Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics
2.2. Patients and Follow-Up
2.3. Redo-Kasai Portoenterostomy in One Infant
2.4. Sample Preparation and Multiplex Measurement
2.5. Data Analysis
3. Results
3.1. Clinical Parameters in Infants with Biliary Atresia
3.2. The Protein Microenvironment of 13 Different Growth Factors in the Livers of BA Patients Does not Enable Differentiation of Clinical Outcome
3.3. No Correlation of 13 Different Growth Factors in the Livers of BA Patients to the Pre- and Postoperative Total Bilirubin Levels, Ishak Score, or Age at KPE
3.4. The Protein Microenvironment of 13 Different Growth Factors in the Sera of BA Patients Does not Enable Differentiation of Clinical Outcome
3.5. Principle Component Analysis of 13 Different Growth Factors in the Livers of BA Patients and Statistical Analysis Regarding the KPE Outcome
3.6. Comparing the Hepatic and Systemic Growth Factors Levels in BA Patients at KPE
3.7. Local and systemic growth factor milieu in a child undergoing redo-KPE
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BA | Biliary atresia |
BARD | Biliary atresia and related diseases |
BCA | Bicinchoninic acid assay |
Beta-NGF | Beta-nerve growth factor |
BDNF | Brain-derived neurotrophic factor |
EGF | Epidermal growth factor |
ELISA | Enzyme-linked immunosorbent assay |
FGF2 | Fibroblast growth factor 2 |
FIG | Figure |
GM-CSF | Granulocyte-macrophage colony-stimulating factor |
IL | Interleukin |
KPE | Kasai portoenterostomy |
LIF | Leukemia inhibitory factor |
LTX | Liver transplantation |
MP | Medical products |
NCBI | National Center for Biotechnology Information |
PCA | Principle component analysis |
PDGF-bb | Platelet-derived growth factor receptor |
PIGF-1 | Placenta growth factor 1 |
RLC | Rapid liver cirrhosis |
SCF | Stem cell factor, Kit-ligand |
SD | Standard deviation |
SDF-1alpha/CXCL12 | Stromal cell-derived factor 1, CXCL12 |
SNL | Survival with native liver |
TNF | Tumor necrosis factor |
VEGF-A,-D | Vascular endothelial growth factor a, -d |
References
- Petersen, C.; Davenport, M. Aetiology of Biliary Atresia: What Is Actually Known? Orphanet J. Rare Dis. 2013, 8, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, A.; Miethke, A.; Bezerra, J.A. Pathogenesis of Biliary Atresia: Defining Biology to Understand Clinical Phenotypes. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Kohli, R.; Cortes, M.; Heaton, N.D.; Dhawan, A. Liver Transplantation in Children: State of the Art and Future Perspectives. Arch. Dis. Child. 2017. [CrossRef]
- Chardot, C.; Buet, C.; Serinet, M.-O.; Golmard, J.-L.; Lachaux, A.; Roquelaure, B.; Gottrand, F.; Broué, P.; Dabadie, A.; Gauthier, F.; et al. Improving Outcomes of Biliary Atresia: French National Series 1986–2009. J. Hepatol. 2013, 58, 1209–1217. [Google Scholar] [CrossRef]
- Davenport, M.; Ong, E.; Sharif, K.; Alizai, N.; McClean, P.; Hadzic, N.; Kelly, D.A. Biliary Atresia in England and Wales: Results of Centralization and New Benchmark. J. Pediatr. Surg. 2011, 46, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- Nio, M.; Wada, M.; Sasaki, H.; Tanaka, H. Effects of Age at Kasai Portoenterostomy on the Surgical Outcome: A Review of the Literature. Surg. Today 2015, 45, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Koga, H.; Okawada, M.; Nakamura, H.; Lane, G.J.; Yamataka, A. Does Time Taken to Achieve Jaundice-Clearance Influence Survival of the Native Liver in Post-Kasai Biliary Atresia? World J. Pediatr. WJP 2018, 14, 191–196. [Google Scholar] [CrossRef]
- Chusilp, S.; Sookpotarom, P.; Tepmalai, K.; Rajatapiti, P.; Chongsrisawat, V.; Poovorawan, Y.; Vejchapipat, P. Prognostic Values of Serum Bilirubin at 7th Day Post-Kasai for Survival with Native Livers in Patients with Biliary Atresia. Pediatr. Surg. Int. 2016, 32, 927–931. [Google Scholar] [CrossRef]
- Muthukanagarajan, S.J.; Karnan, I.; Srinivasan, P.; Sadagopan, P.; Manickam, S. Diagnostic and Prognostic Significance of Various Histopathological Features in Extrahepatic Biliary Atresia. J. Clin. Diagn. Res. JCDR 2016, 10, EC23–EC27. [Google Scholar] [CrossRef]
- Zheng, S.; Luo, Y.; Wang, W.; Xiao, X. Analysis of the Pathomorphology of the Intra- and Extrahepatic Biliary System in Biliary Atresia. Eur. J. Pediatr. Surg. 2008, 18, 98–102. [Google Scholar] [CrossRef]
- Madadi-Sanjani, O.; Kuebler, J.F.; Dippel, S.; Gigina, A.; Falk, C.S.; Vieten, G.; Petersen, C.; Klemann, C. Long-Term Outcome and Necessity of Liver Transplantation in Infants with Biliary Atresia Are Independent of Cytokine Milieu in Native Liver and Serum. Cytokine 2018, 111, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Madadi-Sanjani, O.; Kuebler, J.F.; Dippel, S.; Gigina, A.; Falk, C.S.; Vieten, G.; Petersen, C.; Klemann, C. Hepatocyte Growth Factor Levels in Livers and Serum at Kasai-Portoenterostomy Are Not Predictive of Clinical Outcome in Infants with Biliary Atresia. Growth Factors Chur Switz. 2019, 37, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Andruszkow, J.; Hartleben, B.; Schlué, J.; Ritz, T.; Knüchel, R.; Hasan, A.; Petersen, C.; Madadi-Sanjani, O. Staging of liver fibrosis in biliary atresia: Comparison of Chevallier and Ishak score as well as automated evaluation. Pathologe 2019, 40, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Pape, L.; Olsson, K.; Petersen, C.; von Wasilewski, R.; Melter, M. Prognostic Value of Computerized Quantification of Liver Fibrosis in Children with Biliary Atresia. Liver Transplant. 2009, 15, 876–882. [Google Scholar] [CrossRef] [PubMed]
- van der Doef, H.P.J.; van Rheenen, P.F.; van Rosmalen, M.; Rogiers, X.; Verkade, H.J.; For Pediatric Liver Transplantation Centers of Eurotransplant. Wait-List Mortality of Young Patients with Biliary Atresia: Competing Risk Analysis of a Eurotransplant Registry-Based Cohort. Liver Transplant. 2018, 24, 810–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, Y.; Hoshi, M.; Yasuda, I.; Saibara, T.; Moriwaki, H.; Kozawa, O. Tumor Necrosis Factor-α Promotes Cholestasis-Induced Liver Fibrosis in the Mouse through Tissue Inhibitor of Metalloproteinase-1 Production in Hepatic Stellate Cells. PLoS ONE 2013, 8, e65251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Luo, Q.; Kang, Q.; Wang, J.; Xiao, C.; Li, Z.-P.; Gong, M.-J.; Bi, Y. Tumor necrosis factor-α and transforming growth factor-β1 balance liver stem cell differentiation in cholestatic cirrhosis. Nan Fang Yi Ke Da Xue Xue Bao 2018, 38, 375–383. [Google Scholar]
- Egelkamp, J.; Chichelnitskiy, E.; Kuehne, J.F.; Wandrer, F.; Daemen, K.; Keil, J.; Braesen, J.H.; Schmitz, J.; Bellmàs-Sanz, R.; Iordinas, S.; et al. Back signaling of HLA class I molecules and T/NK cell receptor ligands in epithelial cells reflects the rejection-specific microenvironment in renal allograft biopsies. Am. J. Transplant. 2019, 19, 2692–2704. [Google Scholar] [CrossRef]
- Ishak, K.; Baptista, A.; Bianchi, L.; Callea, F.; Groote, J.D.; Gudat, F.; Denk, H.; Desmet, V.; Korb, G.; MacSween, R.N.M.; et al. Histological Grading and Staging of Chronic Hepatitis. J. Hepatol. 1995, 22, 696–699. [Google Scholar] [CrossRef]
- Weng, H.-L.; Ciuclan, L.; Liu, Y.; Hamzavi, J.; Godoy, P.; Gaitantzi, H.; Kanzler, S.; Heuchel, R.; Ueberham, U.; Gebhardt, R.; et al. Profibrogenic Transforming Growth Factor-Beta/Activin Receptor-like Kinase 5 Signaling via Connective Tissue Growth Factor Expression in Hepatocytes. Hepatology 2007, 46, 1257–1270. [Google Scholar] [CrossRef]
- Gressner, O.A.; Lahme, B.; Demirci, I.; Gressner, A.M.; Weiskirchen, R. Differential Effects of TGF-Beta on Connective Tissue Growth Factor (CTGF/CCN2) Expression in Hepatic Stellate Cells and Hepatocytes. J. Hepatol. 2007, 47, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Gressner, O.A.; Gressner, A.M. Connective Tissue Growth Factor: A Fibrogenic Master Switch in Fibrotic Liver Diseases. Liver Int. 2008, 28, 1065–1079. [Google Scholar] [CrossRef] [PubMed]
- Hatch, H.M.; Zheng, D.; Jorgensen, M.L.; Petersen, B.E. SDF-1α/CXCR4: A Mechanism for Hepatic Oval Cell Activation and Bone Marrow Stem Cell Recruitment to the Injured Liver of Rats. Cloning Stem Cells 2002, 4, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.-L.; Xiang, L.-X.; Wang, P.; Liu, X.-Y.; Nie, L.; Huang, W.; Shao, J.-Z. Low-Molecular-Weight Fibroblast Growth Factor 2 Attenuates Hepatic Fibrosis by Epigenetic down-Regulation of Delta-Like1. Hepatology 2015, 61, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Honsawek, S.; Chongsrisawat, V.; Vejchapipat, P.I.; Thawornsuk, N.; Poovorawan, Y. High Levels of Serum Basic Fibroblast Growth Factor in Children with Biliary Atresia. Hepatogastroenterology 2008, 55, 1184–1188. [Google Scholar]
- Allam, A.; El-Guindi, M.; Konsowa, H.; El Azab, D.; Allam, M.; Salem, T.; Zakaria, H.M. Expression of Vascular Endothelial Growth Factor A in Liver Tissues of Infants with Biliary Atresia. Clin. Exp. Hepatol. 2019, 5, 308–316. [Google Scholar] [CrossRef]
- Edom, P.T.; Meurer, L.; da Silveira, T.R.; Matte, U.; dos Santos, J.L. Immunolocalization of VEGF A and Its Receptors, VEGFR1 and VEGFR2, in the Liver from Patients with Biliary Atresia. Appl. Immunohistochem. Mol. Morphol. AIMM 2011, 19, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Fratta, L.X.S.; Hoss, G.R.W.; Longo, L.; Uribe-Cruz, C.; da Silveira, T.R.; Vieira, S.M.G.; Kieling, C.O.; Dos Santos, J.L. Hypoxic-Ischemic Gene Expression Profile in the Isolated Variant of Biliary Atresia. J. Hepato-Biliary-Pancreat. Sci. 2015, 22, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Mukozu, T.; Nagai, H.; Matsui, D.; Kanekawa, T.; Sumino, Y. Serum VEGF as a Tumor Marker in Patients with HCV-Related Liver Cirrhosis and Hepatocellular Carcinoma. Anticancer Res. 2013, 33, 1013–1021. [Google Scholar] [CrossRef]
- Lee, S.; Zhou, P.; Gupta, A.; Shin, S. Reactive Ductules Are Associated with Angiogenesis and Tumor Cell Proliferation in Pediatric Liver Cancer. Hepatol. Commun. 2018, 2, 1199–1212. [Google Scholar] [CrossRef]
- Diang, X.-C.; Ma, L.-N.; Li, Y.-F.; Liu, X.-Y.; Zhang, X.; Liu, J.-Y.; Sheng, Y.-J.; Zhang, D.-Z.; Hu, H.-D.; Ren, H. Association between Serum Platelet-Derived Growth Factor BB and Degree of Liver Damage, Fibrosis and Hepatitis B e Antigen (HBeAg) Status in CHB Patients. Hepatogastroenterology 2012, 59, 2357–2360. [Google Scholar] [CrossRef]
- Kinnman, N.; Hultcrantz, R.; Barbu, V.; Rey, C.; Wendum, D.; Poupon, R.; Housset, C. PDGF-Mediated Chemoattraction of Hepatic Stellate Cells by Bile Duct Segments in Cholestatic Liver Injury. Lab. Investig. J. Tech. Methods Pathol. 2000, 80, 697–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Superina, R.; Magee, J.C.; Brandt, M.L.; Healey, P.J.; Tiao, G.; Ryckman, F.; Karrer, F.M.; Iyer, K.; Fecteau, A.; West, K.; et al. The Anatomic Pattern of Biliary Atresia Identified at Time of Kasai Hepatoportoenterostomy and Early Postoperative Clearance of Jaundice Are Significant Predictors of Transplant-Free Survival. Ann. Surg. 2011, 254, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Omori, N.; Evarts, R.P.; Omori, M.; Hu, Z.; Marsden, E.R.; Thorgeirsson, S.S. Expression of Leukemia Inhibitory Factor and Its Receptor during Liver Regeneration in the Adult Rat. Lab. Investig. J. Tech. Methods Pathol. 1996, 75, 15–24. [Google Scholar]
- Wilasco, M.I.A.; Uribe-Cruz, C.; Santetti, D.; Pfaffenseller, B.; Dornelles, C.T.L.; da Silveira, T.R. Brain-Derived Neurotrophic Factor in Children and Adolescents with Cirrhosis Due to Biliary Atresia. Ann. Nutr. Metab. 2016, 69, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.-C.; Hu, J.; Jiang, X.-B.; Deng, H.-Q.; Zhang, K.-H. BDNF Gene Polymorphism and Serum Level Correlate with Liver Function in Patients with Hepatitis B-Induced Cirrhosis. Int. J. Clin. Exp. Pathol. 2019, 12, 2368–2380. [Google Scholar]
- Wu, N.; Meng, F.; Invernizzi, P.; Bernuzzi, F.; Venter, J.; Standeford, H.; Onori, P.; Marzioni, M.; Alvaro, D.; Franchitto, A.; et al. The Secretin/Secretin Receptor Axis Modulates Liver Fibrosis through Changes in TGF-Β1 Biliary Secretion. Hepatology 2016, 64, 865–879. [Google Scholar] [CrossRef] [Green Version]
- Vejchapipat, P.; Theamboonlers, A.; Poomsawat, S.; Chittmittrapap, S.; Poovorawan, Y. Serum Transforming Growth Factor-Beta1 and Epidermal Growth Factor in Biliary Atresia. Eur. J. Pediatr. Surg. 2008, 18, 415–418. [Google Scholar] [CrossRef]
- Honsawek, S.; Chongsrisawat, V.; Vejchapipat, P.; Thawornsuk, N.; Tangkijvanich, P.; Poovorawan, Y. Elevation of Serum Stem-Cell Factor in Postoperative Biliary Atresia. Pediatr. Int. 2007, 49, 888–893. [Google Scholar] [CrossRef]
Outcome | Rapid Liver Cirrhosis [RLC] (N = 27) | Survival with Native Liver [SNL] (N = 22) | p-Value |
---|---|---|---|
Gender | |||
Male | 15 | 12 | / |
Female | 12 | 10 | / |
Age at KPE (mean, in days) | 69.4 ± 28.0 | 61.8 ± 22.7 | 0.3 |
Bilirubin levels at KPE (mean, in µmol/L) | 174.7 ± 96.1 | 174.9 ± 120.1 | 0.9 |
Bilirubin levels at 6-month FU (mean, in µmol/L) | 257.7 ± 203.6 | 9.0 ± 6.2 | <0.01 |
ISHAK score at KPE [range 1–6] | 4.1 ± 0.2 | 3.8 ± 1.6 | 0.3 |
Growth Factors | Rapid Liver Cirrhosis (RLC) [pg/mL] | Survival with Native Liver (SNL) [pg/mL] | p-Value |
---|---|---|---|
SDF-1α/CXCL12 | 1422 ± 502.7 | 1539 ± 494.5 | 0.41 |
FGF2 | 285.4 ± 194.7 | 321.4 ± 226.3 | 0.55 |
VEGF-A | 225.6 ± 184.3 | 187.9 ± 74.42 | 0.37 |
PDGF-bb | 104.4 ± 117.4 | 63.11 ± 56.6 | 0.14 |
LIF | 41.32 ± 57.37 | 50.93 ± 43.84 | 0.52 |
GM-CSF | 14.59 ± 13.57 | 12.42 ± 11.17 | 0.55 |
BDNF | 13.43 ± 14.29 | 8.43 ± 5.28 | 0.13 |
VEGF-D | 9.38 ± 5.18 | 8.66 ± 5.03 | 0.62 |
Beta-NGF | 7.09 ± 4.50 | 7.72 ± 6.23 | 0.68 |
EGF | 3.47 ± 5.38 | 1.94 ± 2.29 | 0.22 |
PIGF-1 | 3.32 ± 1.41 | 3.32 ± 1.17 | 0.99 |
SCF | 3.25 ± 1.38 | 3.44 ± 1.57 | 0.66 |
IL-7 | 6.56 ± 1.97 | 6.48 ± 1.71 | 0.87 |
Correlating GF with: | Age at KPE (r=) | Preoperative Bilirubin (r=) | Postoperative Bilirubin (r=) | ISHAK Grading (r=) |
---|---|---|---|---|
SDF-1α/CXCL12 | 0.09 | 0.02 | −0.12 | 0.32 |
FGF2 | 0.008 | 0.13 | 0.10 | −0.099 |
VEGF-A | −0.078 | 0.001 | 0.001 | 0.17 |
PDGF-bb | −0.04 | −0.15 | 0.08 | −0.08 |
LIF | −0.11 | −0.03 | −0.10 | 0.26 |
GM-CSF | 0.36 | −0.05 | 0.12 | −0.03 |
BDNF | −0.05 | −0.09 | 0.03 | 0.12 |
VEGF-D | 0.06 | 0.17 | 0.18 | 0.08 |
Beta-NGF | 0.16 | −0.06 | 0.06 | 0.11 |
EGF | 0.002 | −0.11 | 0.11 | 0.13 |
PIGF-1 | −0.09 | −0.03 | 0.22 | 0.08 |
SCF | 0.09 | 0.003 | 0.14 | 0.13 |
IL-7 | 0.27 | 0.28 | 0.08 | −0.009 |
Growth Factors/Chemokines | Rapid Liver Cirrhosis (RLC) [pg/mL] | Survival with Native Liver (SNL) [pg/mL] | p-Value |
---|---|---|---|
SDF-1α/CXCL12 | 203.6 ± 421.9 | 246.6 ± 363.7 | 0.71 |
FGF2 | 3.04 ± 16.1 | * | * |
VEGF-A | 428.8 ± 931.6 | 223.8 ± 360.3 | 0.33 |
PDGF-bb | 736.40 ± 2301.0 | 437.4 ± 901.8 | 0.57 |
LIF | 1.61 ± 3.27 | 2.06 ± 3.59 | 0.64 |
GM-CSF | 0.59 ± 3.12 | 0.35 ± 1.65 | 0.75 |
BDNF | 139.8 ± 342.7 | 47.29 ± 82.9 | 0.22 |
VEGF-D | 2.02 ± 8.89 | * | * |
Beta-NGF | 0.73 ± 3.87 | 0.33 ± 1.55 | 0.65 |
EGF | 73.27 ± 157.40 | 44.72 ± 81.48 | 0.44 |
PIGF-1 | 6.27 ± 14.38 | 3.40 ± 5.40 | 0.38 |
SCF | 1.80 ± 3.79 | 1.51 ± 2.78 | 0.77 |
IL-7 | 0.50 ± 1.43 | 0.28 ± 0.57 | 0.49 |
Growth Factors/Chemokine | p-Value | q-Value |
---|---|---|
SDF-1α/CXCL12 | 0.42385 | 0.86113 |
FGF2 | 0.56870 | 0.86113 |
VEGF-A | 0.64716 | 0.86113 |
PDGF-bb | 0.13977 | 0.60565 |
LIF | 0.12720 | 0.60565 |
GM-CSF | 0.79949 | 0.86113 |
BDNF | 0.12117 | 0.60565 |
VEGF-D | 0.33454 | 0.86113 |
Beta-NGF | 0.33104 | 0.86113 |
EGF | 0.49142 | 0.86113 |
PIGF-1 | 0.96485 | 0.96485 |
SCF | 0.73271 | 0.86113 |
IL-7 | 0.73868 | 0.86113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madadi-Sanjani, O.; Froemmel, S.; Falk, C.S.; Vieten, G.; Petersen, C.; Kuebler, J.F.; Klemann, C. Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia. J. Clin. Med. 2021, 10, 1978. https://doi.org/10.3390/jcm10091978
Madadi-Sanjani O, Froemmel S, Falk CS, Vieten G, Petersen C, Kuebler JF, Klemann C. Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia. Journal of Clinical Medicine. 2021; 10(9):1978. https://doi.org/10.3390/jcm10091978
Chicago/Turabian StyleMadadi-Sanjani, Omid, Stephanie Froemmel, Christine S. Falk, Gertrud Vieten, Claus Petersen, Joachim F. Kuebler, and Christian Klemann. 2021. "Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia" Journal of Clinical Medicine 10, no. 9: 1978. https://doi.org/10.3390/jcm10091978
APA StyleMadadi-Sanjani, O., Froemmel, S., Falk, C. S., Vieten, G., Petersen, C., Kuebler, J. F., & Klemann, C. (2021). Growth Factors Assessed during Kasai Procedure in Liver and Serum Are Not Predictive for the Postoperative Liver Deterioration in Infants with Biliary Atresia. Journal of Clinical Medicine, 10(9), 1978. https://doi.org/10.3390/jcm10091978