling, W.; Grunhage, F.; Dilger, K.; Reichel, C.; Beuers, U.; Sauerbruch, T. Pharmacokinetics and pharmacodynamic action of budesonide in early- and late-stage primary biliary cirrhosis. Hepatology 2003, 38, 196–202. [Google Scholar] [CrossRef]
- Kowdley, K.V.; Minuk, G.Y.; Pagadala, M.R.; Gulamhusein, A.; Swain, M.G.; Neff, G.W.; Zogg, D.; Bowlus, C.L.; Agarwal, K.; Yoshida, E.M. The nonsteroidal farnesoid x receptor (FXR) agonist cilofexor improves liver biochemistry in patients with primary biliary cholangitis (PBC): A phase 2, randomized, placebo-controlled trial. In Hepatology; Wiley: Hoboken, NJ, USA, 2019; pp. 31A–32A. [Google Scholar]
- Schramm, C.; Hirschfield, G.; Mason, A.; Wedemeyer, H.; Klickstein, L.; Neelakantham, S.; Koo, P.; Sanni, J.; Badman, M.; Jones, D. Early assessment of safety and efficacy of tropifexor, a potent non bile-acid FXR agonist, in patients with primary biliary cholangitis: An interim analysis of an ongoing phase 2 study. J. Hepatol. 2018, 68, S103. [Google Scholar] [CrossRef]
- Jones, D.; Boudes, P.F.; Swain, M.G.; Bowlus, C.L.; Galambos, M.R.; Bacon, B.R.; Doerffel, Y.; Gitlin, N.; Gordon, S.C.; Odin, J.A.; et al. Seladelpar (MBX-8025), a selective PPAR-delta agonist, in patients with primary biliary cholangitis with an inadequate response to ursodeoxycholic acid: A double-blind, randomised, placebo-controlled, phase 2, proof-of-concept study. Lancet Gastroenterol. Hepatol. 2017, 2, 716–726. [Google Scholar] [CrossRef] [Green Version]
- Treatment Efficacy and Safety of Low Dose Seladelpar, a Selective PPAR-δ Agonist, in Patients with Primary Biliary Cholan-Gitis: Twelve-Week Interim Analysis of an International, Randomized, Dose Ranging, Phase 2 Study. Available online: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.29634 (accessed on 21 January 2021).
- Jörn, P.D.S.; Pares, A.; Kowdley, K.V.; Heneghan, M.; Caldwell, S.; Pratt, D.; Bonder, A.; Hirschfield, G.M.; Bchir, M.; Cynthia, L. LBO-02-Elafibranor, a peroxisome proliferator-activted receptor alpha and delta agonist demonstrates favourable efficacy and safety in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid treatment. J. Hepatol. 2019, 70, e128. [Google Scholar] [CrossRef]
- Mayo, M.J.; Wigg, A.J.; Leggett, B.A.; Arnold, H.; Thompson, A.J.; Weltman, M.; Carey, E.J.; Muir, A.J.; Ling, L.; Rossi, S.J.; et al. NGM282 for Treatment of Patients with Primary Biliary Cholangitis: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Hepatol. Commun. 2018, 2, 1037–1050. [Google Scholar] [CrossRef] [PubMed]
- Dalekos, G.; Invernizzi, P.; Nevens, F.; Hans, V.V.; Zigmond, E.; Andrade, R.J.; Ben Ari, Z.; Heneghan, M.; Huang, J.; Harrison, S. Efficacy of GKT831 in patients with primary biliary cholangitis and inadequate response to ursodeoxycholic acid: Interim efficacy results of a phase 2 clinical trial. J. Hepatol. 2019, 70, E1–E2. [Google Scholar] [CrossRef]
- Tsuda, M.; Moritoki, Y.; Lian, Z.X.; Zhang, W.; Yoshida, K.; Wakabayashi, K.; Yang, G.X.; Nakatani, T.; Vierling, J.; Lindor, K.; et al. Biochemical and immunologic effects of rituximab in patients with primary biliary cirrhosis and an incomplete response to ursodeoxycholic acid. Hepatology 2012, 55, 512–521. [Google Scholar] [CrossRef]
- Myers, R.P.; Swain, M.G.; Lee, S.S.; Shaheen, A.A.; Burak, K.W. B-cell depletion with rituximab in patients with primary biliary cirrhosis refractory to ursodeoxycholic acid. Am. J. Gastroenterol. 2013, 108, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Jopson, L.; Howel, D.; Bryant, A.; Blamire, A.; Newton, J.L.; Jones, D.E. Rituximab Is Ineffective for Treatment of Fatigue in Primary Biliary Cholangitis: A Phase 2 Randomized Controlled Trial. Hepatology 2019, 70, 1646–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschfield, G.M.; Gershwin, M.E.; Strauss, R.; Mayo, M.J.; Levy, C.; Zou, B.; Johanns, J.; Nnane, I.P.; Dasgupta, B.; Li, K.; et al. Ustekinumab for patients with primary biliary cholangitis who have an inadequate response to ursodeoxycholic acid: A proof-of-concept study. Hepatology 2016, 64, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Bowlus, C.L.; Yang, G.X.; Liu, C.H.; Johnson, C.R.; Dhaliwal, S.S.; Frank, D.; Levy, C.; Peters, M.G.; Vierling, J.M.; Gershwin, M.E. Therapeutic trials of biologics in primary biliary cholangitis: An open label study of abatacept and review of the literature. J. Autoimmun. 2019, 101, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Wunsch, E.; Raszeja-Wyszomirska, J.; Barbier, O.; Milkiewicz, M.; Krawczyk, M.; Milkiewicz, P. Effect of S-adenosyl-L-methionine on liver biochemistry and quality of life in patients with primary biliary cholangitis treated with ursodeoxycholic acid. A prospective, open label pilot study. J. Gastrointestin. Liver Dis. 2018, 27, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Gerussi, A.; D’Amato, D.; Cristoferi, L.; O’Donnell, S.E.; Carbone, M.; Invernizzi, P. Multiple therapeutic targets in rare cholestatic liver diseases: Time to redefine treatment strategies. Ann. Hepatol. 2020, 19, 5–16. [Google Scholar] [CrossRef]
- An, P.; Wei, G.; Huang, P.; Li, W.; Qi, X.; Lin, Y.; Vaid, K.A.; Wang, J.; Zhang, S.; Li, Y.; et al. A novel non-bile acid FXR agonist EDP-305 potently suppresses liver injury and fibrosis without worsening of ductular reaction. Liver Int. 2020, 40, 1655–1669. [Google Scholar] [CrossRef]
- Ratziu, V.; Harrison, S.A.; Francque, S.; Bedossa, P.; Lehert, P.; Serfaty, L.; Romero-Gomez, M.; Boursier, J.; Abdelmalek, M.; Caldwell, S.; et al. Elafibranor, an Agonist of the Peroxisome Proliferator-Activated Receptor-alpha and -delta, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology 2016, 150, 1147–1159.e1145. [Google Scholar] [CrossRef] [Green Version]
- Galoosian, A.; Hanlon, C.; Zhang, J.; Holt, E.W.; Yimam, K.K. Clinical Updates in Primary Biliary Cholangitis: Trends, Epidemiology, Diagnostics, and New Therapeutic Approaches. J. Clin. Transl. Hepatol. 2020, 8, 49–60. [Google Scholar] [CrossRef]
- Kliewer, S.A.; Mangelsdorf, D.J. Bile Acids as Hormones: The FXR-FGF15/19 Pathway. Dig. Dis. 2015, 33, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, J.D.; Kong, B.; Wu, J.; Rizzolo, D.; Armstrong, L.E.; Chow, M.D.; Goedken, M.; Lee, Y.H.; Guo, G.L. Direct and Indirect Effects of Fibroblast Growth Factor (FGF) 15 and FGF19 on Liver Fibrosis Development. Hepatology 2020, 71, 670–685. [Google Scholar] [CrossRef]
- Zhou, M.; Learned, R.M.; Rossi, S.J.; DePaoli, A.M.; Tian, H.; Ling, L. Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology 2016, 63, 914–929. [Google Scholar] [CrossRef]
- Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 2004, 4, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Paik, Y.H.; Watanabe, S.; Laleu, B.; Gaggini, F.; Fioraso-Cartier, L.; Molango, S.; Heitz, F.; Merlot, C.; Szyndralewiez, C.; et al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology 2012, 56, 2316–2327. [Google Scholar] [CrossRef] [Green Version]
- Wolfhagen, F.H.; van Buuren, H.R.; Schalm, S.W. Combined treatment with ursodeoxycholic acid and prednisone in primary biliary cirrhosis. Neth. J. Med. 1994, 44, 84–90. [Google Scholar]
- Wolfhagen, F.H.; van Hoogstraten, H.J.; van Buuren, H.R.; van Berge-Henegouwen, G.P.; ten Kate, F.J.; Hop, W.C.; van der Hoek, E.W.; Kerbert, M.J.; van Lijf, H.H.; den Ouden, J.W.; et al. Triple therapy with ursodeoxycholic acid, prednisone and azathioprine in primary biliary cirrhosis: A 1-year randomized, placebo-controlled study. J. Hepatol. 1998, 29, 736–742. [Google Scholar] [CrossRef]
- Wiesner, R.H.; Ludwig, J.; Lindor, K.D.; Jorgensen, R.A.; Baldus, W.P.; Homburger, H.A.; Dickson, E.R. A controlled trial of cyclosporine in the treatment of primary biliary cirrhosis. N. Engl. J. Med. 1990, 322, 1419–1424. [Google Scholar] [CrossRef] [PubMed]
- Combes, B.; Emerson, S.S.; Flye, N.L.; Munoz, S.J.; Luketic, V.A.; Mayo, M.J.; McCashland, T.M.; Zetterman, R.K.; Peters, M.G.; Di Bisceglie, A.M.; et al. Methotrexate (MTX) plus ursodeoxycholic acid (UDCA) in the treatment of primary biliary cirrhosis. Hepatology 2005, 42, 1184–1193. [Google Scholar] [CrossRef] [PubMed]
- Treiber, G.; Malfertheiner, P. Mycophenolate mofetil for the treatment of primary biliary cirrhosis in patients with an incomplete response to ursodeoxycholic acid. J. Clin. Gastroenterol. 2005, 39, 837–838; author reply 838. [Google Scholar] [CrossRef]
- Yang, C.Y.; Ma, X.; Tsuneyama, K.; Huang, S.; Takahashi, T.; Chalasani, N.P.; Bowlus, C.L.; Yang, G.X.; Leung, P.S.; Ansari, A.A.; et al. IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis: Implications for therapy. Hepatology 2014, 59, 1944–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Yang, G.X.; Iwakoshi, N.; Knechtle, S.J.; Kawata, K.; Tsuneyama, K.; Leung, P.; Coppel, R.L.; Ansari, A.A.; Joh, T.; et al. Anti-CD40 ligand monoclonal antibody delays the progression of murine autoimmune cholangitis. Clin. Exp. Immunol. 2013, 174, 364–371. [Google Scholar] [CrossRef]
- Fickert, P.; Hirschfield, G.M.; Denk, G.; Marschall, H.U.; Altorjay, I.; Farkkila, M.; Schramm, C.; Spengler, U.; Chapman, R.; Bergquist, A.; et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J. Hepatol. 2017, 67, 549–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slijepcevic, D.; Roscam Abbing, R.L.P.; Fuchs, C.D.; Haazen, L.C.M.; Beuers, U.; Trauner, M.; Oude Elferink, R.P.J.; van de Graaf, S.F.J. Na(+) -taurocholate cotransporting polypeptide inhibition has hepatoprotective effects in cholestasis in mice. Hepatology 2018, 68, 1057–1069. [Google Scholar] [CrossRef] [Green Version]
- Tabibian, J.H.; Ali, A.H.; Lindor, K.D. Primary Sclerosing Cholangitis, Part 1: Epidemiology, Etiopathogenesis, Clinical Features, and Treatment. Gastroenterol. Hepatol. 2018, 14, 293–304. [Google Scholar]
- European Society of Gastrointestinal Endoscopy; European Association for the Study of the Liver. Role of endoscopy in primary sclerosing cholangitis: European Society of Gastrointestinal Endoscopy (ESGE) and European Association for the Study of the Liver (EASL) Clinical Guideline. J. Hepatol. 2017, 66, 1265–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chazouilleres, O.; Poupon, R.; Capron, J.P.; Metman, E.H.; Dhumeaux, D.; Amouretti, M.; Couzigou, P.; Labayle, D.; Trinchet, J.C. Ursodeoxycholic acid for primary sclerosing cholangitis. J. Hepatol. 1990, 11, 120–123. [Google Scholar] [CrossRef]
- O’Brien, C.B.; Senior, J.R.; Arora-Mirchandani, R.; Batta, A.K.; Salen, G. Ursodeoxycholic acid for the treatment of primary sclerosing cholangitis: A 30-month pilot study. Hepatology 1991, 14, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U.; Spengler, U.; Kruis, W.; Aydemir, U.; Wiebecke, B.; Heldwein, W.; Weinzierl, M.; Pape, G.R.; Sauerbruch, T.; Paumgartner, G. Ursodeoxycholic acid for treatment of primary sclerosing cholangitis: A placebo-controlled trial. Hepatology 1992, 16, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.A.; Bansi, D.S.; Hunt, N.; Von Bergmann, K.; Fleming, K.A.; Chapman, R.W. A preliminary trial of high-dose ursodeoxycholic acid in primary sclerosing cholangitis. Gastroenterology 2001, 121, 900–907. [Google Scholar] [CrossRef]
- Olsson, R.; Boberg, K.M.; de Muckadell, O.S.; Lindgren, S.; Hultcrantz, R.; Folvik, G.; Bell, H.; Gangsoy-Kristiansen, M.; Matre, J.; Rydning, A.; et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: A 5-year multicenter, randomized, controlled study. Gastroenterology 2005, 129, 1464–1472. [Google Scholar] [CrossRef] [Green Version]
- Lindor, K.D.; Kowdley, K.V.; Luketic, V.A.; Harrison, M.E.; McCashland, T.; Befeler, A.S.; Harnois, D.; Jorgensen, R.; Petz, J.; Keach, J.; et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009, 50, 808–814. [Google Scholar] [CrossRef]
- Shi, J.; Li, Z.; Zeng, X.; Lin, Y.; Xie, W.F. Ursodeoxycholic acid in primary sclerosing cholangitis: Meta-analysis of randomized controlled trials. Hepatol. Res. 2009, 39, 865–873. [Google Scholar] [CrossRef]
- Poropat, G.; Giljaca, V.; Stimac, D.; Gluud, C. Bile acids for primary sclerosing cholangitis. Cochrane Database Syst. Rev. 2011, CD003626. [Google Scholar] [CrossRef]
- Triantos, C.K.; Koukias, N.M.; Nikolopoulou, V.N.; Burroughs, A.K. Meta-analysis: Ursodeoxycholic acid for primary sclerosing cholangitis. Aliment. Pharm. Ther. 2011, 34, 901–910. [Google Scholar] [CrossRef]
- Chapman, M.H.; Thorburn, D.; Hirschfield, G.M.; Webster, G.G.J.; Rushbrook, S.M.; Alexander, G.; Collier, J.; Dyson, J.K.; Jones, D.E.; Patanwala, I.; et al. British Society of Gastroenterology and UK-PSC guidelines for the diagnosis and management of primary sclerosing cholangitis. Gut 2019, 68, 1356–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kowdley, K.V.; Vuppalanchi, R.; Levy, C.; Floreani, A.; Andreone, P.; LaRusso, N.F.; Shrestha, R.; Trotter, J.; Goldberg, D.; Rushbrook, S.; et al. A randomized, placebo-controlled, phase II study of obeticholic acid for primary sclerosing cholangitis. J. Hepatol. 2020, 73, 94–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trauner, M.; Gulamhusein, A.; Hameed, B.; Caldwell, S.; Shiffman, M.L.; Landis, C.; Eksteen, B.; Agarwal, K.; Muir, A.; Rushbrook, S.; et al. The Nonsteroidal Farnesoid X Receptor Agonist Cilofexor (GS-9674) Improves Markers of Cholestasis and Liver Injury in Patients with Primary Sclerosing Cholangitis. Hepatology 2019, 70, 788–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirschfield, G.M.; Chazouilleres, O.; Drenth, J.P.; Thorburn, D.; Harrison, S.A.; Landis, C.S.; Mayo, M.J.; Muir, A.J.; Trotter, J.F.; Leeming, D.J.; et al. Effect of NGM282, an FGF19 analogue, in primary sclerosing cholangitis: A multicenter, randomized, double-blind, placebo-controlled phase II trial. J. Hepatol. 2019, 70, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Assis, D.N.; Abdelghany, O.; Cai, S.Y.; Gossard, A.A.; Eaton, J.E.; Keach, J.C.; Deng, Y.; Setchell, K.D.; Ciarleglio, M.; Lindor, K.D.; et al. Combination Therapy of All-Trans Retinoic Acid with Ursodeoxycholic Acid in Patients with Primary Sclerosing Cholangitis: A Human Pilot Study. J. Clin. Gastroenterol. 2017, 51, e11–e16. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, S.; Hirano, K.; Isayama, H.; Watanabe, T.; Yamamoto, N.; Nakai, Y.; Sasahira, N.; Tada, M.; Omata, M.; Koike, K. Prospective study of bezafibrate for the treatment of primary sclerosing cholangitis. J. Hepatobiliary Pancreat. Sci. 2015, 22, 766–770. [Google Scholar] [CrossRef]
- Muir, A.J.; Levy, C.; Janssen, H.L.A.; Montano-Loza, A.J.; Shiffman, M.L.; Caldwell, S.; Luketic, V.; Ding, D.; Jia, C.; McColgan, B.J.; et al. Simtuzumab for Primary Sclerosing Cholangitis: Phase 2 Study Results with Insights on the Natural History of the Disease. Hepatology 2019, 69, 684–698. [Google Scholar] [CrossRef] [Green Version]
- Lynch, K.D.; Chapman, R.W.; Keshav, S.; Montano-Loza, A.J.; Mason, A.L.; Kremer, A.E.; Vetter, M.; de Krijger, M.; Ponsioen, C.Y.; Trivedi, P.; et al. Effects of Vedolizumab in Patients with Primary Sclerosing Cholangitis and Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Tabibian, J.H.; Gossard, A.; El-Youssef, M.; Eaton, J.E.; Petz, J.; Jorgensen, R.; Enders, F.B.; Tabibian, A.; Lindor, K.D. Prospective Clinical Trial of Rifaximin Therapy for Patients with Primary Sclerosing Cholangitis. Am. J. Ther. 2017, 24, e56–e63. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.G.; Torok, N.J.; Gossard, A.A.; Keach, J.C.; Jorgensen, R.A.; Petz, J.L.; Lindor, K.D. Minocycline in the treatment of patients with primary sclerosing cholangitis: Results of a pilot study. Am. J. Gastroenterol. 2009, 104, 83–88. [Google Scholar] [CrossRef]
- Allegretti, J.R.; Kassam, Z.; Carrellas, M.; Mullish, B.H.; Marchesi, J.R.; Pechlivanis, A.; Smith, M.; Gerardin, Y.; Timberlake, S.; Pratt, D.S.; et al. Fecal Microbiota Transplantation in Patients with Primary Sclerosing Cholangitis: A Pilot Clinical Trial. Am. J. Gastroenterol. 2019, 114, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Eaton, J.E.; Nelson, K.M.; Gossard, A.A.; Carey, E.J.; Tabibian, J.H.; Lindor, K.D.; LaRusso, N.F. Efficacy and safety of curcumin in primary sclerosing cholangitis: An open label pilot study. Scand. J. Gastroenterol. 2019, 54, 633–639. [Google Scholar] [CrossRef]
- Martin, C.R.; Blanco, P.G.; Keach, J.C.; Petz, J.L.; Zaman, M.M.; Bhaskar, K.R.; Cluette-Brown, J.E.; Gautam, S.; Sheth, S.; Afdhal, N.H.; et al. The safety and efficacy of oral docosahexaenoic acid supplementation for the treatment of primary sclerosing cholangitis—A pilot study. Aliment. Pharm. Ther. 2012, 35, 255–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chazouilleres, O. 24-Norursodeoxycholic acid in patients with primary sclerosing cholangitis: A new “urso saga” on the horizon? J. Hepatol. 2017, 67, 446–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabibian, J.H.; Lindor, K.D. NGM282, an FGF19 analogue, in primary sclerosing cholangitis: A nebulous matter. J. Hepatol. 2019, 70, 348–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponsioen, C.Y.; Chapman, R.W.; Chazouilleres, O.; Hirschfield, G.M.; Karlsen, T.H.; Lohse, A.W.; Pinzani, M.; Schrumpf, E.; Trauner, M.; Gores, G.J. Surrogate endpoints for clinical trials in primary sclerosing cholangitis: Review and results from an International PSC Study Group consensus process. Hepatology 2016, 63, 1357–1367. [Google Scholar] [CrossRef]
- Cai, S.Y.; He, H.; Nguyen, T.; Mennone, A.; Boyer, J.L. Retinoic acid represses CYP7A1 expression in human hepatocytes and HepG2 cells by FXR/RXR-dependent and independent mechanisms. J. Lipid Res. 2010, 51, 2265–2274. [Google Scholar] [CrossRef] [Green Version]
- Lemoinne, S.; Pares, A.; Reig, A.; Ben Belkacem, K.; Kemgang Fankem, A.D.; Gaouar, F.; Poupon, R.; Housset, C.; Corpechot, C.; Chazouilleres, O. Primary sclerosing cholangitis response to the combination of fibrates with ursodeoxycholic acid: French-Spanish experience. Clin. Res. Hepatol. Gastroenterol. 2018, 42, 521–528. [Google Scholar] [CrossRef]
- Muir, A.; Goodman, Z.; Bowlus, C.; Caldwell, S.; Invernizzi, P.; Luketic, V.; Minuk, G.; Hirschfield, G.; Myers, R.; Ding, D. Serum lysyl oxidase-like-2 (SLOXL2) levels correlate with disease severity in patients with primary sclerosing cholangitis. J. Hepatol. 2016, 64, S428. [Google Scholar] [CrossRef]
- Ikenaga, N.; Peng, Z.W.; Vaid, K.A.; Liu, S.B.; Yoshida, S.; Sverdlov, D.Y.; Mikels-Vigdal, A.; Smith, V.; Schuppan, D.; Popov, Y.V. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut 2017, 66, 1697–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry-Hamilton, V.; Spangler, R.; Marshall, D.; McCauley, S.; Rodriguez, H.M.; Oyasu, M.; Mikels, A.; Vaysberg, M.; Ghermazien, H.; Wai, C.; et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat. Med. 2010, 16, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, T.H.; Folseraas, T.; Thorburn, D.; Vesterhus, M. Primary sclerosing cholangitis—A comprehensive review. J. Hepatol. 2017, 67, 1298–1323. [Google Scholar] [CrossRef] [Green Version]
- Weston, C.J.; Shepherd, E.L.; Claridge, L.C.; Rantakari, P.; Curbishley, S.M.; Tomlinson, J.W.; Hubscher, S.G.; Reynolds, G.M.; Aalto, K.; Anstee, Q.M.; et al. Vascular adhesion protein-1 promotes liver inflammation and drives hepatic fibrosis. J. Clin. Investig. 2015, 125, 501–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndtz, K.; Corrigan, M.; Rowe, A.; Kirkham, A.; Barton, D.; Fox, R.P.; Llewellyn, L.; Athwal, A.; Wilkhu, M.; Chen, Y.Y.; et al. Investigating the safety and activity of the use of BTT1023 (Timolumab), in the treatment of patients with primary sclerosing cholangitis (BUTEO): A single-arm, two-stage, open-label, multi-centre, phase II clinical trial protocol. BMJ Open 2017, 7, e015081. [Google Scholar] [CrossRef] [PubMed]
- Eksteen, B.; Bowlus, C.L.; Montano-Loza, A.J.; Lefebvre, E.; Fischer, L.; Vig, P.; Martins, E.B.; Ahmad, J.; Yimam, K.K.; Pockros, P.J.; et al. Efficacy and Safety of Cenicriviroc in Patients with Primary Sclerosing Cholangitis: PERSEUS Study. Hepatol. Commun. 2021, 5, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Guicciardi, M.E.; Trussoni, C.E.; Krishnan, A.; Bronk, S.F.; Lorenzo Pisarello, M.J.; O’Hara, S.P.; Splinter, P.L.; Gao, Y.; Vig, P.; Revzin, A.; et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. J. Hepatol. 2018, 69, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Wiest, R.; Albillos, A.; Trauner, M.; Bajaj, J.S.; Jalan, R. Targeting the gut-liver axis in liver disease. J. Hepatol. 2017, 67, 1084–1103. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.; Micic, D.; Gibson, P.R.; Yarur, A.; Bellaguarda, E.; Corsello, P.; Gaetano, J.N.; Kinnucan, J.; Rao, V.L.; Reddy, S.; et al. Vedolizumab in patients with concurrent primary sclerosing cholangitis and inflammatory bowel disease does not improve liver biochemistry but is safe and effective for the bowel disease. Aliment. Pharm. Ther. 2018, 47, 753–762. [Google Scholar] [CrossRef]
- Dupont, H.L.; Jiang, Z.D.; Dupont, A.W.; Utay, N.S. The Intestinal Microbiome in Human Health and Disease. Trans. Am. Clin. Climatol. Assoc. 2020, 131, 178–197. [Google Scholar]
- Kummen, M.; Holm, K.; Anmarkrud, J.A.; Nygard, S.; Vesterhus, M.; Hoivik, M.L.; Troseid, M.; Marschall, H.U.; Schrumpf, E.; Moum, B.; et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017, 66, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurice, J.B.; Thorburn, D. Precision medicine in primary sclerosing cholangitis. J. Dig. Dis. 2019, 20, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Tabibian, J.H.; Weeding, E.; Jorgensen, R.A.; Petz, J.L.; Keach, J.C.; Talwalkar, J.A.; Lindor, K.D. Randomised clinical trial: Vancomycin or metronidazole in patients with primary sclerosing cholangitis—A pilot study. Aliment. Pharm. Ther. 2013, 37, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, S.; Nasiri-Toosi, M.; Khalili, H.; Ebrahimi-Daryani, N.; Nouri-Taromlou, M.K.; Azizi, Z. A Triple Blinded, Randomized, Placebo-Controlled Clinical Trial to Evaluate the Efficacy and Safety of Oral Vancomycin in Primary Sclerosing Cholangitis: A Pilot Study. J. Gastrointestin. Liver Dis. 2016, 25, 457–464. [Google Scholar] [CrossRef]
Study | Phase | Pt Number | Dose | Study Duration | Primary Endpoint | Primary Endpoint Met | Note | |
---|---|---|---|---|---|---|---|---|
Non-Bile Acids FXR agonists (drugs) | ||||||||
Cilofexor | [32] | 2 | 71 | 30 mg, 100 mg | 12 weeks | Safety and tolerability of Cilofexor | yes | |
Tropifexor | [33] | 2 | 61 | 30 µg, 60 µg, 90 µg | 12 weeks | Change in GGT in 4 weeks | yes | at interim analysis |
EDP-305 | NCT03394924 | 2 | 68 | Dose 1 dose 2 | 12 weeks | 20% reduction in ALP or normalization of ALP in 12 weeks | n/a | ongoing |
PPAR agonists (drugs) | ||||||||
Seladelpar | [34] | 2 | 70 | 50 mg, 200 mg | 12 weeks | Change in ALP | Early stopped (grade 3 increases in ALT) | |
[35] | 2 | 5 mg, 10 mg | 12 weeks | Change in ALP | yes | |||
NCT02955602 | 2 | 119 | 2 mg, 5 mg, 10 mg | 8 weeks with 44 weeks extension | Change in ALP | n/a | ongoing | |
NCT03602560 (ENHANCE) | 3 | 240 * | 5–10 mg, 10 mg | 52 weeks | Change in ALP and bilirubin | suspended (interface hepatits) | ||
Elafibranor | [36] | 2 | 45 | 80 mg, 120 mg | 12 weeks | Change in ALP | yes | |
Fibroblast growth factor 19 (FGF19) analogues (drugs) | ||||||||
NGM282 | [37] | 2 | 45 | 0.3 mg, 3 mg | 28 days | Change in ALP | yes | |
Antifibrotic agent (drugs) | ||||||||
Setanaxib | [38] | 2 | 111 | 400 mg od/bd | 24 weeks | Change in GGT | yes | at interim analysis |
Immunomodulatory Strategies (drugs) | ||||||||
Rituximab | [39] | Open label | 6 | 1 g (2 doses) | 52 weeks | Reduction in ALP, IgM and AMA after 36 week | ||
[40] | Open label | 14 | 1 g (2 doses) | 6 months | Normalization or ALP < 25% from baseline | no | ||
[41] | 2 | 57 | 1 g (2 doses) | 12 months | Fatigue (PBC 40) | no | ||
Ustekimumab | [42] | Open label | 20 | 90 mg | 28 weeks | ALP < 40% from baseline | no | |
Abataceb | [43] | Open label | 16 | 125 mg | 24 weeks | ALP normalization or <40% from baseline | no | |
Baricitinib | NCT03742973 | 2 | 2 | 2 mg, 4 mg | 12 weeks | Change in ALP | no | Enrollment futility |
FFP104 | NCT02193360 | 1/2 | 24 (estimated) | 1 mg/kg, 2.5 mg/kg, 2 mg/kg ev | 12 weeks | Safety and tolerability | n/a | Recruitment status unknown |
E6011 | NCT03092765 | 2 | 29 | High or low dose | 64 weeks | ALP change at week 12 | n/a | Terminated |
Etrasimod | NCT03155932 | Open label | 2 | 24 weeks | ALP change | n/a | ongoing | |
Other treatment | ||||||||
S-adenosyl-L-methionine | [44] | Open label | 24 | 1.2 g | 6 months | PBC 40 improvement | yes | significant decrease of ALP in non-cirrhotic patients |
Study | Phase | Pt Number | Dose | Study Duration | Primary Endpoint | Primary Endpoint Met | Note | |
---|---|---|---|---|---|---|---|---|
24-norursodeoxycholic acid (norUDCA) | [61] | 2 | 161 | 500 mg, 1 g, 1.5 gr | 16 weeks | Change in ALP | yes | |
NCT03872921 | 3 | 300 * | 250 mg 6 cps/d | 2 years | Change in ALP and histology | n/a | ongoing | |
FXR agonist (drugs) | ||||||||
OCA | [75] | 2 | 77 | 1.5–3 mg 5–10 mg | 24 weeks | Change in ALP | yes | 5–10 mg |
Cilofexor | [76] | 2 | 52 | 100 mg 30 mg | 12 weeks | Safety and liver enzyme improvement | yes | |
NGM282 | [77] | 2 | 62 | 1 mg 3 mg | 12 weeks | Change in ALP | no | |
ATRA | [78] | Pilot study | 15 | 45 mg/m/d | 12 weeks | ALP < 30% from baseline | no | Decrease in ALT and C4 |
NCT03359174 | 2 | 2 | 10 mg bd | 24 weeks | Change in ALP | n/a | ongoing | |
PPAR agonists | ||||||||
Bezafibrates | [79] | 2 | 11 | 200 mg BID | 12 weeks | improvements in liver function test | yes | |
Bezafibrates | [79] | 2 | 11 | 200 mg BID | 12 weeks | improvements in liver function test | yes | |
Antifibrotic therapy (drugs) | ||||||||
Simtuzumab | [80] | 2 | 234 | 75 mg, 125 mg | 96 weeks | Hepaticcollagencontent | no | |
Immunomodulator (drugs) | ||||||||
Timolumab | NCT02239211 | 2 | 23 | 8 mg/kg | 11 weeks | ALP < 25% from baseline | n/a | Awaiting results |
Cenicriviroc | NCT02653625 | Open label | 24 | 150 mg | 24 weeks | Change in ALP | yes | |
Vedolizumab | [81] | Retrospective | 102 | 412 days (median) | no | ALP < 20% from baseline | ||
Vidofludimus | NCT03722576 | 2 | 14 | 30 mg | 6 months | Change in ALP | n/a | Awaiting results |
Modulation of gut microbioma (drugs) | ||||||||
Vancomycin | NCT03710122 | 2/3 | 102 * | 24 months | Change in ALP | n/a | ongoing | |
Rifaximin | [82] | Open label | 16 | 550 mg bd | 12 weeks | Change in ALP | no | |
Minocycline | [83] | Pilot study | 16 | 100 mg bd | 1 year | Change in biochemistry | yes | |
FMT | [84] | Open label | 10 | 24 weeks | safety | yes | ||
Other treatments (drugs) | ||||||||
Sulfasalazine | NCT03561584 | 2 | 42 | 500 mg bd | 14 weeks | Change in ALP | n/a | ongoing |
Curcumin | [85] | Open label | 258 | 750 mg bd | 12 weeks | ALP < 1.5 ULN or <40% from baseline | no | |
HTD1801 | NCT03333928 | 2 | 59 | 500 mg 1 gr | 18 weeks | Change in ALP | n/a | Awaiting results |
DUR-928 | NCT03394781 | 2 | 5 | 10 mg 50 mg | 28 days | Change in ALP | n/a | ongoing |
Docosahexaenoic acid | [86] | Open label | 23 | 800 mg bd | 12 months | Change in ALP and safety | yes | |
Hymecromone | NCT02780752 | 1 | 18 * | 1.2 gr 2.4 gr 3.6 gr | 4 days | Change in spu | n/a | ongoing |
Orbcel-C | NCT02997878 | 2 | 56 * | 0.5, 1.0, 2.5 million cells/kg | 56 days | Safety, change in ALP e ALT | n/a | ongoing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzetti, M.; Marconi, G.; Mancinelli, M.; Benedetti, A.; Marzioni, M.; Maroni, L. The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities. J. Clin. Med. 2021, 10, 1763. https://doi.org/10.3390/jcm10081763
Mazzetti M, Marconi G, Mancinelli M, Benedetti A, Marzioni M, Maroni L. The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities. Journal of Clinical Medicine. 2021; 10(8):1763. https://doi.org/10.3390/jcm10081763
Chicago/Turabian StyleMazzetti, Marta, Giulia Marconi, Martina Mancinelli, Antonio Benedetti, Marco Marzioni, and Luca Maroni. 2021. "The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities" Journal of Clinical Medicine 10, no. 8: 1763. https://doi.org/10.3390/jcm10081763
APA StyleMazzetti, M., Marconi, G., Mancinelli, M., Benedetti, A., Marzioni, M., & Maroni, L. (2021). The Management of Cholestatic Liver Diseases: Current Therapies and Emerging New Possibilities. Journal of Clinical Medicine, 10(8), 1763. https://doi.org/10.3390/jcm10081763