Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Article Selection
- Articles related to artificial intelligence in urology;
- Original articles of full-text length covering the diagnoses, treatment plans, and results of urologic conditions.
- Abstracts, review articles, and chapters from books;
- Animal, laboratory, or cadaveric studies.
2.2. What Is Artificial Intelligence?
2.3. Applications of AI in Urology
3. Diagnosis
3.1. Urologic Oncology
3.2. Prostate Cancer
3.3. Urothelial Cancer
3.4. Renal Cancer
3.5. Hydronephrosis/Urinary Reflux
3.6. Reproductive Urology
3.7. Urolithiasis
3.8. Pediatric Urology
3.9. Endourological Procedures
4. Outcomes Prediction
4.1. Prostate Cancer
4.2. Urothelial Cancer
4.3. Urolithiasis
4.4. Renal Transplant
5. Treatment Planning
5.1. Prostate Cancer Radiotherapy
5.2. Cancer Drug Selection
5.3. Surgical Skill Assessment
6. Robotic Surgery
6.1. Urologic Oncology
6.2. Reproductive Urology
6.3. Pediatric Urology
6.4. Renal Transplant
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Kanagasingam, Y.; Xiao, D.; Vignarajan, J.; Preetham, A.; Tay-Kearney, M.-L.; Mehrotra, A. Evaluation of Artificial Intelligence–Based Grading of Diabetic Retinopathy in Primary Care. JAMA Netw. Open 2018, 1, e182665. [Google Scholar] [CrossRef] [Green Version]
- Diprose, W.; Buist, N. Artificial intelligence in medicine: Humans need not apply? New Zealand Med. J. 2016, 129, 73–76. [Google Scholar] [PubMed]
- Venkatramani, V. Urovision 2020: The future of urology. Indian J. Urol. 2015, 31, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Porpiglia, F.; Checcucci, E.; Amparore, D.; Piramide, F.; Volpi, G.; Granato, S.; Verri, P.; Manfredi, M.; Bellin, A.; Piazzolla, P.; et al. Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours (PADUA ≥ 10): A New Intraoperative Tool Overcoming the Ultrasound Guidance. Eur. Urol. 2020, 78, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Yook, I.H.; Choi, M.J.; Lee, J.S.; Park, Y.H.; Lee, J.Y.; Choi, I.Y. A Performance Comparison on the Machine Learning Classifiers in Predictive Pathology Staging of Prostate Cancer. Stud. Health Technol. Inform. 2017, 245, 1273. [Google Scholar]
- Ms, A.A.; Viswanath, S.; Shiradkar, R.; Ghose, S.; Pahwa, S.; Moses, D.; Jambor, I.; Shnier, R.; Böhm, M.; Haynes, A.-M.; et al. Radiomic features on MRI enable risk categorization of prostate cancer patients on active surveillance: Preliminary findings. J. Magn. Reson. Imaging 2018, 48, 818–828. [Google Scholar] [CrossRef]
- Ginsburg, S.B.; Ms, A.A.; Pahwa, S.; Gulani, V.; Ponsky, L.; Aronen, H.J.; Boström, P.J.; Böhm, M.; Haynes, A.-M.; Brenner, P.; et al. Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study. J. Magn. Reson. Imaging 2017, 46, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Merisaari, H.; Movahedi, P.; Perez, I.M.; Toivonen, J.; Pesola, M.; Taimen, P.; Boström, P.J.; Pahikkala, T.; Kiviniemi, A.; Aronen, H.J.; et al. Fitting methods for intravoxel incoherent motion imaging of prostate cancer on region of interest level: Repeatability and gleason score prediction. Magn. Reson. Med. 2016, 77, 1249–1264. [Google Scholar] [CrossRef]
- Fehr, D.; Veeraraghavan, H.; Wibmer, A.; Gondo, T.; Matsumoto, K.; Vargas, H.A.; Sala, E.; Hricak, H.; Deasy, J.O. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc. Natl. Acad. Sci. USA 2015, 112, E6265–E6273. [Google Scholar] [CrossRef] [Green Version]
- Kwak, J.T.; Hewitt, S.M. Multiview boosting digital pathology analysis of prostate cancer. Comput. Methods Programs Biomed. 2017, 142, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kwak, J.T.; Hewitt, S.M. Nuclear Architecture Analysis of Prostate Cancer via Convolutional Neural Networks. IEEE Access 2017, 5, 18526–18533. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sridharan, S.; Macias, V.; Kajdacsy-Balla, A.; Melamed, J.; Do, M.N.; Popescu, G. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning. J. Biomed. Opt. 2017, 22, 036015. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Tian, Q.; Zhang, G.; Liu, Y.; Cui, G.; Meng, J.; Wu, Y.; Liu, T.; Yang, Z.; et al. Three-dimensional texture features from intensity and high-order derivative maps for the discrimination between bladder tumors and wall tissues via MRI. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Garapati, S.S.; Hadjiiski, L.; Cha, K.H.; Chan, H.-P.; Caoili, E.M.; Cohan, R.H.; Weizer, A.; Alva, A.; Paramagul, C.; Wei, J.; et al. Urinary bladder cancer staging in CT urography using machine learning. Med. Phys. 2017, 44, 5814–5823. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.-H.; Chen, C.-L.; Lin, J.-Y.; Chen, C.-J.; Fu, S.-H.; Chen, Y.-T.; Chang, Y.-S.; Yu, J.-S.; Tsui, K.-H.; Juo, C.-G.; et al. Metabolite marker discovery for the detection of bladder cancer by comparative metabolomics. Oncotarget 2017, 8, 38802–38810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, A.; Nosato, H.; Kochi, Y.; Kojima, T.; Kawai, K.; Sakanashi, H.; Murakawa, M.; Nishiyama, H. Support System of Cystoscopic Diagnosis for Bladder Cancer Based on Artificial Intelligence. J. Endourol. 2020, 34, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.; Ji, J.; Zhao, L.; Chen, M.; Shi, A.; Pan, L.; Huang, Y.; Zhang, H.; Dong, B.; Gao, H. Prediction and diagnosis of renal cell carcinoma using nuclear magnetic resonance-based serum metabolomics and self-organizing maps. Oncotarget 2016, 7, 59189–59198. [Google Scholar] [CrossRef] [Green Version]
- Haifler, M.; Pence, I.; Sun, Y.; Kutikov, A.; Uzzo, R.G.; Mahadevan-Jansen, A.; Patil, C.A. Discrimination of malignant and normal kidney tissue with short wave infrared dispersive Raman spectroscopy. J. Biophotonics 2018, 11, e201700188. [Google Scholar] [CrossRef] [Green Version]
- Blum, E.S.; Porras, A.R.; Biggs, E.; Tabrizi, P.R.; Sussman, R.D.; Sprague, B.M.; Shalaby-Rana, E.; Majd, M.; Pohl, H.G.; Linguraru, M.G. Early Detection of Ureteropelvic Junction Obstruction Using Signal Analysis and Machine Learning: A Dynamic Solution to a Dynamic Problem. J. Urol. 2018, 199, 847–852. [Google Scholar] [CrossRef]
- Cerrolaza, J.J.; Peters, C.A.; Martin, A.D.; Myers, E.; Safdar, N.; Linguraru, M.G. Quantitative Ultrasound for Measuring Obstructive Severity in Children with Hydronephrosis. J. Urol. 2016, 195, 1093–1099. [Google Scholar] [CrossRef]
- Logvinenko, T.; Chow, J.S.; Nelson, C.P. Predictive value of specific ultrasound findings when used as a screening test for abnormalities on VCUG. J. Pediatr. Urol. 2015, 11, 176.e1–176.e7. [Google Scholar] [CrossRef] [Green Version]
- Gil, D.; Girela, J.L.; De Juan, J.; Gomez-Torres, M.J.; Johnsson, M. Predicting seminal quality with artificial intelligence methods. Expert Syst. Appl. 2012, 39, 12564–12573. [Google Scholar] [CrossRef]
- Candemir, C. Estimating the Semen Quality from Life-Style Using Fuzzy Radial Basis Functions. Int. J. Mach. Learn. Comput. 2018, 8, 44–48. [Google Scholar] [CrossRef] [Green Version]
- Luchey, A.M.; Agarwal, G.; Poch, M.A. Robotic-Assisted Radical Cystectomy. Cancer Control. 2015, 22, 301–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinsal, E.C.; Haznedar, B.; Baydilli, N.; Kalinli, A.; Ozturk, A.; Ekmekçioğlu, O. Artificial Neural Network for the Prediction of Chromosomal Abnormalities in Azoospermic Males. Urol. J. 2018, 15, 122–125. [Google Scholar]
- Vickram, A.S.; Kamini, A.R.; Das, R.; Pathy, M.R.; Parameswari, R.; Archana, K.; Sridharan, T.B. Validation of artificial neural network models for predicting biochemical markers associated with male infertility. Syst. Biol. Reprod. Med. 2016, 62, 258–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirumalaraju, P.; Bormann, C.; Kanakasabapathy, M.; Doshi, F.; Souter, I.; Dimitriadis, I.; Shafiee, H. Automated sperm morpshology testing using artificial intelligence. Fertil. Steril. 2018, 110, e432. [Google Scholar] [CrossRef]
- Shah, M.; Naik, N.; Somani, B.K.; Hameed, B.M.Z. Artificial intelligence (AI) in urology-Current use and future directions: An iTRUE study. Türk Urol. Derg. Turk. J. Urol. 2020, 46, S27–S39. [Google Scholar] [CrossRef]
- Kazemi, Y.; Mirroshandel, S.A. A novel method for predicting kidney stone type using ensemble learning. Artif. Intell. Med. 2018, 84, 117–126. [Google Scholar] [CrossRef]
- Längkvist, M.; Jendeberg, J.; Thunberg, P.; Loutfi, A.; Lidén, M. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks. Comput. Biol. Med. 2018, 97, 153–160. [Google Scholar] [CrossRef]
- Papadopoulos, H.; Anastassopoulos, G. Probabilistic Prediction for the Detection of Vesicoureteral Reflux. Program. Ing. Nat. 2013, 383, 253–262. [Google Scholar] [CrossRef]
- Advanced Analytics Group of Pediatric Urology and ORC Personalized Medicine Group. Targeted Workup after Initial Febrile Urinary Tract Infection: Using a Novel Machine Learning Model to Identify Children Most Likely to Benefit from Voiding Cystourethrogram. J. Urol. 2019, 202, 144–152. [Google Scholar] [CrossRef]
- Cosma, G.; Brown, D.; Archer, M.; Khan, M.; Pockley, A.G. A survey on computational intelligence approaches for predictive modeling in prostate cancer. Expert Syst. Appl. 2017, 70, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Wong, N.C.; Lam, C.; Patterson, L.; Shayegan, B. Use of machine learning to predict early biochemical recurrence after robot-assisted prostatectomy. BJU Int. 2019, 123, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harder, N.; Athelogou, M.; Hessel, H.; Brieu, N.; Yigitsoy, M.; Zimmermann, J.; Baatz, M.; Buchner, A.; Stief, C.G.; Kirchner, T.; et al. Tissue Phenomics for prognostic biomarker discovery in low- and intermediate-risk prostate cancer. Sci. Rep. 2018, 8, 1–19. [Google Scholar] [CrossRef]
- Zhang, Y.-D.; Wang, J.; Wu, C.-J.; Bao, M.-L.; Li, H.; Wang, X.-N.; Tao, J.; Shi, H.-B. An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification. Oncotarget 2016, 7, 78140–78151. [Google Scholar] [CrossRef] [Green Version]
- Shiradkar, R.; Ghose, S.; Jambor, I.; Taimen, P.; Ettala, O.; Purysko, A.S.; Madabhushi, A. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings. J. Magn. Reson. Imaging 2018, 48, 1626–1636. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, Y.; Hui, X.; Yang, F.; Hu, Y.; Shao, J.; Liang, H.; Wang, Y. Improvement in prediction of prostate cancer prognosis with somatic mutational signatures. J. Cancer 2017, 8, 3261–3267. [Google Scholar] [CrossRef] [Green Version]
- Lalonde, E.; Ishkanian, A.S.; Sykes, J.; Fraser, M.; Ross-Adams, H.; Erho, N.; Dunning, M.J.; Halim, S.; Lamb, A.D.; Moon, N.C.; et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: A retrospective cohort study. Lancet Oncol. 2014, 15, 1521–1532. [Google Scholar] [CrossRef]
- Atug, F.; Sanli, O.; Duru, A.D. Editorial Comment on: Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes by Hung et al. J. Endourol. 2018, 32, 445. [Google Scholar] [CrossRef] [PubMed]
- Hung, A.J.; Chen, J.; Ghodoussipour, S.; Oh, P.J.; Liu, Z.; Nguyen, J.; Purushotham, S.; Gill, I.S.; Liu, Y. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019, 124, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-M.; He, X.-J.; Choi, K.-S. Using artificial neural network to predict mortality of radical cystectomy for bladder cancer. In Proceedings of the 2014 International Conference on Smart Computing, Hong Kong, China, 3–5 November 2014; pp. 201–207. [Google Scholar]
- Wang, G.; Lam, K.-M.; Deng, Z.; Choi, K.-S. Prediction of mortality after radical cystectomy for bladder cancer by machine learning techniques. Comput. Biol. Med. 2015, 63, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Sapre, N.; MacIntyre, G.; Clarkson, M.; Naeem, H.; Cmero, M.; Kowalczyk, A.; Anderson, P.D.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br. J. Cancer 2016, 114, 454–462. [Google Scholar] [CrossRef]
- Bartsch, G.; Mitra, A.P.; Mitra, S.A.; Almal, A.A.; Steven, K.E.; Skinner, D.G.; Fry, D.W.; Lenehan, P.F.; Worzel, W.P.; Cote, R.J. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J. Urol. 2016, 195, 493–498. [Google Scholar] [CrossRef]
- Aminsharifi, A.; Irani, D.; Pooyesh, S.; Parvin, H.; Dehghani, S.; Yousofi, K.; Fazel, E.; Zibaie, F. Artificial Neural Network System to Predict the Postoperative Outcome of Percutaneous Nephrolithotomy. J. Endourol. 2017, 31, 461–467. [Google Scholar] [CrossRef]
- Mannil, M.; Von Spiczak, J.; Hermanns, T.; Poyet, C.; Alkadhi, H.; Fankhauser, C.D. Three-Dimensional Texture Analysis with Machine Learning Provides Incremental Predictive Information for Successful Shock Wave Lithotripsy in Patients with Kidney Stones. J. Urol. 2018, 200, 829–836. [Google Scholar] [CrossRef]
- Mannil, M.; Von Spiczak, J.; Hermanns, T.; Alkadhi, H.; Fankhauser, C.D. Prediction of successful shock wave lithotripsy with CT: A phantom study using texture analysis. Abdom. Radiol. 2017, 43, 1432–1438. [Google Scholar] [CrossRef]
- Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Rao, K.V.B. Protease Inhibitors from Marine Actinobacteria as a Potential Source for Antimalarial Compound. PLoS ONE 2014, 9, e90972. [Google Scholar] [CrossRef] [Green Version]
- Loupy, A.; Aubert, O.; Orandi, B.J.; Naesens, M.; Bouatou, Y.; Raynaud, M.; Divard, G.; Jackson, A.M.; Viglietti, D.; Giral, M.; et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: International derivation and validation study. BMJ 2019, 366, I4923. [Google Scholar] [CrossRef] [Green Version]
- Abdeltawab, H.; Shehata, M.; Shalaby, A.; Khalifa, F.; Mahmoud, A.; El-Ghar, M.A.; Dwyer, A.C.; Ghazal, M.; Hajjdiab, H.; Keynton, R.; et al. A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Yoo, K.D.; Noh, J.; Lee, H.; Kim, D.K.; Lim, C.S.; Kim, Y.H.; Lee, J.P.; Kim, G.; Kim, Y.S. A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Nouranian, S.; Ramezani, M.; Spadinger, I.; Morris, W.J.; Salcudean, S.E.; Abolmaesumi, P. Learning-Based Multi-Label Segmentation of Transrectal Ultrasound Images for Prostate Brachytherapy. IEEE Trans. Med. Imaging 2015, 35, 921–932. [Google Scholar] [CrossRef]
- Nicolae, A.; Morton, G.; Chung, H.; Loblaw, A.; Jain, S.; Mitchell, D.; Lu, L.; Helou, J.; Al-Hanaqta, M.; Heath, E.; et al. Evaluation of a Machine-Learning Algorithm for Treatment Planning in Prostate Low-Dose-Rate Brachytherapy. Int. J. Radiat. Oncol. 2017, 97, 822–829. [Google Scholar] [CrossRef]
- Guidi, G.; Maffei, N.; Vecchi, C.; Gottardi, G.; Ciarmatori, A.; Mistretta, G.M.; Mazzeo, E.; Giacobazzi, P.; Lohr, F.; Costi, T. Expert system classifier for adaptive radiation therapy in prostate cancer. Australas. Phys. Eng. Sci. Med. 2017, 40, 337–348. [Google Scholar] [CrossRef]
- Saeed, K.; Rahkama, V.; Eldfors, S.; Bychkov, D.; Mpindi, J.P.; Yadav, B.; Paavolainen, L.; Aittokallio, T.; Heckman, C.; Wennerberg, K.; et al. Comprehensive Drug Testing of Patient-derived Conditionally Reprogrammed Cells from Castration-resistant Prostate Cancer. Eur. Urol. 2017, 71, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Nosrati, M.S.; Amir-Khalili, A.; Peyrat, J.-M.; Abi-Nahed, J.; Al-Alao, O.; Al-Ansari, A.; Abugharbieh, R.; Hamarneh, G. Endoscopic scene labelling and augmentation using intraoperative pulsatile motion and colour appearance cues with preoperative anatomical priors. Int. J. Comput. Assist. Radiol. Surg. 2016, 11, 1409–1418. [Google Scholar] [CrossRef]
- Baghdadi, A.; Cavuoto, L.; Hussein, A.A.; Ahmed, Y.; Guru, K. PD58-04 Modeling Automated Assessment of Surgical Performance Utilizing Computer Vision: Proof of Concept. J. Urol. 2018, 199, e1134–e1135. [Google Scholar] [CrossRef] [Green Version]
- Ghani, K.; Liu, Y.; Law, H.; He, D.; Miller, D.; Montie, J.; Deng, J. Video analysis of skill and technique (VAST): Machine learning to assess the technical skill of surgeons performing robotic prostatectomy. Eur. Urol. Suppl. 2017, 16, e1927–e1928. [Google Scholar] [CrossRef]
- Sathianathen, N.J.; Kalapara, A.; Frydenberg, M.; Lawrentschuk, N.; Weight, C.J.; Parekh, D.; Konety, B.R. Robotic Assisted Radical Cystectomy vs Open Radical Cystectomy: Systematic Review and Meta-Analysis. J Urol. 2019, 201, 715–720. [Google Scholar] [CrossRef]
- Witjes, J.A.; Lebret, T.; Compérat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernández, V.; Espinós, E.L.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. Eur. Urol. 2017, 71, 462–475. [Google Scholar] [CrossRef] [PubMed]
- Koelzer, V.H.; Rothschild, S.I.; Zihler, D.; Wicki, A.; Willi, B.; Willi, N.; Voegeli, M.; Cathomas, G.; Zippelius, A.; Mertz, K.D. Systemic inflammation in a melanoma patient treated with immune checkpoint inhibitors—An autopsy study. J. Immunother. Cancer 2016, 4, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, B.P.; Bondad, J.; Vasdev, N.; Adshead, J.; Lane, T.; Ahmed, K.; Khan, M.S.; Dasgupta, P.; Guru, K.; Chlosta, P.L.; et al. Robotic versus open radical cystectomy for bladder cancer in adults. Cochrane Database Syst Rev. 2019, 4, CD011903. [Google Scholar] [CrossRef]
- Machine Learning in Medical Imaging; Springer: Berling, Germany, 2017.
- Kocak, B.; Yardimci, A.H.; Bektas, C.T.; Turkcanoglu, M.H.; Erdim, C.; Yucetas, U.; Koca, S.B.; Kilickesmez, O. Textural differences between renal cell carcinoma subtypes: Machine learning-based quantitative computed tomography texture analysis with independent external validation. Eur. J. Radiol. 2018, 107, 149–157. [Google Scholar] [CrossRef]
- Han, S.; Hwang, S.I.; Lee, H.J. The Classification of Renal Cancer in 3-Phase CT Images Using a Deep Learning Method. J. Digit. Imaging 2019, 32, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Mastroianni, R.; Tuderti, G.; Anceschi, U.; Bove, A.M.; Brassetti, A.; Ferriero, M.; Zampa, A.; Giannarelli, D.; Guaglianone, S.; Gallucci, M.; et al. Comparison of Patient-reported Health-related Quality of Life Between Open Radical Cystectomy and Robot-assisted Radical Cystectomy with Intracorporeal Urinary Diversion: Interim Analysis of a Randomised Controlled Trial. Eur. Urol. Focus 2021, S2405–S4569, 00059-6. [Google Scholar] [CrossRef]
- Etafy, M.; Gudeloglu, A.; Brahmbhatt, J.V.; Parekattil, S.J. Review of the role of robotic surgery in male infertility. Arab. J. Urol. 2018, 16, 148–156. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.W.; Hockenberry, M.; Lipshultz, L.I. Vasectomy reversal: Decision making and technical innovations. Transl. Androl. Urol. 2017, 6, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Parekattil, S.J.; Gudeloglu, A. Robotic assisted andrological surgery. Asian J. Androl. 2013, 15, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Ballouhey, Q.; Villemagne, T.; Cros, J.; Szwarc, C.; Braik, K.; Longis, B.; Lardy, H.; Fourcade, L. A comparison of robotic surgery in children weighing above and below 15.0 kg: Size does not affect surgery success. Surg. Endosc. 2014, 29, 2643–2650. [Google Scholar] [CrossRef]
- Avery, D.I.; Herbst, K.W.; Lendvay, T.S.; Noh, P.H.; Dangle, P.; Gundeti, M.S.; Steele, M.C.; Corbett, S.T.; Peters, C.A.; Kim, C. Robot-assisted laparoscopic pyeloplasty: Multi-institutional experience in infants. J. Pediatr. Urol. 2015, 11, 139.e1–139.e5. [Google Scholar] [CrossRef]
- Asensio, M.; Gander, R.; Royo, G.F.; Lloret, J. Failed pyeloplasty in children: Is robot-assisted laparoscopic reoperative repair feasible? J. Pediatr. Urol. 2015, 11, 69.e1–69.e6. [Google Scholar] [CrossRef]
- Lee, R.S.; Sethi, A.S.; Passerotti, C.C.; Retik, A.B.; Borer, J.G.; Nguyen, H.T.; Peters, C.A. Robot Assisted Laparoscopic Partial Nephrectomy: A Viable and Safe Option in Children. J. Urol. 2009, 181, 823–829. [Google Scholar] [CrossRef]
- Bowen, D.K.; Casey, J.T.; Cheng, E.Y.; Gong, E.M. Robotic-assisted laparoscopic transplant-to-native ureteroureterostomy in a pediatric patient. J. Pediatr. Urol. 2014, 10, 1284.e1–1284.e2. [Google Scholar] [CrossRef]
- Marchini, G.S.; Hong, Y.K.; Minnillo, B.J.; Diamond, D.A.; Houck, C.S.; Meier, P.M.; Passerotti, C.C.; Kaplan, J.R.; Retik, A.B.; Nguyen, H.T. Robotic Assisted Laparoscopic Ureteral Reimplantation in Children: Case Matched Comparative Study with Open Surgical Approach. J. Urol. 2011, 185, 1870–1875. [Google Scholar] [CrossRef]
- Breda, A.; Territo, A.; Gausa, L.; Tuğcu, V.; Alcaraz, A.; Musquera, M.; Decaestecker, K.; Desender, L.; Stockle, M.; Janssen, M.; et al. Robot-assisted Kidney Transplantation: The European Experience. Eur. Urol. 2018, 73, 273–281. [Google Scholar] [CrossRef] [Green Version]
- French, A.; Lendvay, T.S.; Sweet, R.M.; Kowalewski, T.M. Predicting surgical skill from the first N seconds of a task: Value over task time using the isogony principle. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1161–1170. [Google Scholar] [CrossRef]
- Checcucci, E.; De Cillis, S.; Granato, S.; Chang, P.; Afyouni, A.S.; Okhunov, Z. Applications of neural networks in urology. Curr. Opin. Urol. 2020, 30, 788–807. [Google Scholar] [CrossRef]
- Checcucci, E.; Autorino, R.; Cacciamani, G.E.; Amparore, D.; De Cillis, S.; Piana, A.; Piazzolla, P.; Vezzetti, E.; Fiori, C.; Veneziano, D.; et al. Artificial intelligence and neural networks in urology: Current clinical applications. Minerva Urol. Nefrol. 2020, 72, 49–57. [Google Scholar] [CrossRef]
- Commissioner of the U.S. Food and Drug Administration. FDA Releases Artificial Intelligence/Machine Learning Action Plan. Available online: https://www.fda.gov/news-events/press-announcements/fda-releases-artificial-intelligencemachine-learning-action-plan (accessed on 6 March 2021).
Study | Application of the Study | Type of Study | Size of the Sample Used | Features Used for Training | Algorithms Used | Accuracy, % | Sensitivity, % | Specificity, % | AUC |
---|---|---|---|---|---|---|---|---|---|
Kim et al., 2017 [6] | Forecast of extracapsular expansion | Retrospective | 944 patients (621 and 323 organ-confined disease and non-organ-confined disease, respectively) | PSA, Gleason score, clinical T stage, and positive prostate biopsy core count | NN | 73.4 | - | - | - |
SVM | 75.0 | - | - | - | |||||
NB | 74.8 | - | - | - | |||||
BNs | 74.4 | - | - | - | |||||
CART | 70.7 | - | - | - | |||||
RF | 68.8 | - | - | - | |||||
Algohary et al., 2018 [7] | Diagnosis based on MRI | Retrospective | 56 patients | Radiomic MRI features chosen by unsupervised hierarchical clustering | QDA | 72.0 | 75.0 | 60.0 | - |
RF | 32.0 | 42.0 | 30.0 | - | |||||
SVM | 52.0 | 60.0 | 40.0 | - | |||||
Ginsburg et al., 2017 [8] | Diagnosis based on MRI | Retrospective | 80 patients | Radiomic MRI characteristics | LR | - | - | - | 0.61–0.71 |
Fehr et al., 2015 [10] | Forecast of Gleason score using MRI | Retrospective | 356 regions of interest from 147 patients | Radiomic MRI characteristics | t-Test SVM (Gleason 6 vs. ≥7) | 73–83 | - | - | 0.83–0.90 |
AdaBoost (Gleason 6 vs. ≥7) | 64–73 | - | - | 0.60–0.74 | |||||
RFE-SVM (Gleason 6 vs. ≥7) | 83–93 | - | - | 0.91–0.99 | |||||
t-Test SVM (Gleason 3 + 4 vs. 4 + 3) | 66–81 | - | - | 0.94–0.99 | |||||
AdaBoost (Gleason 3 + 4 vs. 4 + 3) | 73–79 | - | - | 0.75–0.80 | |||||
RFE–SVM (Gleason 3 + 4 vs. 4 + 3) | 83–92 | 0.77–0.81 | |||||||
Kwak et al., 2017 [11] | Diagnosis based on images of tissue samples | Retrospective | 653 tissue samples | HE-stained digitized images of the prostate specimen | Multiview boosting classifier (differentiate benign and malignant tissue) | - | - | - | 0.98 |
Multiview boosting classifier (differentiate epithelium and stroma) | - | - | - | 0.97–0.99 | |||||
Kwak et al., 2017 [12] | Diagnosis based on images of tissue samples | Retrospective | 827 tissue samples | HE-stained digitized images of the prostate specimen | CNN | - | - | - | 0.97 |
Nguyen et al., 2017 [13] | Estimation of Gleason score based on tissue samples from the prostate | Retrospective | 368 prostate tissue samples (1 per patient) | HE-stained digitized images of the prostate specimen | RF (benign vs. malignant) | - | - | - | 0.97 0.82 |
LR (Gleason scoring 3 vs. 4) | - | - | - | 0.82 |
Study | Application of the Study | Type of Study | Size of the Sample Used | Features Used for Training | Algorithms Used | Accuracy, % | Sensitivity, % | Specificity, % | AUC |
---|---|---|---|---|---|---|---|---|---|
Xu et al., 2017 [14] | Differentiate bladder tumor and bladder wall tissue by MRI | Retrospective | 62 patients (62 cancerous regions and 62 bladder wall regions) | Radiomic MRI characteristics: 2D texture characteristics and 3D texture characteristics | SVM (2D) | 70.16–78.23 | - | - | 0.72–0.83 |
SVM (3D) | 71.77–85.48 | - | - | 0.77–0.89 | |||||
RF (2D) | 70.16–79.84 | - | - | 0.72–0.82 | |||||
RF (3D) | 68.56–85.48 | - | - | 0.73–0.87 | |||||
SVM (RFE-selected optimal features) | 87.9 | 90.3 | 85.5 | 0.90 | |||||
Garapati et al., 2017 [15] | Forecast the stage of the disease based on CT urography | Retrospective | 76 CT urography cases (84 bladder cancer lesions: 43 < T2; 41 ≥ T2) | Pathological stage, CT urography morphological features, and textural features | LDA (training set) | - | - | - | 0.91 |
LDA (testing set) | 0.88 | ||||||||
SVM (training set) | 0.91 | ||||||||
SVM (testing set) | 0.89 | ||||||||
RF (training set) | 0.89 | ||||||||
RF (testing set) | 0.97 | ||||||||
NN (training set | 0.89 | ||||||||
NN (testing set) | 0.92 | ||||||||
Shao et al., 2017 [16] | Forecast whether the disease is present or not | Prospective | 87 bladder cancer patients and 65 patients without bladder cancer | 6 urine metabolite markers (spectral ions) | DT: testing | 76.6 | 71.9 | 86.7 | - |
DT: training (5-fold cross validation) | 84.8 | 81.8 | 88.0 | - | |||||
Ikeda et al., 2019 [17] | Detect tumors | Retrospective | 422 cystoscopic images | Transfer learning using features extracted from gastroscopic images | CNN | - | 96.5 | 96.5 | - |
Study | Application of the Study | Type of Study | Size of the Sample Used | Features Used for Training | Algorithms Used | Accuracy, % | Sensitivity, % | Specificity, % | AUC |
---|---|---|---|---|---|---|---|---|---|
Zheng et al., 2016 [18] | Forecast the presence of the disease in the earlier stages | Retrospective | 126 patients (68 healthy participants and 48 renal cell cancer (RCC) patients) | Serum metabolome biomarker cluster | ANN: healthy participants | 91.3 | - | - | - |
ANN: RCC | 94.7 | - | - | - | |||||
Haifler et al., 2018 [19] | Discriminate between normal and malignant renal tissue | Prospective | 6 clear-cell RCC specimens; 6 normal kidney tissue specimens | Short-wave infrared Raman spectroscopy | SMLR | 92.5 | 95.8 | 88.8 | 0.94 |
Study | Application of the Study | Type of Study | Size of the Sample Used | Features Used for Training | Algorithms Used | Accuracy, % | Sensitivity, % | Specificity, % | C-index | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Lam et al., 2014 [43] | Forecast mortality for a period of 5 years after radical cystectomy | Retrospective | 117 patients (83 training, 17 validation, and 117 testing) | Age, tumor stage, albumin level, surgical approach | ANN | 77.8 | - | - | - | 0.829 |
Wang et al., 2015 [44] | Forecast mortality for a period of 5 years after radical cystectomy | Retrospective | 117 patients | Gender, age, age range, albumin, surgical approach 1/2, preoperative albumin, tumor stage, follow-up period, type of diversion | NN | 72.2 | 77.6 | 68.1 | - | - |
ELM | 76.7 | 73.5 | 81.5 | - | - | |||||
RELM | 80.0 | 85.6 | 72.4 | - | - | |||||
RBF | 76.7 | 79.0 | 75.3 | - | - | |||||
SVM | 75.6 | 75.4 | 77.0 | - | - | |||||
NB | 73.3 | 73.8 | 73.4 | - | - | |||||
k-NN | 72.2 | 75.1 | 70.1 | - | - | |||||
Sapre et al., 2016 [45] | Predict urothelial carcinoma recurrence | Prospective | Training set 81 patients (21 benign controls, 30 no recurrence, and 30 active cancer recurrence); testing set 50 patients | Urinary miRNAs (miR205, miR34a, miR21, miR221, miR16, miR200c) | SVM (recurrence) | - | 88.0 | 48.0 | - | - |
SVM (tumor presence): training | - | - | - | - | 0.85 | |||||
SVM (tumor presence): testing | - | - | - | - | 0.74 | |||||
SVM (T1) | - | - | - | - | 0.92 | |||||
SVM (Ta) | - | - | - | - | 0.72 | |||||
SVM (T2,3,4) | - | - | - | - | 0.73 | |||||
SVM (high volume) | - | - | - | - | 0.81 | |||||
SVM (low volume) | - | - | - | - | 0.69 | |||||
SVM (low grade) | - | - | - | - | 0.76 | |||||
SVM (high grade) | - | - | - | - | 0.75 | |||||
SVM (initial tumor) | - | - | - | - | 0.76 | |||||
Bartsch et al., 2016 [46] | Estimate the risk of recurrence in 5 years for non-muscle-invasive urothelial carcinoma after transurethral resection of the bladder | Retrospective | 112 frozen non-muscle-invasive urothelial carcinoma specimens | Genes in DNA sampling | GP (3-gene rule): training | - | 80.4 | 90.0 | - | - |
GP (3-gene rule): testing | - | 70.6 | 66.7 | - | - | |||||
GP (5-gene combined rule): training | - | 77.1 | 84.6 | - | - | |||||
GP (5-gene combined rule): testing | - | 68.6 | 61.5 | - | - |
Study | Application of the Study | Type of Study | Size of the Sample Used | Features Used for Training | Algorithms Used | Accuracy, % | Sensitivity, % | Specificity, % | C-index | AUC |
---|---|---|---|---|---|---|---|---|---|---|
Wong et al., 2019 [35] | Estimate the recurrence of the disease after radical prostatectomy | Prospective | 338 patients | Patient clinicopathology information | k-NN | 97.6 | 78.0 | 69.0 | - | 0.903 |
RF | 95.3 | 76.0 | 64.0 | - | 0.924 | |||||
LR | 97.6 | 75.0 | 69.0 | - | 0.94 | |||||
Harder et al., 2018 [36] | Estimate the recurrence of the disease after radical prostatectomy | Retrospective | 90 patients (40 with PSA recurrence) | Tissue phenomics of the disease | Hierarchical clustering | 86.6 | 82.5 | 90.0 | - | - |
naive Bayes | 83.3 | 80.0 | 86.0 | - | - | |||||
classification and regression tree | 83.3 | 70.0 | 94.0 | - | - | |||||
k-NN | 85.5 | 80.0 | 90.0 | - | - | |||||
Linear predictor | 87.8 | 94.0 | 80.0 | - | - | |||||
SVM (linear kernel) | 86.7 | 77.5 | 94.0 | - | - | |||||
SVM (radial bias function kernel) | 82.0 | 75 | 88.0 | - | - | |||||
Zhang et al., 2016 [37] | Estimate the recurrence of the disease after radical prostatectomy | Retrospective | 205 patients (61 with biochemical recurrence) | Radiomic MRI characteristics | SVM | 92.2 | 93.3 | 91.7 | - - - - - | 0.96 |
Shiradker et al., 2018 [38] | Predict the biochemical recurrence of prostate cancer using MRI | Retrospective | 120 patients (70 training; 50 validation) | Patient clinicopathological data and radiomic MRI characteristics | LDA (radiomic alone, training) | - | - | - | 0.54 | - |
SVM (radiomic alone, training) | - | - | - | 0.84 | ||||||
RF (radiomic alone, training) | - | - | - | 0.52 | ||||||
SVM (radiomic alone testing) | - | - | - | 0.73 | ||||||
SVM (radiomic + clinical training) | - | - | - | 0.91 | ||||||
SVM (radiomic + clinical testing) | - | - | - | 0.74 | ||||||
Zhang et al. 2017 [39] | , Estimate biological recurrence after radical prostatectomy | Retrospective | 424 patients (58 with recurrence) | Somatic gene mutation profiles | SVM (genetic signature alone) | 66.2 | - | - | - | 0.7 |
SVM (genetic signature + clinicopathological features) | 71.3 | - | - | - | 0.75 | |||||
Lalonde et al. 2014 [40] | Predict the biochemical recurrence after radiation or radical prostatectomy | Retrospective | 397 patients (126 training, 154 validation, and 117 testing) | Genes of the disease, general genomic instability, and tumor microenvironment | RF (validation set 1) | - | - | - | 0.7 | 0.74 |
RF (validation set 1) | - | - | - | 0.74 | 0.84 | |||||
RF (validation set 2) | - | - | - | 0.67 | 0.64 | |||||
RF (validation set 2) | - | - | - | 0.73 | 0.75 | |||||
Hung et al. 2018 [41] | Predict the length of stay required in the hospital after radical prostatectomy | Ambispective | 78 patients | 25 surgical robotic APMs | RF | 87.2 | - | - | - | - |
RF (APMs and patient demographics) | 88.5 | - | - | - | - | |||||
SVM | 83.3 | - | - | - | - | |||||
LR | 82.1 | - | - | - | - | |||||
Hung et al. 2018 [42] | Predict urinary continence recovery after robotic radical prostatectomy | Ambispective | 79 patients | 16 clinicopathological features and 492 robotic APMs | Random survival forests, Deep-learning-model-based survival analysis | - | - | - | 0.58 | - |
- | - | - | 0.6 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, B.M.Z.; S. Dhavileswarapu, A.V.L.; Raza, S.Z.; Karimi, H.; Khanuja, H.S.; Shetty, D.K.; Ibrahim, S.; Shah, M.J.; Naik, N.; Paul, R.; et al. Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. J. Clin. Med. 2021, 10, 1864. https://doi.org/10.3390/jcm10091864
Hameed BMZ, S. Dhavileswarapu AVL, Raza SZ, Karimi H, Khanuja HS, Shetty DK, Ibrahim S, Shah MJ, Naik N, Paul R, et al. Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. Journal of Clinical Medicine. 2021; 10(9):1864. https://doi.org/10.3390/jcm10091864
Chicago/Turabian StyleHameed, B. M. Zeeshan, Aiswarya V. L. S. Dhavileswarapu, Syed Zahid Raza, Hadis Karimi, Harneet Singh Khanuja, Dasharathraj K. Shetty, Sufyan Ibrahim, Milap J. Shah, Nithesh Naik, Rahul Paul, and et al. 2021. "Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature" Journal of Clinical Medicine 10, no. 9: 1864. https://doi.org/10.3390/jcm10091864
APA StyleHameed, B. M. Z., S. Dhavileswarapu, A. V. L., Raza, S. Z., Karimi, H., Khanuja, H. S., Shetty, D. K., Ibrahim, S., Shah, M. J., Naik, N., Paul, R., Rai, B. P., & Somani, B. K. (2021). Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. Journal of Clinical Medicine, 10(9), 1864. https://doi.org/10.3390/jcm10091864