Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
2.3. Classification of AKI Classification
2.4. Items to Consider
2.5. CPB Management
2.6. Statistical Analysis
3. Results
3.1. Correlation between GDF-15, ET-1, STS Score, and Preoperative Blood Data
3.2. Correlation between GDF-15, ET-1, STS Score, and Perioperative Data
3.3. Differences of Various Clinical Parameters between Patients with and without AKI
3.4. Preoperative ET-1 and GDF-15 Level as Short-Term Risks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
STS score | The Society of Thoracic Surgeons |
ET-1 | endothelin-1 |
GDF-15 | growth differentiation factor-15 |
AKI | acute kidney injury |
CPB time | cardiopulmonary bypass time |
BCC | blood cell concentrates |
FFP | fresh frozen plasma |
PC | platelet concentrates |
BNP | brain natriuretic peptide |
eGFR | estimated glomerular filtration rate |
Hb | hemoglobin |
Alb | albumin |
hsCRP | high-sensitive C-reactive protein |
HD | hemodialysis |
ICU | intensive care unit |
References
- Ad, N.; Holmes, S.D.; Patel, J.; Pritchard, G.; Shuman, D.J.; Halpin, L. Comparison of EuroSCORE II, Original EuroSCORE, and The Society of Thoracic Surgeons Risk Score in Cardiac Surgery Patients. Ann. Thorac. Surg. 2016, 102, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Puskas, J.D.; Kilgo, P.D.; Thourani, V.H.; Lattouf, O.M.; Chen, E.; Vega, J.D.; Cooper, W.; Guyton, R.A.; Halkos, M. The society of thoracic surgeons 30-day predicted risk of mortality score also predicts long-term survival. Ann. Thorac. Surg. 2012, 93, 26–33. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coca, S.G.; Yusuf, B.; Shlipak, M.G.; Garg, A.X.; Parikh, C.R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: A systematic review and meta-analysis. Am. J. Kidney Dis. 2009, 53, 961–973. [Google Scholar] [CrossRef] [Green Version]
- Conlon, P.J.; Stafford-Smith, M.; White, W.D.; Newman, M.F.; King, S.; Winn, M.P.; Landolfo, K. Acute renal failure following cardiac surgery. Nephrol. Dial. Transplant. 1999, 14, 1158–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huen, S.C.; Parikh, C.R. Predicting acute kidney injury after cardiac surgery: A systematic review. Ann. Thorac. Surg. 2012, 93, 337–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.H.; Grab, J.D.; O’Brien, S.M.; Bridges, C.R.; Gammie, J.S.; Haan, C.K.; Ferguson, T.B.; Peterson, E.D. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 2006, 114, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Auriemma, S.; Fabbri, A.; D’Onofrio, A.; Katz, N.; McCullough, P.A.; Ricci, Z.; Shaw, A.; Ronco, C. The pathophysiology of cardiac surgery-associated acute kidney injury (CSA-AKI). Int. J. Artif. Organs 2008, 31, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.D.; Shaefi, S.; Sladen, R.N. Preventing acute kidney injury after cardiac surgery. Curr. Opin. Anaesthesiol. 2011, 24, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Vives, M.; Hernandez, A.; Parramon, F.; Estanyol, N.; Pardina, B.; Muñoz, A.; Alvarez, P.; Hernandez, C. Acute kidney injury after cardiac surgery: Prevalence, impact and management challenges. Int. J. Nephrol. Renov. Dis. 2019, 12, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Bucerius, J.; Gummert, J.F.; Walther, T.; Schmitt, D.V.; Doll, N.; Falk, V.; Mohr, F.W. On-pump versus off-pump coronary artery bypass grafting: Impact on postoperative renal failure requiring renal replacement therapy. Ann. Thorac. Surg. 2004, 77, 1250–1256. [Google Scholar] [CrossRef]
- Ascione, R.; Lloyd, C.T.; Underwood, M.J.; Gomes, W.J.; Angelini, G.D. On-pump versus off-pump coronary revascularization: Evaluation of renal function. Ann. Thorac. Surg. 1999, 68, 493–498. [Google Scholar] [CrossRef]
- Karim, H.M.; Yunus, M.; Saikia, M.K.; Kalita, J.P.; Mandal, M. Incidence and progression of cardiac surgery-associated acute kidney injury and its relationship with bypass and cross clamp time. Ann. Card. Anaesth. 2017, 20, 22–27. [Google Scholar] [PubMed]
- Samra, M.; Abcar, A.C. False estimates of elevated creatinine. Perm. J. 2012, 16, 51–52. [Google Scholar] [CrossRef] [Green Version]
- Harky, A.; Joshi, M.; Gupta, S.; Teoh, W.Y.; Gatta, F.; Snosi, M. Acute Kidney Injury Associated with Cardiac Surgery: A Comprehensive Literature Review. Braz. J. Cardiovasc. Surg. 2020, 35, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Pozzoli, S.; Simonini, M.; Manunta, P. Predicting acute kidney injury: Current status and future challenges. J. Nephrol. 2018, 31, 209–223. [Google Scholar] [CrossRef]
- Prowle, J.R.; Calzavacca, P.; Licari, E.; Ligabo, E.V.; Echeverri, J.E.; Bagshaw, S.M.; Haase-Fielitz, A.; Haase, M.; Ostland, V.; Noiri, E.; et al. Combination of biomarkers for diagnosis of acute kidney injury after cardiopulmonary bypass. Ren. Fail. 2015, 37, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Coca, S.G.; Garg, A.X.; Thiessen-Philbrook, H.; Koyner, J.L.; Patel, U.D.; Krumholz, H.M.; Shlipak, M.G.; Parikh, C.R. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J. Am. Soc. Nephrol. 2014, 25, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, C.; Speed, J.S.; Kasztan, M.; Gohar, E.Y.; Pollock, D.M. Endothelin-1 and the kidney: New perspectives and recent findings. Curr. Opin. Nephrol. Hypertens. 2016, 25, 35–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavell, A.L.; Burnett, J.C., Jr. Physiologic and pathophysiologic roles of endothelin in the kidney. Curr. Opin. Nephrol. Hypertens. 1994, 3, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Neuhofer, W.; Pittrow, D. Role of endothelin and endothelin receptor antagonists in renal disease. Eur. J. Clin. Investig. 2006, 36 Suppl 3, 78–88. [Google Scholar] [CrossRef]
- Ghashghaei, R.; Sabet, A.; Wettersten, N.; Lee, E.; Coletta, J.; Golts, E.; Clopton, P.; Mehta, R.; Maisel, A.S.; Taub, P. Endothelin levels predict post- operative AKI in patients with coronary artery bypass surgery. J. Cardiovas Dis. Med. 2018, 1.1, 18–23. [Google Scholar]
- Shi, Y.; Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Ago, T.; Sadoshima, J. GDF15, a cardioprotective TGF-beta superfamily protein. Circ. Res. 2006, 98, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.E.; Hwang, S.J.; Wollert, K.C.; Larson, M.G.; Cheng, S.; Kempf, T.; Vasan, R.S.; Januzzi, J.L.; Wang, T.J.; Fox, C.S. Biomarkers of cardiovascular stress and incident chronic kidney disease. Clin. Chem. 2013, 59, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
- Stehouwer, C.D.; Fischer, H.R.; van Kuijk, A.W.; Polak, B.C.; Donker, A.J. Endothelial dysfunction precedes development of microalbuminuria in IDDM. Diabetes 1995, 44, 561–564. [Google Scholar] [CrossRef]
- Wollert, K.C. Growth-differentiation factor-15 in cardiovascular disease: From bench to bedside, and back. Basic Res. Cardiol. 2007, 102, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Kahli, A.; Guenancia, C.; Zeller, M.; Grosjean, S.; Stamboul, K.; Rochette, L.; Girard, C.; Vergely, C. Growth differentiation factor-15 (GDF-15) levels are associated with cardiac and renal injury in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. PLoS ONE 2014, 9, e105759. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, T.; Shibasaki, I.; Sawaguchi, T.; Haruyama, A.; Kaneda, H.; Nakajima, T.; Hasegawa, T.; Arikawa, T.; Obi, S.; Sakuma, M.; et al. Growth Differentiation Factor-15 (GDF-15) is a Biomarker of Muscle Wasting and Renal Dysfunction in Preoperative Cardiovascular Surgery Patients. J. Clin. Med. 2019, 8, 1576. [Google Scholar] [CrossRef] [Green Version]
- Guenancia, C.; Kahli, A.; Laurent, G.; Hachet, O.; Malapert, G.; Grosjean, S.; Girard, C.; Vergely, C.; Bouchot, O. Pre-operative growth differentiation factor 15 as a novel biomarker of acute kidney injury after cardiac bypass surgery. Int. J. Cardiol. 2015, 197, 66–71. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Chang, C.H.; Fu, C.M.; Yang, C.H.; Fan, P.C.; Li, P.C.; Hsu, G.Y.; Chen, S.W.; Yang, C.W.; Chen, C.C.; Chen, Y.C. Society of Thoracic Surgeons score predicts kidney injury in patients not undergoing bypass surgery. Ann. Thorac. Surg. 2015, 99, 123–129. [Google Scholar] [CrossRef]
- Antunes, P.E.; Prieto, D.; Ferrão de Oliveira, J.; Antunes, M.J. Renal dysfunction after myocardial revascularization. Eur. J. Cardiothorac. Surg. 2004, 25, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Nakajima, T.; Nozawa, N.; Katayanagi, S.; Ishizaka, H.; Mizushima, Y.; Matsumoto, K.; Nishikawa, K.; Toyama, Y.; Takahashi, R.; et al. Phase Angle as an Indicator of Sarcopenia, Malnutrition, and Cachexia in Inpatients with Cardiovascular Diseases. J. Clin. Med. 2020, 9, 2554. [Google Scholar] [CrossRef]
- Wang, Y.; Bellomo, R. Cardiac surgery-associated acute kidney injury: Risk factors, pathophysiology and treatment. Nat. Rev. Nephrol. 2017, 13, 697–711. [Google Scholar] [CrossRef]
- Thiele, R.H.; Isbell, J.M.; Rosner, M.H. AKI associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2015, 10, 500–514. [Google Scholar] [CrossRef] [Green Version]
- Baliga, R.; Ueda, N.; Walker, P.D.; Shah, S.V. Oxidant mechanisms in toxic acute renal failure. Am. J. Kidney Dis. 1997, 29, 465–477. [Google Scholar] [CrossRef]
- Haase, M.; Bellomo, R.; Haase-Fielitz, A. Novel biomarkers, oxidative stress, and the role of labile iron toxicity in cardiopulmonary bypass-associated acute kidney injury. J. Am. Coll. Cardiol. 2010, 55, 2024–2033. [Google Scholar] [CrossRef] [Green Version]
- Mehran, R.; Aymong, E.D.; Nikolsky, E.; Lasic, Z.; Iakovou, I.; Fahy, M.; Mintz, G.S.; Lansky, A.J.; Moses, J.W.; Stone, G.W.; et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation. J. Am. Coll. Cardiol. 2004, 44, 1393–1399. [Google Scholar]
- Neugarten, J.; Golestaneh, L. Female sex reduces the risk of hospital-associated acute kidney injury: A meta-analysis. BMC Nephrol. 2018, 19, 314. [Google Scholar] [CrossRef]
- Rosner, M.H.; Okusa, M.D. Acute kidney injury associated with cardiac surgery. Clin. J. Am. Soc. Nephrol. 2006, 1, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, F.; De Amici, M.; Klersy, C.; Marchi, G.; Sciortino, A.; Spaltini, F.; Pin, M.; Grazioli, V.; Celentano, A.; Vanini, B.; et al. High preoperative plasma endothelin-1 levels are associated with increased acute kidney injury risk after pulmonary endarterectomy. J. Nephrol. 2018, 31, 881–888. [Google Scholar] [CrossRef]
- Bond, B.R.; Dorman, B.H.; Clair, M.J.; Walker, C.A.; Pinosky, M.L.; Reeves, S.T.; Walton, S.; Kratz, J.M.; Zellner, J.L.; Crumbley, A.J., 3rd; et al. Endothelin-1 during and after cardiopulmonary bypass: Association to graft sensitivity and postoperative recovery. J. Thorac. Cardiovasc. Surg. 2001, 122, 358–364. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.N.; Toth, T.; Jones, C.; Lin, H.; Ray, P.; George, S.J.; Welsh, G.; Satchell, S.C.; Sleeman, P.; Angelini, G.D.; et al. Prevention of post-cardiopulmonary bypass acute kidney injury by endothelin A receptor blockade. Crit. Care Med. 2011, 39, 793–802. [Google Scholar] [CrossRef]
- Lind, L.; Wallentin, L.; Kempf, T.; Tapken, H.; Quint, A.; Lindahl, B.; Olofsson, S.; Venge, P.; Larsson, A.; Hulthe, J.; et al. Growth-differentiation factor-15 is an independent marker of cardiovascular dysfunction and disease in the elderly: Results from the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) Study. Eur. Heart J. 2009, 30, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Heringlake, M.; Charitos, E.I.; Gatz, N.; Käbler, J.H.; Beilharz, A.; Holz, D.; Schön, J.; Paarmann, H.; Petersen, M.; Hanke, T. Growth differentiation factor 15: A novel risk marker adjunct to the EuroSCORE for risk stratification in cardiac surgery patients. J. Am. Coll. Cardiol. 2013, 61, 672–681. [Google Scholar] [CrossRef] [Green Version]
- Kiriya, Y.; Toshiaki, N.; Shibasaki, I.; Ogata, K.; Ogawa, H.; Takei, Y.; Tezuka, M.; Seki, M.; Kato, T.; Lefor, A.K.; et al. Sarcopenia assessed by the quantity and quality of skeletal muscle is a prognostic factor for patients undergoing cardiac surgery. Surg. Today 2020, 50, 895–904. [Google Scholar] [CrossRef]
Patients, Number | 145 |
---|---|
Risk factors, number | |
Hypertension (HT), n (%) | 113 (78) |
Diabetes (DM), n (%) | 48 (33) |
Dyslipidemia (Dlp), n (%) | 64 (44) |
Smoking, n (%) | 26 (18) |
CKD, n (%) | 76 (52) |
Hemodialysis (HD), n (%) | 19 (13) |
Previous cardiac surgery, n (%) | 3 (2) |
NYHA classification | 2.1 ± 0.9 |
Cardiovascular surgery, number | |
CABG | 34 |
AVR | 17 |
MVR | 4 |
Dual valve replacement | 4 |
MV repair | 24 |
CABG combined with valve procedure (AVR, MV repair, MVR) | 9, 5, 2 |
AVR combined with MV repair | 4 |
Aortic disease (AAR, TAR, HAR, etc.) | 23 |
Others | 19 |
Preoperative data | |
Creatinine, mg/dL | 1.6 ± 2.0 |
eGFR, mL/min/1.73 m2 | 56.6 ± 27.3 |
Hb, g/dL | 12.5 ± 1.9 |
Alb, g/dL | 3.9 ± 0.6 |
hsCRP, mg/L | 0.9 ± 2.2 |
HbA1c, % | 6.1 ± 0.9 |
BNP, pg/mL | 422 ± 659 |
EF, % | 56.7 ± 13.5 |
GDF-15, pg/mL | 1851 ± 1638 |
ET-1, pg/mL | 1.38 ± 0.92 |
STS score, % | 3.6 ± 4.2 |
Operative data | |
CPB time, h | 2.19 ± 0.93 |
Operative bleeding, mL | 677 ± 448 |
Operative urine output, mL | 1555 ± 2598 |
Operative transfusion | |
RCC, U | 8.3 ± 7.3 |
FFP, U | 7.6 ± 7.1 |
PC, U | 12.6 ± 14.3 |
Postoperative intubation period, h | 34.6 ± 79.3 |
Variable | Number | |
---|---|---|
AKI (male/female), n | 25/4 | |
AKI (Stage) | ||
Stage 1 | 20 | |
Stage 2 | 5 | |
Stage 3 | 4 | |
New HD, n (%) | 4 (3) | |
Stroke, n (%) | 4 (2) | |
Prolonged ventilation (>48 h), n (%) | 20 (13) | |
DSWI, n (%) | 5 (3) | |
Re operation, n (%) | 5 (3) | |
ICU period, day | 3.0 ± 4.4 | |
Postoperative admission days, days | 33.2 ± 40.3 | |
30-day mortality, n (%) | 3 (2) | NOMI 2 cases, stroke 1 case |
30-day mortality + morbidity, n (%) | 29 (20) |
GDF-15 | ET-1 | STS Score | |
---|---|---|---|
Operative time, h | 0.168 (0.027 *) | 0.067 (0.428) | 0.163 (0.037 *) |
CPB time, h | 0.010 (0.900) | 0.099 (0.239) | 0.128 (0.102) |
Arrest time, h | −0.096 (0.208) | 0.026 (0.754) | 0.059 (0.457) |
Bleeding, mL | 0.126 (0.101) | 0.058 (0.498) | 0.079 (0.316) |
Transfusion | |||
RCC, U | 0.322 (<0.001 ***) | 0.102 (0.226) | 0431 (<0.001 ***) |
FFP, U | 0.109 (0.156) | −0.020 (0.813) | 0.196 (0.012 *) |
PC, U | 0.150 (0.051) | 0.113 (0.181) | 0.368 (<0.001 ***) |
Urine output, mL | −0.418 (<0.001 ***) | −0.365 (<0.001 ***) | −0.390 (<0.001 ***) |
Balance, mL | 0.214 (0.005 **) | −0.124 (0.144) | 0.138 (0.080) |
Postoperative intubation period, h | 0.113 (0.140) | 0.190 (0.023 *) | 0.162 (0.039 *) |
ICU period, day | 0.191 (0.012 *) | 0.276 (0.001 **) | 0.351 (<0.001 ***) |
Postoperative admission, days | 0.211 (0.006 **) | 0.247 (0.003 **) | 0.339 (<0.001 ***) |
A: Multiple logistic regression analysis of perioperative data | ||||
Dependent Variable: Presence or Absence of AKI | ||||
Independent Variable | Odds ratio | 95% Confidence Interval | p-Value | |
Model 1/Model 2 | Lower Limit | Upper Limit | ||
CPB time, h | 3.617/3.404 | 1.807/1.544 | 7.240/7.053 | <0.001 ***/0.002 ** |
Bleeding, mL | 1.000/1.000 | 1.000/0.999 | 1.001/1.001 | 0.262/0.859 |
RCC transfusion, U | 1.049/1.114 | 0.926/0.951 | 1.187/1.305 | 0.453/0.181 |
FFP transfusion, U | 0.893/0.896 | 0.766/0.748 | 1.041/1.074 | 0147/0.236 |
PC transfusion, U | 0.979/0.982 | 0.909/0.902 | 1.053/1.070 | 0.565/0.683 |
Postoperative intubation time, h | 1.012/1.021 | 0.990/0.991 | 1.035/1.051 | 0.271/0.168 |
B: Multiple logistic regression analysis of preoperative and perioperative data | ||||
Dependent Variable: Presence or Absence of AKI | ||||
Independent Variable | Odds ratio | 95% Confidence Interval | p -Value | |
Model 1/Model 2 | Lower Limit | Upper Limit | ||
ET-1, pg/mL | 1.926/2.300 | 1.105/1.144 | 3.357/4.624 | 0.021 */0.019 * |
GDF-15, pg/mL | 1.000/1.000 | 1.000/1.000 | 1.000/1.001 | 0.075/0.227 |
RCC transfusion, U | 1.047/1.137 | 0.951/1.007 | 1.153/1.284 | 0.346/0.038 * |
FFP transfusion, U | 0.980/0.966 | 0.870/0.839 | 1.104/1.113 | 0.741/0.636 |
CPB time, h | 4.115/4.113 | 2.103/1.892 | 8.051/8.943 | <0.001 ***/<0.001 *** |
A: Multiple logistic regression analysis of 30-day mortality + morbidity (total patients) | ||||
Dependent Variable: Dependent Variable: 30-Day Mortality + Morbidity | ||||
Independent Variable | Odds ratio | 95% Confidence Interval | p-Value | |
Lower Limit | Upper Limit | |||
ET-1, pg/mL | 1.105 | 0.463 | 2.634 | 0.822 |
GDF-15, ng/mL | 1.001 | 1.000 | 1.001 | 0.030 * |
eGFR, ml/min/1.73 m2 | 1.028 | 0.994 | 1.064 | 0.102 |
CPB time, h | 1.947 | 1.023 | 3.705 | 0.042 * |
RCC transfusion, U | 1.157 | 1.041 | 1.286 | 0.007 ** |
B: Multiple logistic regression analysis of 30-day mortality + morbidity (except for dialysis patients) | ||||
Dependent Variable: Presence or Absence of AKI | ||||
Independent Variable | Odds ratio | 95% Confidence Interval | p-Value | |
Lower Limit | Upper Limit | |||
ET-1, pg/mL | 1.119 | 0.487 | 2.570 | 0.791 |
GDF-15, ng/mL | 1.001 | 1.000 | 1.001 | 0.019 * |
eGFR, ml/min/1.73 m2 | 1.031 | 1.002 | 1.062 | 0.037 * |
CPB time, h | 1.813 | 1.083 | 3.037 | 0.024 * |
RCC transfusion, U | 1.141 | 1.042 | 1.249 | 0.004 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, T.; Nakajima, T.; Fukuda, T.; Shibasaki, I.; Hasegawa, T.; Ogata, K.; Ogawa, H.; Hirota, S.; Ohashi, H.; Saito, S.; et al. Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery. J. Clin. Med. 2021, 10, 1960. https://doi.org/10.3390/jcm10091960
Kato T, Nakajima T, Fukuda T, Shibasaki I, Hasegawa T, Ogata K, Ogawa H, Hirota S, Ohashi H, Saito S, et al. Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery. Journal of Clinical Medicine. 2021; 10(9):1960. https://doi.org/10.3390/jcm10091960
Chicago/Turabian StyleKato, Takashi, Toshiaki Nakajima, Taira Fukuda, Ikuko Shibasaki, Takaaki Hasegawa, Koji Ogata, Hironaga Ogawa, Shotaro Hirota, Hirotaka Ohashi, Shunsuke Saito, and et al. 2021. "Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery" Journal of Clinical Medicine 10, no. 9: 1960. https://doi.org/10.3390/jcm10091960
APA StyleKato, T., Nakajima, T., Fukuda, T., Shibasaki, I., Hasegawa, T., Ogata, K., Ogawa, H., Hirota, S., Ohashi, H., Saito, S., Takei, Y., Tezuka, M., Seki, M., Kuwata, T., Sakuma, M., Abe, S., Toyoda, S., Inoue, T., & Fukuda, H. (2021). Preoperative Serum GDF-15, Endothelin-1 Levels, and Intraoperative Factors as Short-Term Operative Risks for Patients Undergoing Cardiovascular Surgery. Journal of Clinical Medicine, 10(9), 1960. https://doi.org/10.3390/jcm10091960