Association between Low-Grade Chemotherapy-Induced Peripheral Neuropathy (CINP) and Survival in Patients with Metastatic Adenocarcinoma of the Pancreas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Treatment Schedule and Response Assessments
2.3. Neuropathy Assessment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Neuropathy and Clinical Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Bishop, K.; Altekruse, S.F.; Kosary, C.L.; Yu, M.; Ruhl, J.; Tatalovich, Z.; et al. SEER Cancer Statistics Review; National Cancer Institute: Bethesda, MD, USA, 2015. [Google Scholar]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.; El-Maraghi, R.H.; Hammel, P.; Heinemann, V.; Kunzmann, V.; Sastre, J.; Scheithauer, W.; Siena, S.; Tabernero, J.; Teixeira, L.; et al. Nab-paclitaxel plus gem-citabine for metastatic pancreatic cancer: Long-term survival from a phase III trial. J. Natl. Cancer Inst. 2015, 107, dju413. [Google Scholar] [CrossRef]
- Kim, G.P.; Parisi, M.F.; Patel, M.B.; Pelletier, C.L.; Belk, K.W. Comparison of treatment patterns, resource utilization, and cost of care in patients with metastatic pancreatic cancer treated with first-line nab-paclitaxel plus gemcitabine or FOLFIRINOX. Expert Rev. Clin. Pharmacol. 2017, 10, 559–565. [Google Scholar] [CrossRef]
- Ottaiano, A.; Capozzi, M.; De Divitiis, C.; Von Arx, C.; Di Girolamo, E.; Nasti, G.; Cavalcanti, E.; Tatangelo, F.; Romano, G.; Avallone, A.; et al. Nab-Paclitaxel and Gemcitabine in Advanced Pancreatic Cancer: The One-year Experience of the National Cancer Institute of Naples. Anticancer Res. 2017, 37, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Bertocchi, P.; Abeni, C.; Meriggi, F.; Rota, L.; Rizzi, A.; Di Biasi, B.; Aroldi, F.; Ogliosi, C.; Savelli, G.; Rosso, E.; et al. Gemcitabine Plus Nab-Paclitaxel as Second-Line and Beyond Treatment for Metastatic Pancreatic Cancer: A Single Institution Retrospective Analysis. Rev. Recent Clin. Trials 2015, 10, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hochster, H.; Stein, S.; Lacy, J. Gemcitabine plus nab-paclitaxel for advanced pancreatic cancer after first-line FOLFIRINOX: Single institution retrospective review of efficacy and toxicity. Exp. Hematol. Oncol. 2015, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.R.; Kang, H.; Jo, J.H.; Lee, H.S.; Chung, M.J.; Park, J.Y.; Park, S.W.; Song, S.Y.; Chung, J.B.; An, C.; et al. Efficacy and treatment-related adverse events of gem-citabine plus nab-paclitaxel for treatment of metastatic pancreatic cancer “in a Korean” population: A single-center cohort study. Semin Oncol. 2017, 44, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Desai, N.; Trieu, V.; Yao, Z.; Louie, L.; Ci, S.; Yang, A.; Tao, C.; De, T.; Beals, B.; Dykes, D.; et al. Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin. Cancer Res. 2006, 12, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Carrato, A.; García, P.; Lopez, R.; Macarulla, T.; Rivera, F.; Sastre, J.; Gostkorzewicz, J.; Benedit, P.; Pérez-Alcántara, F. Cost-utility analysis of nanoparticle albu-min-bound paclitaxel (nab-paclitaxel) in combination with gemcitabine in metastatic pancreatic cancer in Spain: Results of the PANCOSTABRAX study. Expert Rev. Pharm. Outcomes Res. 2015, 15, 579–589. [Google Scholar]
- Lee, J.J.; Swain, S.M. Peripheral Neuropathy Induced by Microtubule-Stabilizing Agents. J. Clin. Oncol. 2006, 24, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef] [Green Version]
- Komiya, Y.; Tashiro, T. Effects of taxol on slow and fast axonal transport. Cell Motil. Cytoskelet. 1988, 11, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Zheng, H.; Bennett, G. Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel. Neuroscience 2012, 203, 194–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Xiao, W.; Bennett, G. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp. Neurol. 2012, 238, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Lissea, T.S.; Middletona, L.J.; Pellegrinia, A.D.; Martina, P.B.; Spauldinga, E.L.; Lopesa, O.; Brochu, E.A.; Carter, E.V.; Waldron, A.; Rieger, S. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc. Natl. Acad. Sci. USA 2016, 113, E2189–E2198. [Google Scholar] [CrossRef] [Green Version]
- Alberti, P.; Cavaletti, G.; Cornblath, D.R. Toxic neuropathies: Chemotherapy Induced Peripheral Neurotoxicity. Curr. Opin. Neurol. 2019, 32, 676–683. [Google Scholar] [CrossRef]
- Loprinzi, C.L.; Lacchetti, C.; Bleeker, J.; Cavaletti, G.; Chauhan, C.; Hertz, D.L.; Kelley, M.R.; Lavino, A.; Lustberg, M.B.; Paice, J.A.; et al. Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3325–3348. [Google Scholar] [CrossRef]
- Rowinsky, E.K.; Chaudhry, V.; Forastiere, A.A.; Sartorius, S.E.; Ettinger, D.S.; Grochow, L.B.; Lubejko, B.G.; Cornblath, D.R.; Donehower, R.C. Phase I and pharmacologic study of paclitaxel and cisplatin with granulocyte colony-stimulating factor: Neuromuscular toxicity is dose-limiting. J. Clin. Oncol. 1993, 11, 2010–2020. [Google Scholar] [CrossRef]
- Park, S.B.; Goldstein, D.; Krishnan, A.V.; Lin, C.S.-Y.; Friedlander, M.L.; Cassidy, J.; Koltzenburg, M.; Kiernan, M.C. Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA A Cancer J. Clin. 2013, 63, 419–437. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Hawkins, P.B.; O’Shaughnessy, J. Phase III trial of nanoparticle albu-min-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol. 2005, 23, 7794–7803. [Google Scholar] [CrossRef]
- Socinski, M.A.; Bondarenko, I.; Karaseva, N.A.; Makhson, A.M.; Vynnychenko, I.; Okamoto, I.; Hon, J.K.; Hirsh, V.; Bhar, P.; Zhang, H.; et al. Weekly nab-Paclitaxel in Combination With Carboplatin Versus Solvent-Based Paclitaxel Plus Carboplatin as First-Line Therapy in Patients With Advanced Non–Small-Cell Lung Cancer: Final Results of a Phase III Trial. J. Clin. Oncol. 2012, 30, 2055–2062. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, D.; Von Hoff, D.D.; Moore, M.; Greeno, E.; Tortora, G.; Ramanathan, R.K.; Macarulla, T.; Liu, H.; Pilot, R.; Ferrara, S.; et al. Development of peripheral neuropathy and its association with survival during treatment with nab-paclitaxel plus gemcitabine for patients with metastatic adenocarcinoma of the pancreas: A subset analysis from a randomised phase III trial (MPACT). Eur. J. Cancer 2016, 52, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalano, M.; Roviello, G.; Conca, R.; D’Angelo, A.; Palmieri, V.E.; Panella, B.; Petrioli, R.; Ianza, A.; Nobili, S.; Mini, E.; et al. Clinical outcomes and safety of pa-tients treated with NAb-Paclitaxel plus Gemcitabine in metastatic pancreatic cancer: The NAPA study. Curr. Cancer Drug Targets 2020, 20, 887–895. [Google Scholar] [CrossRef]
- Eisenhauer, E.; Therasse, P.; Bogaerts, J.; Schwartz, L.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef] [PubMed]
- Valero, V.; Holmes, F.A.; Walters, R.S.; Theriault, R.L.; Esparza, L.; Fraschini, G.; Fonseca, G.A.; Bellet, R.E.; Buzdar, A.U.; Hortobagyi, G.N. Phase II trial of docetaxel: A new, highly effective antineoplastic agent in the management of patients with anthracycline-resistant metastatic breast cancer. J. Clin. Oncol. 1995, 13, 2886–2894. [Google Scholar] [CrossRef] [PubMed]
- Holmes, F.A.; Walters, R.S.; Theriault, R.L.; Buzdar, A.U.; Frye, D.K.; Hortobagyi, G.N.; Forman, A.D.; Newton, L.K.; Raber, M.N. Phase II Trial of Taxol, an Active Drug in the Treatment of Metastatic Breast Cancer. J. Natl. Cancer Inst. 1991, 83, 1797–1805. [Google Scholar] [CrossRef] [PubMed]
- Nabholtz, J.M.; Gelmon, K.; Bontenbal, M.; Spielmann, M.; Catimel, G.; Conte, P.; Klaassen, U.; Namer, M.; Bonneterre, J.; Fumoleau, P.; et al. Multicenter, randomized com-parative study of two doses of paclitaxel in patients with metastatic breast cancer. J. Clin. Oncol. 1996, 14, 1858–1867. [Google Scholar] [CrossRef] [PubMed]
- Hilkens, P.; Verweij, J.; Stoter, G.; Vecht, C.; Van Putten, W.L.; Bent, M.J.V.D. Peripheral neurotoxicity induced by docetaxel. Neurology 1996, 46, 104–108. [Google Scholar] [CrossRef]
- Freilich, R.J.; Balmaceda, C.; Seidman, A.D.; Rubin, M.; DeAngelis, L.M. Motor neuropathy due to docetaxel and paclitaxel. Neurology 1996, 47, 115–118. [Google Scholar] [CrossRef]
- Rowinsky, E.K.; Chaudhry, V.; Cornblath, D.R.; Donehower, R.C. Neurotoxicity of Taxol. J. Natl. Cancer Inst. Monogr. 1993, 15, 107–115. [Google Scholar]
- National Cancer Institute; National Institutes of Health. Common Terminology Criteria for Adverse Events; National Institutes of Health. U.S. Department of Health & Human Services: Bethesda, MD, USA, 2020.
- Peng, L.; Bu, Z.; Ye, X.; Zhou, Y.; Zhao, Q. Incidence and risk of peripheral neuropathy with nab-paclitaxel in patients with cancer: A meta-analysis. Eur. J. Cancer Care 2017, 26, e12407. [Google Scholar] [CrossRef]
- Cavaletti, G.; Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity. Nat. Rev. Neurol. 2010, 6, 657–666. [Google Scholar] [CrossRef] [PubMed]
- De Vos, F.Y.F.L.; Bos, A.M.E.; Schaapveld, M.; De Swart, C.A.M.; De Graaf, H.; Van Der Zee, A.G.J.; Boezen, H.M.; de Vries, E.G.E.; Willemse, P.H.B. A randomized phase II study of paclitaxel with carboplatin ± amifostine as first line treatment in advanced ovarian carcinoma. Gynecol Oncol. 2005, 97, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, A.; Mefford, J.; Stahl, E.A.; Pendergrass, S.A.; Baldwin, R.M.; Owzar, K.; Li, M.; Winer, E.P.; Hudis, C.A.; Zembutsu, H.; et al. Polygenic inheritance of paclitaxel-induced sensory peripheral neuropathy driven by axon outgrowth gene sets in CALGB 40101 (Alliance). Pharm. J. 2014, 14, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, M.S.; Ryu, J.K.; Choi, Y.H.; Choi, J.H.; Huh, G.; Paik, W.H.; Lee, S.H.; Kim, Y.-T. Efficacy of Nab-Paclitaxel Plus Gemcitabine and Prognostic Value of Peripheral Neuropathy in Patients with Metastatic Pancreatic Cancer. Gut Liver 2018, 12, 728–735. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.P.; Zhao, F.; Wang, M.; Stearns, V.; Martino, S.; Jones, V.; Perez, E.A.; Saphner, T.; Wolff, A.C.; Sledge, G.W., Jr.; et al. Neuropathy Is Not Associated With Clinical Outcomes in Patients Receiving Adjuvant Taxane-Containing Therapy for Operable Breast Cancer. J. Clin. Oncol. 2012, 30, 3051–3057. [Google Scholar] [CrossRef] [Green Version]
- Schneider, B.P.; Li, L.; Radovich, M.; Shen, F.; Miller, K.D.; Flockhart, D.A.; Jiang, G.; Vance, G.; Gardner, L.; Vatta, M.; et al. Genome-Wide Association Studies for Taxane-Induced Peripheral Neuropathy in ECOG-5103 and ECOG-1199. Clin. Cancer Res. 2015, 21, 5082–5091. [Google Scholar] [CrossRef] [Green Version]
- Rivera, E.; Cianfrocca, M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother. Pharmacol. 2015, 75, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Mir, O.; Alexandre, J.; Tran, A.; Durand, J.P.; Pons, G.; Treluyer, J.M.; Goldwasser, F. Relationship between GSTP1 Ile 105Val pol-ymorphism and docetaxel-induced peripheral neuropathy: Clinical evidence of a role of oxidative stress in taxane toxicity. Ann Oncol. 2009, 20, 736–740. [Google Scholar] [CrossRef]
- Robertson, J.; Raizer, J.; Hodges, J.S.; Gradishar, W.; Allen, J.A. Risk factors for the development of paclitaxel-induced neuropathy in breast cancer patients. J. Peripher. Nerv. Syst. 2018, 23, 129–133. [Google Scholar] [CrossRef]
- Scheithauer, W.; Ramanathan, R.K.; Moore, M.; Macarulla, T.; Goldstein, D.; Hammel, P.; Kunzmann, V.; Liu, H.; McGovern, D.; Romano, A.; et al. Dose modification and efficacy of nab-paclitaxel plus gemcitabine vs. gemcitabine for patients with metastatic pancreatic cancer: Phase III MPACT trial. J. Gastrointest. Oncol. 2016, 7, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Mao, S.; Dong, H.; Hu, P.; Dong, R. Pathogenesis, Assessments, and Management of Chemotherapy-Related Cognitive Impairment (CRCI): An Updated Literature Review. J. Oncol. 2020, 1–11. [Google Scholar] [CrossRef]
- Vichaya, E.G.; Chiu, G.S.; Krukowski, K.; Lacourt, T.E.; Kavelaars, A.; Dantzer, R.; Heijnen, C.J.; Walker, A.K. Mechanisms of chemotherapy-induced behavioral toxicities. Front. Neurosci. Front. Res. Found. 2015, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Šeruga, B.; Zhang, H.; Bernstein, L.J.; Tannock, I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 2008, 8, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, L.J.; McCreath, G.A.; Komeylian, Z.; Rich, J.B. Cognitive impairment in breast cancer survivors treated with chemotherapy depends on control group type and cognitive domains assessed: A multilevel meta-analysis. Neurosci. Biobehav. Rev. 2017, 83, 417–428. [Google Scholar] [CrossRef]
- Chovanec, M.; Galikova, D.; Vasilkova, L.; De Angelis, V.; Rejlekova, K.; Obertova, J.; Sycova-Mila, Z.; Palacka, P.; Kalavska, K.; Svetlovska, D.; et al. Chemotherapy-induced peripheral neuropathy (CIPN) as a predictor of decreased quality of life and cognitive impairment in testicular germ cell tumor survivors. J. Clin. Oncol. 2020, 38, e17063. [Google Scholar] [CrossRef]
- Pachman, D.R.; Qin, R.; Seisler, D.K.; Smith, E.M.; Beutler, A.S.; Ta, L.E.; Lafky, J.M.; Wagner-Johnston, N.D.; Ruddy, K.J.; Dakhil, S.R.; et al. Clinical Course of Oxaliplatin-Induced Neuropathy: Results From the Randomized Phase III Trial N08CB (Alliance). J. Clin. Oncol. 2015, 33, 3416–3422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binda, D.; Vanhoutte, E.; Cavaletti, G.; Cornblath, D.; Postma, T.; Frigeni, B.; Alberti, P.; Bruna, J.; Velasco, R.; Argyriou, A.; et al. Rasch-built Overall Disability Scale for patients with chemotherapy-induced peripheral neuropathy (CIPN-R-ODS). Eur. J. Cancer 2013, 49, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Binda, D.; Cavaletti, G.; Cornblath, D.R.; Merkies, I.S.J. Sg on behalf of the CI-PeriNomS study group Rasch-Transformed Total Neuropathy Score clinical version (RT-TNSc©) in patients with chemotherapy-induced peripheral neuropathy. J. Peripher. Nerv. Syst. 2015, 20, 328–332. [Google Scholar] [CrossRef]
- Kollmannsberger, C. Sunitinib side effects as surrogate biomarkers of efficacy. Can. Urol. Assoc. J. 2016, 10, 245–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Soler, R. Rash as a Surrogate Marker for Efficacy of Epidermal Growth Factor Receptor Inhibitors in Lung Cancer. Clin. Lung Cancer 2006, 8, S7–S14. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Cheng, H.L.; Lopez, V.; Sundar, R.; Yorke, J.; Molassiotis, A. Redefining chemotherapy-induced peripheral neuropathy through symptom cluster analysis and patient-reported outcome data over time. BMC Cancer 2019, 19, 1151. [Google Scholar] [CrossRef] [PubMed]
All patients (n = 153) | Neuropathy G1–2 (n = 47) | No Neuropathy (n = 106) | p | |
---|---|---|---|---|
Age, years | ||||
Mean | 67 | 67.5 | 66 | 0.8 |
Range | 50–84 | 47–84 | 50–84 | |
≥70 | 55 (35.9%) | 18 (38.3%) | 37 (34.9%) | 0.7 |
ECOG PS | ||||
1 | 80 (51.2%) | 25 (53.2%) | 55 (51.2%) | 0.8 |
Sex | ||||
Male | 88 (57.5%) | 26 (55.3%) | 62 (58.5%) | 0.7 |
Number of metastatic sites | ||||
≥3 | 61 (39.9%) | 19 (40.4%) | 42 (39.6%) | 0.5 |
Carbohydrate antigen 19-9—U/mL | ||||
Median | 547 | 401 | 588 | |
Range | 0.8–700,000 | 1.8–700,000 | 0.8–129,718 | 0.6 |
Previous treatment | ||||
Radiation therapy | 14 (9.9%) | 2 (4.3%) | 12 (11.3%) | 0.2 |
Surgery | 37 (24.2%) | 10 (21.3%) | 27 (25.5%) | 0.6 |
Biliary stent | 46 (30.1%) | 10 (21.3%) | 36 (34%) | 0.1 |
Pain | ||||
Yes | 59 (38.6%) | 22 (46.8%) | 37 (34.9%) | 0.2 |
All Patients (n= 153) | Neuropathy G1–2 (n = 47) | No Neuropathy (n = 106) | p | |
---|---|---|---|---|
PR | 58 (37.1%) | 16 (34%) | 42 (39.6%) | 0.03 |
SD | 44 (28.8%) | 23 (48.9%) | 21 (19.8%) | |
DCR (PR + SD) | 102 (66.7%) | 39 (83%) | 63 (58%) | |
PD | 42 (27.4%) | 8 (17%) | 34 (32.1%) | |
NE | 9 (5.9%) | 0 | 9 (8.5%) | |
PFS | 0.42 | |||
M-months | 6 | 7 | 6 | |
(95% IC) | (5–6) | (6–7) | (5–6) | |
OS | 0.04 | |||
M-months | 11 | 13 | 10 | |
95% IC | (10–13) | (10–18) | (8–13) | |
Cycles | 0.03 | |||
Median | 5 | 6 | 4 | |
Range | 1–17 | 2–17 | 1–17 | |
Delayed | 51 (33.5%) | 19 (41.3%) | 32 (30.2%) | 0.2 |
Interruption | 51 (33.5%) | 11 (23.4%) | 40 (37.7%) | 0.1 |
Dose reduction | 88 (57.5%) | 38 (80.8%) | 50 (47.2%) | 0.01 |
HR | IC 95% | p | |
---|---|---|---|
Univariate | |||
Age ≥ 70 | 1.91 | 1.23–2.90 | 0.004 |
ECOG PS (1 vs. 0) | 1.45 | 1.22–3.18 | 0.05 |
Sex (male vs. female) | 1.20 | 0.79–1.83 | 0.48 |
N. of metastatic sites ≥ 3 | 4.48 | 2.54–8.09 | <0.001 |
Carbohydrate antigen 19-9 ≥ 659 U/mL | 1.68 | 1.10–3.22 | 0.01 |
Previous radiation therapy | 0.47 | 0.19–1.16 | 0.1 |
Previous surgery | 0.78 | 0.49–0.98 | 0.04 |
Previous biliary stent | 0.84 | 0.54–1.32 | 0.4 |
Pain present | 1.50 | 0.98–2.29 | 0.06 |
Neuropathy | 0.68 | 0.46–0.99 | 0.05 |
Multivariate | |||
Age ≥ 70 | 1.53 | 1.05–2.21 | 0.03 |
ECOG PS (1 vs. 0) | 1.24 | 0.85–1.80 | 0.26 |
N. of metastatic sites ≥ 3 | 3.98 | 2.22–5.66 | <0.001 |
Carbohydrate antigen 19-9 ≥ 659 U/mL | 1.99 | 1.38–2.88 | <0.001 |
Previous surgery | 0.51 | 0.32–0.82 | 0.006 |
Neuropathy | 0.65 | 0.45–0.98 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalano, M.; Aprile, G.; Ramello, M.; Conca, R.; Petrioli, R.; Roviello, G. Association between Low-Grade Chemotherapy-Induced Peripheral Neuropathy (CINP) and Survival in Patients with Metastatic Adenocarcinoma of the Pancreas. J. Clin. Med. 2021, 10, 1846. https://doi.org/10.3390/jcm10091846
Catalano M, Aprile G, Ramello M, Conca R, Petrioli R, Roviello G. Association between Low-Grade Chemotherapy-Induced Peripheral Neuropathy (CINP) and Survival in Patients with Metastatic Adenocarcinoma of the Pancreas. Journal of Clinical Medicine. 2021; 10(9):1846. https://doi.org/10.3390/jcm10091846
Chicago/Turabian StyleCatalano, Martina, Giuseppe Aprile, Monica Ramello, Raffaele Conca, Roberto Petrioli, and Giandomenico Roviello. 2021. "Association between Low-Grade Chemotherapy-Induced Peripheral Neuropathy (CINP) and Survival in Patients with Metastatic Adenocarcinoma of the Pancreas" Journal of Clinical Medicine 10, no. 9: 1846. https://doi.org/10.3390/jcm10091846
APA StyleCatalano, M., Aprile, G., Ramello, M., Conca, R., Petrioli, R., & Roviello, G. (2021). Association between Low-Grade Chemotherapy-Induced Peripheral Neuropathy (CINP) and Survival in Patients with Metastatic Adenocarcinoma of the Pancreas. Journal of Clinical Medicine, 10(9), 1846. https://doi.org/10.3390/jcm10091846