Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD
Abstract
:1. Introduction
1.1. Early ASD Detection
1.2. Computer Vision in ASD
1.3. Current Study
2. Methods
2.1. Participants
2.2. Facial Micro-Expressions
2.3. Automated Facial Expressions Analysis
2.4. Signal Processing
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
TD | Typically Developing |
AI | Artificial Intelligence |
CV | Computer Vision |
CNN | Convolutional Neural Network |
AU | Action Unit |
FACS | Facial Action Coding System |
H | Home Video |
S | Social Smile |
SI | Simple Smile |
References
- Dawson, G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev. Psychopathol. 2008, 20, 775–803. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.; Talbott, M. Early Identification and Early Treatment of Autism Spectrum Disorder. Int. Rev. Res. Dev. Disabil. 2016, 50, 233–275. [Google Scholar] [CrossRef]
- Talbott, M.R.; Estes, A.; Zierhut, C.; Dawson, G.; Rogers, S.J. Early Intervention for Young Children with Autism Spectrum Disorder; Springer International Publishing: Cham, Switzerland, 2016; pp. 113–149. [Google Scholar]
- Estes, A.; Swain, D.M.; Macduffie, K.E. The effects of early autism intervention on parents and family adaptive functioning. Pediatr. Med. 2019, 2, 21. [Google Scholar] [CrossRef]
- Vivanti, G.; Dissanayake, C.; Duncan, E.; Feary, J.; Capes, K.; Upson, S.; Bent, C.A.; Rogers, S.J.; Hudry, K.; Jones, C.; et al. Outcomes of children receiving Group-Early Start Denver Model in an inclusive versus autism-specific setting: A pilot randomized controlled trial. Autism 2018, 23, 1165–1175. [Google Scholar] [CrossRef]
- Abbas, H.; Garberson, F.; Glover, E.; Wall, D.P. Machine learning approach for early detection of autism by combining questionnaire and home video screening. J. Am. Med. Inform. Assoc. 2018, 25, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Campbell, K.; Carpenter, K.L.; Hashemi, J.; Espinosa, S.; Marsan, S.; Borg, J.S.; Chang, Z.; Qiu, Q.; Vermeer, S.; Adler, E.; et al. Computer vision analysis captures atypical attention in toddlers with autism. Autism 2018, 23, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Campbell, K.; Hashemi, J.; Lippmann, S.J.; Smith, V.; Carpenter, K.; Egger, H.; Espinosa, S.; Vermeer, S.; Baker, J.; et al. Atypical postural control can be detected via computer vision analysis in toddlers with autism spectrum disorder. Sci. Rep. 2018, 8, 17008. [Google Scholar] [CrossRef]
- Egger, H.L.; Dawson, G.; Hashemi, J.; Carpenter, K.L.H.; Espinosa, S.; Campbell, K.; Brotkin, S.; Schaich-Borg, J.; Qiu, Q.; Tepper, M.; et al. Automatic emotion and attention analysis of young children at home: A ResearchKit autism feasibility study. NPJ Digit. Med. 2018, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sapiro, G.; Hashemi, J.; Dawson, G. Computer vision and behavioral phenotyping: An autism case study. Curr. Opin. Biomed. Eng. 2019, 9, 14–20. [Google Scholar] [CrossRef]
- Thabtah, F. Machine learning in autistic spectrum disorder behavioral research: A review and ways forward. Inform. Health Soc. Care 2018, 44, 278–297. [Google Scholar] [CrossRef]
- Elder, J.H.; Kreider, C.M.; Brasher, S.N.; Ansell, M. Clinical impact of early diagnosis of autism on the prognosis and parent-child relationships. Psychol. Res. Behav. Manag. 2017, 10, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Shic, F.; Macari, S.; Chawarska, K. Speech Disturbs Face Scanning in 6-Month-Old Infants Who Develop Autism Spectrum Disorder. Biol. Psychiatry 2014, 75, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barton, M.L.; Orinstein, A.; Troyb, E.; Fein, D.A. The Neuroscience of Autism Spectrum Disorders. Sect. Autism Spectr. Disord. 2013, 39–53. [Google Scholar] [CrossRef]
- Zwaigenbaum, L.; Bauman, M.L.; Stone, W.L.; Yirmiya, N.; Estes, A.; Hansen, R.L.; McPartland, J.C.; Natowicz, M.R.; Choueiri, R.; Fein, D.; et al. Early Identification of Autism Spectrum Disorder: Recommendations for Practice and Research. Pediatrics 2015, 136, S10–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lombardo, M.V.; Lai, M.-C.; Baron-Cohen, S. Big data approaches to decomposing heterogeneity across the autism spectrum. Mol. Psychiatry 2019, 24, 1435–1450. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, J.; Halder, S. Early Identification of Autism Spectrum Disorder: Current Challenges and Future Global Directions. Curr. Dev. Disord. Rep. 2016, 3, 67–74. [Google Scholar] [CrossRef]
- Varcin, K.J.; Jeste, S.S. The emergence of autism spectrum disorder. Curr. Opin. Psychiatry 2017, 30, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Zwaigenbaum, L.; Brian, J.A.; Ip, A. Early detection for autism spectrum disorder in young children. Paediatr. Child Health 2019, 24, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Nadig, A.S.; Ozonoff, S.; Young, G.S.; Rozga, A.; Sigman, M.; Rogers, S.J. A Prospective Study of Response to Name in Infants at Risk for Autism. Arch. Pediatr. Adolesc. Med. 2007, 161, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Barbaro, J.; Dissanayake, C. Early markers of autism spectrum disorders in infants and toddlers prospectively identified in the Social Attention and Communication Study. Autism 2012, 17, 64–86. [Google Scholar] [CrossRef]
- Rozga, A.; Hutman, T.; Young, G.S.; Rogers, S.J.; Ozonoff, S.; Dapretto, M.; Sigman, M. Behavioral Profiles of Affected and Unaffected Siblings of Children with Autism: Contribution of Measures of Mother–Infant Interaction and Nonverbal Communication. J. Autism Dev. Disord. 2010, 41, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Ozonoff, S.; Heung, K.; Byrd, R.; Hansen, R.; Hertz-Picciotto, I. The onset of autism: Patterns of symptom emergence in the first years of life. Autism Res. 2008, 1, 320–328. [Google Scholar] [CrossRef] [Green Version]
- Wilson, K.P.; Carter, M.W.; Wiener, H.L.; DeRamus, M.L.; Bulluck, J.C.; Watson, L.R.; Crais, E.R.; Baranek, G.T. Object play in infants with autism spectrum disorder: A longitudinal retrospective video analysis. Autism Dev. Lang. Impair. 2017, 2. [Google Scholar] [CrossRef]
- Esposito, G.; Venuti, P. Comparative Analysis of Crying in Children with Autism, Developmental Delays, and Typical Development. Focus Autism Other Dev. Disabil. 2009, 24, 240–247. [Google Scholar] [CrossRef]
- Kellerman, A.M.; Schwichtenberg, A.J.; Abu-Zhaya, R.; Miller, M.; Young, G.S.; Ozonoff, S. Dyadic Synchrony and Responsiveness in the First Year: Associations with Autism Risk. Autism Res. 2020, 13, 2190–2201. [Google Scholar] [CrossRef]
- Ozonoff, S.; Iosif, A.-M. Changing conceptualizations of regression: What prospective studies reveal about the onset of autism spectrum disorder. Neurosci. Biobehav. Rev. 2019, 100, 296–304. [Google Scholar] [CrossRef]
- Ozonoff, S.; Iosif, A.-M.; Baguio, F.; Cook, I.C.; Hill, M.M.; Hutman, T.; Rogers, S.J.; Rozga, A.; Sangha, S.; Sigman, M.; et al. A Prospective Study of the Emergence of Early Behavioral Signs of Autism. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 256–266.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozonoff, S.; Gangi, D.; Hanzel, E.P.; Hill, A.; Hill, M.M.; Miller, M.; Schwichtenberg, A.; Steinfeld, M.B.; Parikh, C.; Iosif, A.-M. Onset patterns in autism: Variation across informants, methods, and timing. Autism Res. 2018, 11, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.J.H.; Venema, K.; Earl, R.; Lowy, R.; Barnes, K.; Estes, A.; Dawson, G.; Webb, S.J. Reduced engagement with social stimuli in 6-month-old infants with later autism spectrum disorder: A longitudinal prospective study of infants at high familial risk. J. Neurodev. Disord. 2016, 8, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, C.; Kohls, G.; Troiani, V.; Brodkin, E.S.; Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 2012, 16, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Landa, R.J. Efficacy of early interventions for infants and young children with, and at risk for, autism spectrum disorders. Int. Rev. Psychiatry 2018, 30, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Piven, J.; Elison, J.T.; Zylka, M.J. Toward a conceptual framework for early brain and behavior development in autism. Mol. Psychiatry 2017, 22, 1385–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chawarska, K.; Macari, S.; Shic, F. Decreased Spontaneous Attention to Social Scenes in 6-Month-Old Infants Later Diagnosed with Autism Spectrum Disorders. Biol. Psychiatry 2013, 74, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.T.; Klin, A. Attention to eyes is present but in decline in 2–6-month-old infants later diagnosed with autism. Nature 2013, 504, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.; Wozniak, M.; Yousef, A.; Barnes, C.C.; Cha, D.; Courchesne, E.; Pierce, K. The geometric preference subtype in ASD: Identifying a consistent, early-emerging phenomenon through eye tracking. Mol. Autism 2018, 9, 19. [Google Scholar] [CrossRef]
- Flanagan, J.E.; Landa, R.; Bhat, A.; Bauman, M. Head Lag in Infants at Risk for Autism: A Preliminary Study. Am. J. Occup. Ther. 2012, 66, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gima, H.; Kihara, H.; Watanabe, H.; Nakano, H.; Nakano, J.; Konishi, Y.; Nakamura, T.; Taga, G. Early motor signs of autism spectrum disorder in spontaneous position and movement of the head. Exp. Brain Res. 2018, 236, 1139–1148. [Google Scholar] [CrossRef]
- Ouss, L.; Le Normand, M.-T.; Bailly, K.; Gille, M.L.; Gosme, C.; Simas, R.; Wenke, J.; Jeudon, X.; Thepot, S.; Da Silva, T.; et al. Developmental Trajectories of Hand Movements in Typical Infants and Those at Risk of Developmental Disorders: An Observational Study of Kinematics during the First Year of Life. Front. Psychol. 2018, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Purpura, G.; Costanzo, V.; Chericoni, N.; Puopolo, M.; Scattoni, M.L.; Muratori, F.; Apicella, F. Bilateral Patterns of Repetitive Movements in 6- to 12-Month-Old Infants with Autism Spectrum Disorders. Front. Psychol. 2017, 8, 1168. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.J.; Gliga, T.; Bedford, R.; Charman, T.; Johnson, M.H. Developmental pathways to autism: A review of prospective studies of infants at risk. Neurosci. Biobehav. Rev. 2014, 39, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Dawson, G.; Sapiro, G. Potential for Digital Behavioral Measurement Tools to Transform the Detection and Diagnosis of Autism Spectrum Disorder. JAMA Pediatr. 2019, 173, 305–306. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.B.; Hammal, Z.; Ren, G.; Cohn, J.F.; Cassell, J.; Ogihara, M.; Britton, J.C.; Gutierrez, A.; Messinger, D.S. Objective measurement of head movement differences in children with and without autism spectrum disorder. Mol. Autism 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Hashemi, J.; Dawson, G.; Carpenter, K.L.; Campbell, K.; Qiu, Q.; Espinosa, S.; Marsan, S.; Baker, J.P.; Egger, H.L.; Sapiro, G. Computer Vision Analysis for Quantification of Autism Risk Behaviors. IEEE Trans. Affect. Comput. 2018, 1. [Google Scholar] [CrossRef]
- Messinger, D.S.; Fogel, A.; Dickson, K.L. What’s in a smile? Dev. Psychol. 1999, 35, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Messinger, D.S.; Fogel, A.; Dickson, K.L. All smiles are positive, but some smiles are more positive than others. Dev. Psychol. 2001, 37, 642–653. [Google Scholar] [CrossRef]
- Messinger, D.; Fogel, A. The interactive development of social smiling. Adv. Child Dev. Behav. 2007, 35, 327–366. [Google Scholar] [PubMed]
- Baltrusaitis, T.; Zadeh, A.; Lim, Y.C.; Morency, L.-P. OpenFace 2.0: Facial Behavior Analysis Toolkit. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018. [Google Scholar]
- Mondiale, A.M. Dichiarazione di Helsinki. Principi etici per la ricerca medica che coinvolge soggetti umani. Assist. Inferm. Ric. 2014, 33, 36–41. [Google Scholar]
- Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Gotham, K.; Bishop, S. Autism Diagnostic Observation Schedule–Second Edition (ADOS-2); Western Psychological Services: Los Angeles, CA, USA, 2012. [Google Scholar]
- Loomes, R.; Hull, L.; Mandy, W.P.L. What Is the Male-to-Female Ratio in Autism Spectrum Disorder? A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Luiz, D.; Barnard, A.; Knosen, N.; Kotras, N.; Horrocks, S.; McAlinden, P.; O’Connell, R. GMDS-ER 2-8. Griffith Mental Devel-opmental Scales-Extended Revised: 2 to 8 Years; The Test Agency: Oxford, UK, 2006. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, 4th ed.; Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Ekman, P.; Friesen, W. Facial Action Coding Systems; Consulting Psychologists Press: Palo Alto, CA, USA, 1978. [Google Scholar]
- Nichols, C.M.; Ibañez, L.V.; Foss-Feig, J.H.; Stone, W.L. Social Smiling and Its Components in High-Risk Infant Siblings without Later ASD Symptomatology. J. Autism Dev. Disord. 2014, 44, 894–902. [Google Scholar] [CrossRef] [Green Version]
- Ekman, P.; Davidson, R.J.; Friesen, W.V. The Duchenne smile: Emotional expression and brain physiology: II. J. Pers. Soc. Psychol. 1990, 58, 342–353. [Google Scholar] [CrossRef]
- Mattson, W.I.; Cohn, J.F.; Mahoor, M.H.; Gangi, D.N.; Messinger, D.S. Darwin’s Duchenne: Eye Constriction during Infant Joy and Distress. PLoS ONE 2013, 8, e80161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soussignan, R. Duchenne smile, emotional experience, and autonomic reactivity: A test of the facial feedback hypothesis. Emotion 2002, 2, 52–74. [Google Scholar] [CrossRef]
- Messinger, D.S. Positive and Negative: Infant Facial Expressions and Emotions. Curr. Dir. Psychol. Sci. 2002, 11, 1–6. [Google Scholar] [CrossRef]
- Gunnery, S.D.; Ruben, M.A. Perceptions of Duchenne and non-Duchenne smiles: A meta-analysis. Cogn. Emot. 2016, 30, 501–515. [Google Scholar] [CrossRef]
- Fogel, A.; Nelson-Goens, G.C.; Hsu, H.-C. Do Different Infant Smiles Reflect Different Positive Emotions? Soc. Dev. 2000, 9, 497–520. [Google Scholar] [CrossRef]
- Lavelli, M.; Fogel, A. Developmental Changes in the Relationship between the Infant’s Attention and Emotion during Early Face-to-Face Communication: The 2-Month Transition. Dev. Psychol. 2005, 41, 265–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredonia, J.; Bangerter, A.; Manyakov, N.V.; Ness, S.; Lewin, D.; Skalkin, A.; Boice, M.; Goodwin, M.S.; Dawson, G.; Hendren, R.; et al. Automatic Recognition of Posed Facial Expression of Emotion in Individuals with Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 49, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Bangerter, A.; Chatterjee, M.; Manfredonia, J.; Manyakov, N.V.; Ness, S.; Boice, M.A.; Skalkin, A.; Goodwin, M.S.; Dawson, G.; Hendren, R.; et al. Automated recognition of spontaneous facial expression in individuals with autism spectrum disorder: Parsing response variability. Mol. Autism 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- McDuff, D.; Girard, J.M. Democratizing Psychological Insights from Analysis of Nonverbal Behavior. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; pp. 220–226. [Google Scholar]
- Miyoshi, R.; Nagata, N.; Hashimoto, M. Facial-Expression Recognition from Video using Enhanced Convolutional LSTM. In Proceedings of the 2019 Digital Image Computing: Techniques and Applications (DICTA), Perth, WA, Australia, 2–4 December 2019; pp. 1–6. [Google Scholar]
- Kawulok, M.; Nalepa, J.; Kawulok, J.; Smolka, B. Dynamics of facial actions for assessing smile genuineness. PLoS ONE 2021, 16, e0244647. [Google Scholar] [CrossRef]
- Rudovic, O.; Lee, J.; Dai, M.; Schuller, B.; Picard, R.W. Personalized machine learning for robot perception of affect and engagement in autism therapy. Sci. Robot. 2018, 3, eaao6760. [Google Scholar] [CrossRef] [Green Version]
- Drimalla, H.; Landwehr, N.; Baskow, I.; Behnia, B.; Roepke, S.; Dziobek, I.; Scheffer, T. Detecting Autism by Analyzing a Simulated Social Interaction. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2019; pp. 193–208. [Google Scholar] [CrossRef]
- Drimalla, H.; Scheffer, T.; Landwehr, N.; Baskow, I.; Roepke, S.; Behnia, B.; Dziobek, I. Towards the automatic detection of social biomarkers in autism spectrum disorder: Introducing the simulated interaction task (SIT). NPJ Digit. Med. 2020, 3, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, A.; Baltrusaitis, T.; Morency, L.-P. Convolutional Experts Constrained Local Model for Facial Landmark Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Venice, Italy, 22–29 October 2017; pp. 2051–2059. [Google Scholar]
- Felzenszwalb, P.F.; Girshick, R.B.; McAllester, D.; Ramanan, D. Object Detection with Discriminatively Trained Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1627–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltrusaitis, T.; Mahmoud, M.; Robinson, P. Cross-dataset learning and person-specific normalisation for automatic Action Unit detection. In Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; Volume 6, pp. 1–6. [Google Scholar]
- Bizzego, A.; Battisti, A.; Gabrieli, G.; Esposito, G.; Furlanello, C. pyphysio: A physiological signal processing library for data science approaches in physiology. SoftwareX 2019, 10, 100287. [Google Scholar] [CrossRef]
- Davison, A.K.; Merghani, W.; Yap, M.H. Objective Classes for Micro-Facial Expression Recognition. J. Imaging 2018, 4, 119. [Google Scholar] [CrossRef] [Green Version]
- Merghani, W.; Davison, A.K.; Yap, M.H. A Review on Facial Micro-Expressions Analysis: Datasets, Features and Metrics. arxiv 2018, arXiv:1805.02397. [Google Scholar]
- Trevisan, D.A.; Hoskyn, M.; Birmingham, E. Facial Expression Production in Autism: A Meta-Analysis. Autism Res. 2018, 11, 1586–1601. [Google Scholar] [CrossRef]
- Grossard, C.; Dapogny, A.; Cohen, D.; Bernheim, S.; Juillet, E.; Hamel, F.; Hun, S.; Bourgeois, J.; Pellerin, H.; Serret, S.; et al. Children with autism spectrum disorder produce more ambiguous and less socially meaningful facial expressions: An experimental study using random forest classifiers. Mol. Autism 2020, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jacob, S.; Wolff, J.J.; Steinbach, M.S.; Doyle, C.B.; Kumar, V.; Elison, J.T. Neurodevelopmental heterogeneity and computational approaches for understanding autism. Transl. Psychiatry 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zwaigenbaum, L.; Penner, M. Autism spectrum disorder: Advances in diagnosis and evaluation. BMJ 2018, 361, k1674. [Google Scholar] [CrossRef]
- De Belen, R.A.J.; Bednarz, T.; Sowmya, A.; Del Favero, D. Computer vision in autism spectrum disorder research: A systematic review of published studies from 2009 to 2019. Transl. Psychiatry 2020, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Jaliaawala, M.S.; Khan, R.A. Can autism be catered with artificial intelligence-assisted intervention technology? A comprehensive survey. Artif. Intell. Rev. 2019, 53, 1039–1069. [Google Scholar] [CrossRef] [Green Version]
Variable | ASD | TD | t/χ2 | p |
---|---|---|---|---|
n = 18 | n = 15 | |||
Gender, N (%) | 0.533 | 0.465 | ||
Male | 17 (94.4) | 13 (86.7) | ||
Female | 1 (5.6) | 2 (13.3) | ||
Age (months), mean (SD) | 74.4 (41.5) | 84.5 (29.5) | 0.544 | 0.593 |
Average Video Age (months), mean (SD) | 8.3 (1.2) | 8.8 (1.7) | 1.153 | 0.258 |
ADOS CSS Total Score, mean (SD) | 7 (1.8) | − | − | − |
IQ Composite Score, mean (SD) | 76.2 (22.5) a | 95.8 (6.1) b | − | − |
Video Length (seconds), mean (SD) | 121.7 (5.9) | 123.3 (6.3) | 0.723 | 0.475 |
Average Interactions number, mean (SD) | 3.6 (0.7) | 3.3 (0.8) | 0.839 | 0.408 |
Confidence Score, mean (SD) | 0.94 (0.01) | 0.95 (0.14) | 1.933 | 0.062 |
Confidence Percentage, mean (SD) | 90.5 (5.8) | 88.5 (8.3) | 0.811 | 0.424 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvari, G.; Furlanello, C.; Venuti, P. Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. J. Clin. Med. 2021, 10, 1776. https://doi.org/10.3390/jcm10081776
Alvari G, Furlanello C, Venuti P. Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. Journal of Clinical Medicine. 2021; 10(8):1776. https://doi.org/10.3390/jcm10081776
Chicago/Turabian StyleAlvari, Gianpaolo, Cesare Furlanello, and Paola Venuti. 2021. "Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD" Journal of Clinical Medicine 10, no. 8: 1776. https://doi.org/10.3390/jcm10081776
APA StyleAlvari, G., Furlanello, C., & Venuti, P. (2021). Is Smiling the Key? Machine Learning Analytics Detect Subtle Patterns in Micro-Expressions of Infants with ASD. Journal of Clinical Medicine, 10(8), 1776. https://doi.org/10.3390/jcm10081776