Real World Performance Evaluation of Transcatheter Aortic Valve Implantation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CUSUM Analysis for VARC-2 Device Success Endpoint
3.2. CUSUM Analysis for VARC-2 Early Safety Composite Endpoint
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.; Makkar, R.; Svensson, L.G.; Kodali, S.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or Transcatheter Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Handa, N.; Kumamaru, H.; Torikai, K.; Kohsaka, S.; Takayama, M.; Kobayashi, J.; Ogawa, H.; Shirato, H.; Ishii, K.; Koike, K.; et al. Learning Curve for Transcatheter Aortic Valve Implantation Under a Controlled Introduction System―Initial Analysis of a Japanese Nationwide Registry. Circ. J. 2018, 82, 1951–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; Van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; Van Es, G.-A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document†. Eur. Hear. J. 2012, 33, 2403–2418. [Google Scholar] [CrossRef]
- Lunardi, M.; Pesarini, G.; Zivelonghi, C.; Piccoli, A.; Geremia, G.; Ariotti, S.; Rossi, A.; Gambaro, A.; Gottin, L.; Faggian, G.; et al. Clinical outcomes of transcatheter aortic valve implantation: From learning curve to proficiency. Open Hear. 2016, 3, e000420. [Google Scholar] [CrossRef]
- Rogers, C.A.; Reeves, B.C.; Caputo, M.; Ganesh, J.; Bonser, R.S.; Angelini, G.D. Control chart methods for monitoring cardiac surgical performance and their interpretation. J. Thorac. Cardiovasc. Surg. 2004, 128, 811–819. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.M.; Shahian, D.M.; Filardo, G.; Ferraris, V.A.; Haan, C.K.; Rich, J.B.; Normand, S.L.; DeLong, E.R.; Shewan, C.M.; Dokholyan, R.S.; et al. Society of Thoracic Surgeons Quality Measurement Task F. The Society of Thoracic Surgeons 2008 cardiac surgery risk models: Part 2—Isolated valve surgery. Ann. Thorac. Surg. 2009, 88, 23–42. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Ihlemann, N.; Jorgensen, T.H.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrom, T.; Clem-Mensen, P.; et al. Five-Year Clinical and Echocardiographic Outcomes from the Nordic Aortic Valve Intervention (NOTION) Randomized Clinical Trial in Lower Surgical Risk Patients. Circulation 2019. [Google Scholar] [CrossRef]
- Tarantini, G.; Purita, P.A.M.; D’Onofrio, A.; Fraccaro, C.; Frigo, A.C.; D’Amico, G.; Fovino, L.N.; Martin, M.; Cardaioli, F.; Badawy, M.R.A.; et al. Long-term outcomes and prosthesis performance after transcatheter aortic valve re-placement: Results of self-expandable and balloon-expandable transcatheter heart valves. Ann. Cardiothorac. Surg. 2017, 6, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Vlastra, W.; Chandrasekhar, J.; Munoz-Garcia, A.J.; Tchetche, D.; de Brito, F.S.; Barbanti, M.; Kornowski, R.; Latib, A.; D’Onofrio, A.; Ribichini, F.; et al. Comparison of balloon-expandable vs. self-expandable valves in patients undergoing transfemoral transcatheter aortic valve implantation: From the CEN-TER-collaboration. Eur. Heart J. 2019, 40, 456–465. [Google Scholar] [CrossRef]
- Gaede, L.; Blumenstein, J.; Liebetrau, C.; Dörr, O.; Kim, W.-K.; Nef, H.; Husser, O.; Elsässer, A.; Hamm, C.W.; Möllmann, H. Outcome after transvascular transcatheter aortic valve implantation in 2016. Eur. Hear. J. 2018, 39, 667–675. [Google Scholar] [CrossRef]
- Gilard, M.; Moat, N.; Goicolea, J.; Kala, P.; Wenaweser, P.; Zembala, M.; Price, S.; Barrero, E.A.; Iung, B.; Zamorano, P.; et al. The 2011–2012 pilot European Society of Cardiology Sentinel Registry of Transcatheter Aortic Valve Implantation: 12-month clinical outcomes. EuroIntervention 2016, 12, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Alli, O.; Rihal, C.S.; Suri, R.M.; Greason, K.L.; Waksman, R.; Minha, S.; Torguson, R.; Pichard, A.D.; Mack, M.; Svensson, L.G.; et al. Learning curves for transfemoral transcatheter aortic valve replacement in the PARTNER-I trial: Technical performance. Catheter. Cardiovasc. Interv. 2015, 87, 154–162. [Google Scholar] [CrossRef]
- Russo, M.J.; McCabe, J.M.; Thourani, V.H.; Guerrero, M.; Genereux, P.; Nguyen, T.; Hong, K.N.; Kodali, S.; Leon, M.B. Case Volume and Outcomes After TAVR With Balloon-Expandable Prostheses: Insights from TVT Registry. J. Am. Coll. Cardiol. 2019, 73, 427–440. [Google Scholar] [CrossRef]
- Salemi, A.; Sedrakyan, A.; Mao, J.; Elmously, A.; Wijeysundera, H.; Tam, D.Y.; Di Franco, A.; Redwood, S.; Girardi, L.N.; Fremes, S.E.; et al. Individual Operator Experience and Outcomes in Transcatheter Aortic Valve Replacement. JACC: Cardiovasc. Interv. 2019, 12, 90–97. [Google Scholar] [CrossRef]
- Wassef, A.W.A.; Rodes-Cabau, J.; Liu, Y.; Webb, J.G.; Barbanti, M.; Munoz-Garcia, A.J.; Tamburino, C.; Dager, A.E.; Serra, V.; Amat-Santos, I.J.; et al. The Learning Curve and Annual Procedure Volume Standards for Optimum Out-comes of Transcatheter Aortic Valve Replacement: Findings from an International Registry. JACC Cardiovasc. Interv. 2018, 11, 1669–1679. [Google Scholar] [CrossRef]
- Carroll, J.D.; Vemulapalli, S.; Dai, D.; Matsouaka, R.; Blackstone, E.; Edwards, F.; Masoudi, F.A.; Mack, M.; Peterson, E.D.; Holmes, D.; et al. Procedural Experience for Transcatheter Aortic Valve Replacement and Relation to Outcomes: The STS/ACC TVT Registry. J. Am. Coll. Cardiol. 2017, 70, 29–41. [Google Scholar] [CrossRef]
- Kaier, K.; Reinecke, H.; Schmoor, C.; Frankenstein, L.; Vach, W.; Hehn, P.; Zirlik, A.; Bode, C.; Zehender, M.; Reinöhl, J. Learning Curves Among All Patients Undergoing Transcatheter Aortic Valve Implantation in Germany: A Retrospective Observational Study. Int. J. Cardiol. 2017, 235, 17–21. [Google Scholar] [CrossRef] [PubMed]
Parameter | Total Sample n = 910 | STS ≥ 8 n = 115 (12.6%) | STS < 8 n = 795 (87.4%) | p |
---|---|---|---|---|
Age, years | 82 (24–97) | 83 (52–91) | 81 (64–89) | 0.001 |
Logistic EuroSCORE, % | 15.3 (16.4) | 28.0 (21.8) | 13.8 (14.0) | <0.001 |
EuroSCORE II, % | 4.6 (5.3) | 11.0 (8.4) | 4.0 (3.9) | 0.002 |
STS score, % | 3.5 (3.5) | 10.5 (2.4) | 3.2 (2.3) | <0.001 |
Male, n (%) | 419 (46.0%) | 53 (46.1%) | 366 (46.0%) | 0.99 |
BMI, kg/m2 | 25.4 (5.7) | 24.1 (5.5) | 25.5 (5.7) | 0.23 |
eGFR (mL/min/1.72 m2) | 47.7 (28.1) | 35.1 (19.2) | 50.1 (28.3) | <0.001 |
Anemia, n (%) | 455 (50.0%) | 65 (56.5%) | 390 (49.2%) | 0.14 |
Dyslipidaemia, n (%) | 506 (55.6%) | 78 (67.8%) | 428 (55.0%) | 0.01 |
COPD, n (%) | 149 (16.4%) | 38 (33.9%) | 111 (14.3%) | <0.001 |
Diabetes, n (%) | 255 (28.0%) | 46 (40.4%) | 209 (26.9%) | 0.003 |
Hypertension, n (%) | 766 (84.2%) | 103 (90.4%) | 663 (85.1%) | 0.13 |
Previous AMI, n (%) | 136 (14.9%) | 26 (23.0%) | 110 (14.2%) | 0.01 |
Atrial fibrillation, n (%) | 343 (37.7%) | 49 (42.6%) | 294 (37.9%) | 0.34 |
Previous stroke, n (%) | 65 (7.1%) | 12 (10.4%) | 53 (6.8%) | 0.16 |
PVD, n (%) | 302 (33.2%) | 64 (55.7%) | 238 (30.6%) | <0.001 |
CAD, n (%) | 418 (45.9%) | 74 (64.3%) | 344 (42.9%) | <0.001 |
Previous CABG, n (%) | 94 (10.3%) | 19 (16.5%) | 75 (9.6%) | 0.025 |
Previous AVR, n (%) | 59 (6.5%) | 7 (6.1%) | 52 (6.7%) | 0.81 |
Previous MVR, n (%) | 47 (5.2%) | 6 (5.2%) | 41 (5.3%) | 0.99 |
PM, n (%) | 109 (12.0%) | 16 (13.9%) | 93 (11.7%) | 0.49 |
Syncope, n (%) | 163 (17.9%) | 33 (28.7%) | 130 (16.7%) | 0.002 |
Stable angina, n (%) | 157 (17.3%) | 42 (36.5%) | 115 (14.7%) | <0.001 |
Unstable angina, n (%) | 43 (4.7%) | 12 (10.4%) | 31 (4.0%) | 0.002 |
Cardiogenic shock or APE, n (%) | 121 (13.3%) | 49 (42.6%) | 72 (9.2%) | <0.001 |
NYHA class I or II, n (%) | 239 (26.2%) | 16 (13.9%) | 223 (30.3%) | <0.001 |
NYHA class III or IV, n (%) | 671 (73.8%) | 99 (86.0%) | 572 (71.9%) | <0.001 |
Prior PCI, n (%) | 143 (15.7%) | 30 (26.1%) | 113 (14.2%) | 0.001 |
Variables | All Patients n = 910 | Group STS ≥ 8, n = 115 (12.6%) | Group STS < 8, n = 795 (87.4%) | p |
---|---|---|---|---|
Device success not achieved, n (%) | 43 (4.7%) | 6 (5.2%) | 37 (4.7%) | 0.79 |
Procedural mortality, n (%) | 3 (0.3%) | 1 (0.9%) | 2 (0.4%) | 0.77 |
Suboptimal positioning, n (%) | 12 (1.3%) | 4 (3.5%) | 8 (1.0%) | 0.24 |
Non-Intended performance of the prosthetic heart valve, n (%) | 30 (3.3%) | 3 (2.6%) | 27 (3.4%) | 0.89 |
Early safety not achieved (30 days), n (%) | 87 (9.5%) | 14 (12.2%) | 73 (9.2%) | 0.30 |
All-cause mortality, n (%) | 18 (2.0%) | 8 (7.0%) | 10 (1.2%) | 0.03 |
Cardiovascular, n (%) | 9 (1.0%) | 4 (3.5%) | 5 (0.6%) | 0.03 |
Non cardiovascular, n (%) | 9 (1.0%) | 4 (3.5%) | 5 (0.6%) | 0.01 |
All stroke, n (%) | 7 (0.8%) | 2 (1.7%) | 5 (0.6%) | 0.07 |
Life-threatening bleeding, n (%) | 14 (1.5%) | 2 (1.7%) | 12 (1.5%) | 0.97 |
Acute Kidney Injury stage 2 or 3, n (%) | 21 (2.3%) | 3 (2.6%) | 18 (2.3%) | 0.73 |
Coronary artery obstruction requiring intervention, n (%) | 2 (0.2%) | 0 (0%) | 2 (0.3%) | 0.65 |
Major vascular complications, n (%) | 27 (3.0%) | 4 (3.5%) | 23 (2.9%) | 0.46 |
Valve-related dysfunction requiring repeat procedure, n (%) | 9 (1.0%) | 5 (4.3%) | 4 (0.5%) | 0.08 |
Clinical efficacy not achieved, n (%) | 206 (22.6%) | 61 (53.0%) | 145 (18.2%) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pesarini, G.; Venturi, G.; Tavella, D.; Gottin, L.; Lunardi, M.; Mirandola, E.; Onorati, F.; Faggian, G.; Ribichini, F. Real World Performance Evaluation of Transcatheter Aortic Valve Implantation. J. Clin. Med. 2021, 10, 1890. https://doi.org/10.3390/jcm10091890
Pesarini G, Venturi G, Tavella D, Gottin L, Lunardi M, Mirandola E, Onorati F, Faggian G, Ribichini F. Real World Performance Evaluation of Transcatheter Aortic Valve Implantation. Journal of Clinical Medicine. 2021; 10(9):1890. https://doi.org/10.3390/jcm10091890
Chicago/Turabian StylePesarini, Gabriele, Gabriele Venturi, Domenico Tavella, Leonardo Gottin, Mattia Lunardi, Elena Mirandola, Francesco Onorati, Giuseppe Faggian, and Flavio Ribichini. 2021. "Real World Performance Evaluation of Transcatheter Aortic Valve Implantation" Journal of Clinical Medicine 10, no. 9: 1890. https://doi.org/10.3390/jcm10091890
APA StylePesarini, G., Venturi, G., Tavella, D., Gottin, L., Lunardi, M., Mirandola, E., Onorati, F., Faggian, G., & Ribichini, F. (2021). Real World Performance Evaluation of Transcatheter Aortic Valve Implantation. Journal of Clinical Medicine, 10(9), 1890. https://doi.org/10.3390/jcm10091890