Decreased CRRT Filter Lifespan in COVID-19 ICU Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Selection
2.3. Data Collection
2.4. CRRT Protocol during Study Period
2.5. Objectives
2.6. Statistical Analysis
3. Results
3.1. Population
3.2. Filter Lifespan
3.3. CRRT Settings and Venous Access
3.4. Anticoagulant Profile
3.5. Kidney Function Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, Y.; Xu, D.; Fu, S.; Zhang, J.; Yang, X.; Xu, L.; Xu, J.; Wu, Y.; Huang, C.; Ouyang, Y.; et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: A cross-sectional study. Crit. Care 2020, 24, 219. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Primmaz, S.; Le Terrier, C.; Suh, N.; Ventura, F.; Boroli, F.; Bendjelid, K.; Cereghetti, S.; Giraud, R.; Heidegger, C.; Pugin, D.; et al. Preparedness and Reorganization of Care for Coronavirus Disease 2019 Patients in a Swiss ICU: Characteristics and Outcomes of 129 Patients. Crit. Care Explor. 2020, 2, e0173. [Google Scholar] [CrossRef] [PubMed]
- Joannidis, M.; Straaten, H.M.O.-V. Clinical review: Patency of the circuit in continuous renal replacement therapy. Crit. Care 2007, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Cutts, M.W.; Thomas, A.N.; Kishen, R. Transfusion requirements during continuous veno-venous haemofiltration: -the importance of filter life. Intensiv. Care Med. 2000, 26, 1694–1697. [Google Scholar] [CrossRef]
- Brain, M.; Winson, E.; Roodenburg, O.; McNeil, J. Non anti-coagulant factors associated with filter life in continuous renal replacement therapy (CRRT): A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 69. [Google Scholar] [CrossRef] [Green Version]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Der Nigoghossian, C.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Middeldorp, S.; Coppens, M.; Van Haaps, T.F.; Foppen, M.; Vlaar, A.P.; Müller, M.C.A.; Bouman, C.C.S.; Beenen, L.F.M.; Kootte, R.S.; Heijmans, J.; et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1995–2002. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, E.; Rauch, A.; Labreuche, J.; Susen, S.; et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 142, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef] [PubMed]
- Leisman, D.E.; Deutschman, C.S.; Legrand, M. Facing COVID-19 in the ICU: Vascular dysfunction, thrombosis, and dysregulated inflammation. Intensiv. Care Med. 2020, 46, 1105–1108. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Wang, X.; Yang, P.; Zhang, S. COVID-19 Complicated by Acute Pulmonary Embolism. Radiol. Cardiothorac. Imaging 2020, 2, e200067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankaranarayanan, D.; Muthukumar, T.; Barbar, T.; Bhasin, A.; Gerardine, S.; Lamba, P.; Leuprecht, L.; Neupane, S.P.; Salinas, T.; Shimonov, D.; et al. Anticoagulation Strategies and Filter Life in COVID-19 Patients Receiving Continuous Renal Replacement Therapy A Single-Center Experience. Clin. J. Am. Soc. Nephrol. 2021, 16, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Hetzel, G.R.; Schmitz, M.; Wissing, H.; Ries, W.; Schott, G.; Heering, P.J.; Isgro, F.; Kribben, A.; Himmele, R.; Grabensee, B.; et al. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: A prospective randomized multicentre trial. Nephrol. Dial. Transplant. 2011, 26, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Gattas, D.J.; Rajbhandari, D.; Bradford, C.; Buhr, H.; Lo, S.; Bellomo, R. A Randomized Controlled Trial of Regional Citrate Versus Regional Heparin Anticoagulation for Continuous Renal Replacement Therapy in Critically Ill Adults. Crit. Care Med. 2015, 43, 1622–1629. [Google Scholar] [CrossRef]
- Endres, P.; Rosovsky, R.; Zhao, S.; Krinsky, S.; Percy, S.; Kamal, O.; Roberts, R.J.; Lopez, N.; Sise, M.E.; Steele, D.J.R.; et al. Filter clotting with continuous renal replacement therapy in COVID-19. J. Thromb. Thrombolysis 2020, 7, 1–5. [Google Scholar] [CrossRef]
- Kiser, T.H.; MacLaren, R.; Fish, D.N.; Hassell, K.L.; Teitelbaum, I. Bivalirudin versus Unfractionated Heparin for Prevention of Hemofilter Occlusion during Continuous Renal Replacement Therapy. Pharmacotherapy 2010, 30, 1117–1126. [Google Scholar] [CrossRef]
- Davies, H.; Leslie, G. Maintaining the CRRT circuit: Non-anticoagulant alternatives. Aust. Crit. Care 2006, 19, 133–138. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N. Kidney Disease Improving Global Outcomes (KDIGO): Section 5: Dialysis interventions for treatment of AKI. Kidney Int. Suppl. 2012, 2, 89–115. [Google Scholar]
- Arnold, F.; Westermann, L.; Rieg, S.; Neumann-Haefelin, E.; Biever, P.M.; Walz, G.; Kalbhenn, J.; Tanriver, Y. Comparison of different anticoagulation strategies for CRRT in critically ill patients with COVID-19: A cohort study. BMC Nephrol. 2020, 21, 486. [Google Scholar] [CrossRef]
- Chua, H.-R.; Baldwin, I.; Bailey, M.; Subramaniam, A.; Bellomo, R. Circuit lifespan during continuous renal replacement therapy for combined liver and kidney failure. J. Crit. Care 2012, 27, 744.e7–744.e15. [Google Scholar] [CrossRef]
- Kim, I.B.; Fealy, N.; Baldwin, I.; Bellomo, R. Insertion Side, Body Position and Circuit Life during Continuous Renal Replacement Therapy with Femoral Vein Access. Blood Purif. 2011, 31, 42–46. [Google Scholar] [CrossRef]
- Dunn, W.J.; Sriram, S. Filter lifespan in critically ill adults receiving continuous renal replacement therapy: The effect of patient and treatment-related variables. Crit. Care Resusc. 2014, 16, 225–231. [Google Scholar]
- Wang, Y.T.; Haines, T.P.; Ritchie, P.; Walker, C.; Ansell, T.A.; Ryan, D.T.; Lim, P.-S.; Vij, S.; Acs, R.; Fealy, N.; et al. Early mobilization on continuous renal replacement therapy is safe and may improve filter life. Crit. Care 2014, 18, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Liang, X.; Song, L.; Huang, H.; Wang, J.; Chen, Y.; Zhang, L.; Quan, Z.; Shi, W. Building and validation of a prognostic model for predicting extracorporeal circuit clotting in patients with continuous renal replacement therapy. Int. Urol. Nephrol. 2014, 46, 801–807. [Google Scholar] [CrossRef]
- Subramaniam, S.; Scharrer, I. Procoagulant activity during viral infections. Front. Biosci. 2018, 23, 1060–1081. [Google Scholar] [CrossRef] [Green Version]
- Van Gorp, E.C.M.; Suharti, C.; Cate, H.T.; Dolmans, W.M.V.; Van Der Meer, J.W.M.; Cate, J.W.T.; Brandjes, D.P.M. Review: Infectious Diseases and Coagulation Disorders. J. Infect. Dis. 1999, 180, 176–186. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Rondina, M.T. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells During Infectious Diseases. Front. Immunol. 2019, 10, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, S.; Chen, S.; Li, X.; Liu, S.; Wang, F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 1421–1424. [Google Scholar] [CrossRef]
- Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Gandet, F.F.; et al. High risk of thrombosis in patients in severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensiv. Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef]
- White, D.; Macdonald, S.; Bull, T.; Hayman, M.; De Monteverde-Robb, R.; Sapsford, D.; Lavinio, A.; Varley, J.; Johnston, A.; Besser, M.; et al. Heparin resistance in COVID-19 patients in the intensive care unit. J. Thromb. Thrombolysis 2020, 50, 287–291. [Google Scholar] [CrossRef]
- Levine, M.N.; Hirsh, J.; Gent, M.; Turpie, A.G.; Cruickshank, M.; Weitz, J.; Anderson, D.; Johnson, M. A Randomized Trial Comparing Activated Thromboplastin Time With Heparin Assay in Patients With Acute Venous Thromboembolism Requiring Large Daily Doses of Heparin. Arch. Intern. Med. 1994, 154, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kawatsu, S.; Sasaki, K.; Sakatsume, K.; Takahara, S.; Hosoyama, K.; Masaki, N.; Suzuki, Y.; Hayatsu, Y.; Yoshioka, I.; Sakuma, K.; et al. Predictors of Heparin Resistance Before Cardiovascular Operations in Adults. Ann. Thorac. Surg. 2018, 105, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Uprichard, J.; Manning, R.A.; Laffan, M.A. Monitoring heparin anticoagulation in the acute phase response. Br. J. Haematol. 2010, 149, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Monchi, M.; Berghmans, D.; LeDoux, D.; Canivet, J.-L.; Dubois, B.; Damas, P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: A prospective randomized study. Intensiv. Care Med. 2004, 30, 260–265. [Google Scholar] [CrossRef] [PubMed]
COVID-19 (n = 13) | Control (n = 13) | Total (n = 26) | p-Value | |
---|---|---|---|---|
Patient Characteristics | ||||
Age (years), median (IQR) | 68 (57–73) | 57 (55–63) | 61 (55–69) | 0.150 |
Sex, male, n (%) | 12 (92.3) | 11 (84.6) | 23 (88.5) | 1.000 |
Weight (kg), median (IQR) | 88 (81–95) | 73 (69–96) | 83 (71–96) | 0.095 |
BMI, median (IQR) | 28 (27–30) | 23 (21–32) | 27 (23–32) | 0.065 |
Diabetes, n (%) | 8 (61.5) | 1 (7.7) | 9 (34.6) | 0.011 |
HTA, n (%) | 10 (76.9) | 5 (38.5) | 15 (57.7) | 0.111 |
SAPS II score, median (IQR) | 46 (31–74) | 81 (57–93) | 64 (41–84) | 0.024 |
APACHE II score, median (IQR) | 18 (13–31) | 33 (28–39) | 28 (17–35) | 0.022 |
SOFA score, median (IQR) | 7 (6–8) | 11 (11–17) | 10 (7–11) | <0.001 |
Primary CRRT Indication | 0.065 | |||
Acute kidney injury, n (%) | 8 (61.5) | 5 (38.5) | 13 (50) | |
Electrolyte/acid-base disturbance, n (%) | 3 (23.1) | 8 (61.5) | 11(42.3) | |
Fluid overload, n (%) | 2 (15.4) | 0 (0) | 2 (7.7) | |
At Admission | ||||
Diuresis (mL/24 h), median (IQR) | 710 (615–1020) | 240 (105–450) | 532 (229–808) | 0.014 |
Creatinine (µmol/lL), median (IQR) | 116 (104–199) | 213 (180–278) | 189 (105–274) | 0.106 |
Urea (mmol/L), median (IQR) | 8.2 (5.9–13.3) | 16.7 (13.2–32.2) | 13.3 (7.8–19.7) | 0.015 |
pH, median (IQR) | 7.33 (7.30–7.35) | 7.38 (7.27–7.40) | 7.33 (7.29–7.40) | 0.878 |
Bicarbonate (mmol/L), median (IQR) | 22.5 (20.7–25.7) | 20.1 (17.6–21.6) | 21.6 (18.8–23.2) | 0.043 |
Serum Na+ (mmol/L), median (IQR) | 136 (133–142) | 138 (134–140) | 137 (133–142) | 1.000 |
Serum K+ (mmol/L), median (IQR) | 4.1 (3.6–4.3) | 3.9 (3.5–4.4) | 4.0 (3.5–4.4) | 0.918 |
Lactate (mmol/L), median (IQR) | 0.8 (0.7–0.9) | 2.6 (1.5–3.4) | 1.3 (0.8–2.4) | <0.001 |
Hemoglobin (g/L), median (IQR) | 122 (107–130) | 89 (75–130) | 110 (87–130) | 0.095 |
White blood cells (G/L), median (IQR) | 8.7 (5.5–9.8) | 14.4 (9.1–26.2) | 9.6 (5.7–15) | 0.045 |
ASAT (U/L), median (IQR) | 65 (46–111) | 58 (33–86) | 62 (39–110) | 0.644 |
Bilirubin (µmol/L), median (IQR) | 14 (5–19) | 39 (17–145) | 19 (10.3–47.2) | 0.006 |
Platelets (G/L), median (IQR) | 188 (137–247) | 109 (81–183) | 163 (108–213) | 0.077 |
Fibrinogen (g/L), median (IQR) | 5.4 (5–6.6) | 4.2 (2.9–4.9) | 4.9 (3.5–6.1) | 0.053 |
aPTT (sec), median (IQR) | 39 (35–51) | 46 (36–53) | 40 (35–53) | 0.939 |
INR, median (IQR) | 1.11 (1.03–1.21) | 1.31 (1.15–1.79) | 1.15 (1.05–1.65) | 0.072 |
Prothombin ratio (%), median (IQR) | 93 (70–100) | 55 (38–75) | 74 (42–100) | 0.043 |
Outcomes in ICU and Hospital | ||||
Adjusted CRRT circuit lifespan (h), median (IQR) | 15 (12–24) | 40 (26–67) | 26 (15–50) | 0.006 |
CRRT total duration (d), median (IQR) | 6 (5–8) | 3 (3–8) | 5.5 (3–8) | 0.340 |
Recovery of kidney function 1, n (%) | 10 (76.9) | 11 (84.6) | 21 (80.8) | 0.618 |
Vasopressors duration (d), median (IQR) | 10 (9–16) | 5 (4–11) | 9.5 (5–13) | 0.025 |
Mechanical ventilation duration (d), median (IQR) | 15 (11–17) | 11 (5–14) | 13 (10–17) | 0.042 |
Bleeding complication, n (%) | 7 (54) | 11 (85) | 18 (69) | 0.202 |
Thromboembolic complication, n (%) | 2 (15) | 3 (23) | 5 (19) | 1.000 |
Heparin-indiced thrombocytopenia, n | 0 | 0 | 0 | |
ICU stay (d), median (IQR) | 18 (13–24) | 14 (9–18) | 15 (11–20) | 0.181 |
Hospital stay (d), median (IQR) | 48 (30–52) | 20 (17–40) | 31 (18–49) | 0.102 |
Day 28 mortality, n (%) | 3 (23.1) | 6 (46.2) | 9 (34.6) | 0.411 |
ICU mortality, n (%) | 3 (23.1) | 7 (53.8) | 10 (38.5) | 0.226 |
Hospital mortality, n (%) | 3 (23.1) | 7 (53.8) | 10 (38.5) | 0.226 |
COVID-19 (n = 80) | Control (n = 37) | Total (n = 117) | p-Value | |
---|---|---|---|---|
CRRT circuit characteristics and settings | ||||
Catheter position | <0.001 | |||
Femoral, n (%) | 71 (88.7) | 19 (51.4) | 90 (76.9) | |
Internal jugular, n (%) | 7 (8.8) | 18 (48.6) | 25 (21.4) | |
ECMO, n (%) | 2 (2.5) | 0 (0) | 2 (1.7) | |
Anticoagulation | <0.001 | |||
Citrate, n (%) | 12 (15) | 10 (27) | 22 (18.8) | |
Heparin, n (%) | 68 (85) | 15 (40.5) | 83 (70.9) | |
None, n (%) | 0 (0) | 12 (32.4) | 12 (10.3) | |
Heparin dose (Ui/kg/h), median (IQR) | 9.2 (5.8–12.3) | 4 (3.8–6.5) | 7.7 (4.7–12) | 0.002 |
Blood flow rate (mL/min), median (IQR) | 180 (150–200) | 150 (110–200) | 180 (150–200) | 0.077 |
Replacement fluid (Pre-Postdilution ratio) | <0.001 | |||
1/3–2/3, n (%) | 22 (27.5) | 0 (0) | 22 (18.8) | |
2/3–1/3, n (%) | 58 (72.5) | 37 (100) | 95 (81.2) | |
Dialysate rate (mL/h), median (IQR) | 800 (800–900) | 800 (800–800) | 800 (800–900) | 0.183 |
End transmembrane pressure (mmHg), median (IQR) | 226 (147–300) | 98 (85–188) | 200 (93–280) | <0.001 |
Adjusted CRRT circuit lifespan (h), median (IQR) | 17 (10–24) | 39 (23–67) | 19 (11–38) | <0.001 |
Before CRRT Circuit Initiation | ||||
Platelets (G/L), median (IQR) | 338 (242–451) | 54 (33–133) | 258 (110–376) | <0.001 |
Fibrinogen (g/L), median (IQR) | 7.6 (5.8–8.9) | 2.6 (1.8–3.9) | 5.8 (3.2–8.3) | <0.001 |
aPTT (sec), median (IQR) | 39.1 (34.9–46.3) | 51.4 (40.2–68.7) | 41.5 (35.2–52.2) | <0.001 |
INR, median (IQR) | 1 (1–1) | 1.5 (1.3–1.7) | 1.1 (1.0–1.5) | <0.001 |
Prothombin ratio (%), median (IQR) | 100 (98–100) | 47 (39–63) | 80 (45–100) | <0.001 |
Before CRRT Circuit Clotting | ||||
Platelets (G/L), median (IQR) | 327 (216–429) | 48 (33–75) | 217 (54–372) | <0.001 |
Fibrinogen (g/L), median (IQR) | 8.5 (5.9–9.8) | 2.6 (1.9–3.9) | 4.1 (2.3–8.3) | <0.001 |
aPTT (sec), median (IQR) | 39 (35–44) | 53 (40–66) | 41 (35–53) | <0.001 |
INR, median (IQR) | 1 (1–1) | 1.4 (1.3–1.8) | 1.1 (1–1.5) | <0.001 |
Prothombin ratio (%), median (IQR) | 100 (99–100) | 51 (39–62) | 81 (48–100) | <0.001 |
ß | 95% CI | p-Value | |
---|---|---|---|
COVID-19 group (vs. control group) | −14.42 | −27.30 −1.54 | 0.037 |
SAPS II score | 0.19 | −0.01 0.39 | 0.079 |
Platelets before CRRT circuit initiation | −0.03 | −0.06 0.002 | 0.074 |
Bicarbonate before CRRT circuit initiation | 2.47 | 1.24 3.69 | 0.0001 |
Anticoagulation heparin | 16.92 | 4.90 28.94 | 0.007 |
Anticoagulation citrate | 18.31 | 5.28 31.33 | 0.007 |
Diabetes | −10.80 | −21.04 −0.56 | 0.049 |
ß | 95% CI | p-Value | |
---|---|---|---|
Settings | |||
Dialysate flow rate | 0.004 | −0.02 0.03 | 0.788 |
Replacement fluid ratio 2/3–1/3 | −3.31 | −13.48 6.86 | 0.520 |
Blood flow rate | −0.06 | −0.17 0.05 | 0.280 |
Anticoagulation | |||
No anticoagulation | ref | ||
Heparin < 5 | 11.53 | −2.18 25.23 | 0.099 |
Heparin > 5–10 | 9.608 | −5.99 25.21 | 0.225 |
Heparin > 10 | 15.98 | −0.33 32.29 | 0.055 |
Citrate regional anticoagulation | 15.01 | −1.95 31.96 | 0.083 |
Venous Access | |||
Internal jugular access | ref | ||
Femoral access | −12.03 | −23.42 −0.64 | 0.039 |
ECMO access | 4.73 | −39.58 49.03 | 0.834 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Legouis, D.; Montalbano, M.F.; Siegenthaler, N.; Thieffry, C.; Assouline, B.; Marti, P.E.; Sgardello, S.D.; Andreetta, C.; Binvignat, C.; Pugin, J.; et al. Decreased CRRT Filter Lifespan in COVID-19 ICU Patients. J. Clin. Med. 2021, 10, 1873. https://doi.org/10.3390/jcm10091873
Legouis D, Montalbano MF, Siegenthaler N, Thieffry C, Assouline B, Marti PE, Sgardello SD, Andreetta C, Binvignat C, Pugin J, et al. Decreased CRRT Filter Lifespan in COVID-19 ICU Patients. Journal of Clinical Medicine. 2021; 10(9):1873. https://doi.org/10.3390/jcm10091873
Chicago/Turabian StyleLegouis, David, Maria F. Montalbano, Nils Siegenthaler, Camille Thieffry, Benjamin Assouline, Pierre Emmanuel Marti, Sebastian D. Sgardello, Claudio Andreetta, Céline Binvignat, Jérôme Pugin, and et al. 2021. "Decreased CRRT Filter Lifespan in COVID-19 ICU Patients" Journal of Clinical Medicine 10, no. 9: 1873. https://doi.org/10.3390/jcm10091873
APA StyleLegouis, D., Montalbano, M. F., Siegenthaler, N., Thieffry, C., Assouline, B., Marti, P. E., Sgardello, S. D., Andreetta, C., Binvignat, C., Pugin, J., Heidegger, C., & Sangla, F. (2021). Decreased CRRT Filter Lifespan in COVID-19 ICU Patients. Journal of Clinical Medicine, 10(9), 1873. https://doi.org/10.3390/jcm10091873