De-Intensification of Antidiabetic Treatment Using Canagliflozin in Patients with Heart Failure and Type 2 Diabetes: Cana-Switch-HF Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Patients
2.2. Study Outcomes
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seferović, P.M.; Petrie, M.C.; Filippatos, G.S.; Anker, S.D.; Rosano, G.; Bauersachs, J.; Paulus, W.J.; Komajda, M.; Cosentino, F.; De Boer, R.A.; et al. Type 2 diabetes mellitus and heart failure: A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 853–872. [Google Scholar] [CrossRef]
- Lara-Rojas, C.M.; Pérez-Belmonte, L.M.; López-Carmona, M.D.; Guijarro-Merino, R.; Bernal-López, M.R.; Gómez-Huelgas, R. National trends in diabetes mellitus hospitalization in Spain 1997–2010: Analysis of over 5.4 millions of admissions. Eur. J. Intern. Med. 2019, 60, 83–89. [Google Scholar] [CrossRef]
- Elder, D.H.; Singh, J.S.; Levin, D.; Donnelly, L.A.; Choy, A.; George, J.; Struthers, A.D.; Doney, A.S.; Lang, C.C. Mean HbA1cand mortality in diabetic individuals with heart failure: A population cohort study. Eur. J. Heart Fail. 2015, 18, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S125–S150. [Google Scholar] [CrossRef] [PubMed]
- Cavender, M.A.; Norhammar, A.; Birkeland, K.I.; Jørgensen, M.E.; Wilding, J.P.; Khunti, K.; Fu, A.Z.; Bodegård, J.; Blak, B.T.; Wittbrodt, E.; et al. SGLT-2 Inhibitors and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 71, 2497–2506. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S111–S124. [Google Scholar] [CrossRef] [PubMed]
- Lavallegonzalez, F.J.; Januszewicz, A.; Davidson, J.A.; Tong, C.; Qiu, R.; Canovatchel, W.; Meininger, G.A. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: A randomised trial. Diabetologia 2013, 56, 2582–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schernthaner, G.; Gross, J.L.; Rosenstock, J.; Guarisco, M.; Fu, M.; Yee, J.; Kawaguchi, M.; Canovatchel, W.; Meininger, G. Canagliflozin Compared With Sitagliptin for Patients With Type 2 Diabetes Who Do Not Have Adequate Glycemic Control With Metformin Plus Sulfonylurea. Diabetes Care 2013, 36, 2508–2515. [Google Scholar] [CrossRef] [Green Version]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Comín-Colet, J.; Garin, O.; Lupón, J.; Manito, N.; Crespo-Leiro, M.G.; Gómez-Bueno, M.; Ferrer, M.; Artigas, R.; Zapata, A.; Elosua, R. Validación de la versión española del Kansas City Cardiomyopathy Questionnaire. Revista Española de Cardiología 2011, 64, 51–58. [Google Scholar] [CrossRef]
- Marrugat, J.; Solanas, P.; D’Agostino, R.; Sullivan, L.; Ordovas, J.; Cordón, F.; Ramos, R.; Sala, J.; Masià, R.; Rohlfs, I.; et al. Estimación del riesgo coronario en España mediante la ecuación de Framingham calibrada. Revista Española de Cardiología 2003, 56, 253–261. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes—2021. Diabetes Care 2021, 44, S73–S84. [Google Scholar] [CrossRef] [PubMed]
- Van Deursen, V.M.; Urso, R.; Laroche, C.; Damman, K.; Dahlström, U.; Tavazzi, L.; Maggioni, A.P.; Voors, A.A. Co-morbidities in patients with heart failure: An analysis of the European Heart Failure Pilot Survey. Eur. J. Heart Fail. 2014, 16, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.S.H.; Goncalves, E. Heart failure in the patient with diabetes: Epidemiology, aetiology, prognosis, therapy and the effect of glucose-lowering medications. Diabetes Obes. Metab. 2019, 21, 1277–1290. [Google Scholar] [CrossRef] [Green Version]
- Makam, A.N.; Nguyen, O.K. An Evidence-Based Medicine Approach to Antihyperglycemic Therapy in Diabetes Mellitus to Overcome Overtreatment. Circulation 2017, 135, 180–195. [Google Scholar] [CrossRef] [Green Version]
- De Lucas, M.G.; Belmonte, L.P.; Tembra, M.S.; Sierra, J.O.; Huelgas, R.G. Efficacy and safety of replacing sitagliptin with canagliflozin in real-world patients with type 2 diabetes uncontrolled with sitagliptin combined with metformin and/or gliclazide: The SITA-CANA Switch Study. Diabetes Metab. 2018, 44, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Vilsbøll, T.; Christensen, M.; Junker, A.E.; Knop, F.K.; Gluud, L.L. Effects of glucagon-like peptide-1 receptor agonists on weight loss: Systematic review and meta-analyses of randomised controlled trials. BMJ 2012, 344, d7771. [Google Scholar] [CrossRef] [Green Version]
- Storgaard, H.; Gluud, L.L.; Bennett, C.; Grøndahl, M.F.; Christensen, M.B.; Knop, F.K.; Vilsbøll, T. Benefits and Harms of Sodium-Glucose Co-Transporter 2 Inhibitors in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0166125. [Google Scholar] [CrossRef]
- Basu, D.; Huggins, L.-A.; Scerbo, D.; Obunike, J.; Mullick, A.E.; Rothenberg, P.L.; Di Prospero, N.A.; Eckel, R.H.; Goldberg, I.J. Mechanism of Increased LDL (Low-Density Lipoprotein) and Decreased Triglycerides With SGLT2 (Sodium-Glucose Cotransporter 2) Inhibition. Arter. Thromb. Vasc. Biol. 2018, 38, 2207–2216. [Google Scholar] [CrossRef]
- Scheen, A.J. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: A common comorbidity associated with severe complications. Diabetes Metab. 2019, 45, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Wanner, C.; Broedl, U.C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.H.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Raz, I.; Bhatt, D.L.; Leiter, L.A.; McGuire, D.K.; Wilding, J.P.; Ruff, C.T.; Gause-Nilsson, I.A.; Fredriksson, M.; Johansson, P.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Solomon, S.D.; Böhm, M.; Chiang, C.-E.; Chopra, V.K.; De Boer, R.A.; Desai, A.S.; Diez, M.; Drozdz, J.; Dukát, A.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Pratley, R.; Shih, W.J.; Gantz, I.; Terra, S.G.; Cherney, D.Z.; McGuire, D.K.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Packer, M.; Anker, S.D.; Jamal, W.; Kimura, K.; Schnee, J.; Zeller, C.; Cotton, D.; Bocchi, E.; Böhm, M.; Choi, D.-J.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Figtree, G.A.; Rådholm, K.; Barrett, T.D.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Matthews, D.R.; Shaw, W.; Neal, B. Effects of Canagliflozin on Heart Failure Outcomes Associated With Preserved and Reduced Ejection Fraction in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2591–2593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosiborod, M.; Cavender, M.A.; Arya, N.; Bodegård, J.; Hammar, N.; Fenici, P.; Fu, A.Z.; Wilding, J.P.; Khunti, K.; Holl, R.W.; et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs. Circulation 2017, 136, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Kosiborod, M.; Lam, C.S.; Kohsaka, S.; Kim, D.J.; Karasik, A.; Shaw, J.; Tangri, N.; Goh, S.-Y.; Thuresson, M.; Chen, H.; et al. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs. J. Am. Coll. Cardiol. 2018, 71, 2628–2639. [Google Scholar] [CrossRef]
- Patorno, E.; Goldfine, A.B.; Schneeweiss, S.; Everett, B.M.; Glynn, R.J.; Liu, J.; Kim, S.C. Cardiovascular outcomes associated with canagliflozin versus other non-gliflozin antidiabetic drugs: Population based cohort study. BMJ 2018, 360, k119. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.B.; Buse, J.B.; Schuemie, M.J.; DeFalco, F.; Yuan, Z.; Stang, P.E.; Berlin, J.A.; Rosenthal, N. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non-SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: A real-world meta-analysis of 4 observational databases (OBSERVE-4D). Diabetes Obes. Metab. 2018, 20, 2585–2597. [Google Scholar] [CrossRef]
- Udell, J.A.; Yuan, Z.; Rush, T.; Sicignano, N.M.; Galitz, M.; Rosenthal, N. Cardiovascular Outcomes and Risks After Initiation of a Sodium Glucose Cotransporter 2 Inhibitor. Circulation 2018, 137, 1450–1459. [Google Scholar] [CrossRef] [PubMed]
- DeFronzo, R.A.; Norton, L.; Abdul-Ghani, R.A.D.L.N.M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 2017, 13, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Polidori, D.; Heise, T.; Natarajan, J.; Farrell, K.; Wang, S.-S.; Sica, D.; Rothenberg, P.; Plum-Mörschel, L. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 2014, 16, 1087–1095. [Google Scholar] [CrossRef]
- Li, J.; Woodward, M.; Perkovic, V.; Figtree, G.A.; Heerspink, H.J.; Mahaffey, K.W.; de Zeeuw, D.; Vercruysse, F.; Shaw, W.; Matthews, D.R.; et al. Mediators of the Effects of Canagliflozin on Heart Failure in Patients With Type 2 Diabetes. JACC Heart Fail. 2020, 8, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Zelniker, T.A.; Braunwald, E. Cardiac and Renal Effects of Sodium-Glucose Co-Transporter 2 Inhibitors in Diabetes. J. Am. Coll. Cardiol. 2018, 72, 1845–1855. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Zannad, F. Effects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure. JAMA Cardiol. 2017, 2, 1025–1029. [Google Scholar] [CrossRef]
Variables | n = 121 |
---|---|
Sociodemographic characteristics | |
Age (years) | 64.7 ± 11.9 |
Male | 83 (68.9%) |
Diabetes characteristics | |
Diabetes duration (years) | 13.5 ± 4.8 |
Diabetes therapy | |
Metformin | 108 (89.3%) |
Sulfonylurea | 45 (37.2%) |
Meglitinide | 15 (12.4%) |
Thiazolidinediones | 0 |
DPP4 inhibitor | 110 (90.9%) |
GLP-1 receptor agonist | 11 (9.1%) |
Basal insulin | 58 (47.9%) |
Statins | 109 (90.1%) |
Heart failure characteristics | |
Heart failure duration (years) | 4.5 ± 2.1 |
Principal cause of heart failure | |
Ischemic | 70 (57.9%) |
Nonischemic | 42 (34.7%) |
Unknown | 9 (7.4%) |
Left ventricular ejection fraction (%) | 44.1 ± 10.1 |
Left ventricular ejection fraction < 40% | 58 (47.9%) |
Fractional shortening (%) | 21.9 ± 7.8 |
Heart failure medication | |
Diuretic | 110 (90.9%) |
ACE inhibitor | 51 (42.1%) |
ARB | 30 (24.8%) |
Sacubitril-valsartan | 40 (33.1%) |
Beta-blocker | 101 (83.5%) |
Mineralocorticoid receptor antagonist | 68 (56.2%) |
Digitalis | 12 (9.9%) |
Previous medical history | |
History of smoking | 63 (52.1%) |
History of alcohol abuse | 31 (25.6%) |
Hypertension | 108 (89.3%) |
Dyslipidemia | 102 (84.3%) |
Chronic kidney disease stage ≥ 3 | 31 (25.6%) |
Cerebrovascular disease | 13 (10.7%) |
Chronic obstructive pulmonary disease | 48 (39.7%) |
Atrial fibrillation | 39 (32.2%) |
Variables | Baseline (n = 121) | 3 Months’ Follow-Up (n = 119) | 6 Months’ Follow-Up (n = 116) | 12 Months’ Follow-Up (n = 115) |
---|---|---|---|---|
Treatment de-intensification | ||||
Number of antidiabetic agents | 3.1 ± 1.0 | 2.1 ± 0.9 * | 2.1 ± 0.9 * | 2.1 ± 0.8 * |
GLP-1 receptor agonist | 11 (9.1%) | 12 (10.1%) | 12 (10.3%) | 12 (10.4%) |
Basal insulin dose (Units/day) | 20.1 ± 9.8 | 16.6 ± 8.8 * | 12.8 ± 7.1 † | 10.1 ± 6.5 † |
Basal insulin | 58 (47.9%) | 57 (47.9%) | 42 (36.2%) † | 36 (31.3%) † |
Diuretic | 110 (90.9%) | 105 (88.2%) | 95 (81.9%) * | 93 (80.9%) * |
Glycemic control | ||||
Fasting blood glucose (mg/dL) | 157.8 ± 41.3 | 141.8 ± 62.8 † | 122.8 ± 47.4 ‡ | 118.7 ± 40.1 ‡ |
HbA1c (%) | 8.1 ± 0.8 | 7.6 ± 1.2 * | 7.1 ± 1.3 † | 6.9 ± 1.2 † |
Patients with HbA1c < 7% | - | 20 (16.8%) * | 58 (50%) ‡ | 73 (63.5%) ‡ |
Anthropometric characteristics | ||||
Body weight (kg) | 88.7 ± 14.3 | 86.8 ± 13.0 | 84.7 ± 12.4 * | 83.4 ± 11.2 † |
Body Mass Index (kg/m2) | 32.4 ± 5.6 | 31.5 ± 4.5 | 30.2 ± 4.0 * | 29.2 ± 3.7 † |
Body Mass Index ≥ 30 | 51 (42.1%) | 46 (38.7%) | 40 (34.5%) * | 34 (29.6%) † |
Waist circumference (cm) | 112.1 ± 15.4 | 109.0 ± 12.1 | 105.2 ± 11.4 † | 103.1 ± 10.1 † |
SBP (mmHg) | 141.1 ± 17.6 | 138.5 ± 12.9 | 135.4 ± 10.9 | 133.5 ± 10.5 |
DBP (mmHg) | 73.9 ± 9.2 | 71.2 ± 8.2 | 69.4 ± 7.9 | 68.5 ± 7.5 |
Heart rate (bpm) | 69.6 ± 7.4 | 70.0 ± 7.9 | 65.3 ± 6.8 | 68.6 ± 7.2 |
HF health status | ||||
KCCQ total symptom score | 62.2 ± 24.8 | 69.1 ± 25.3 | 72.2 ± 26.8 * | 75.9 ± 28.0 † |
NYHA functional class | ||||
I | 0 | 5 (4.2%) | 6 (5.2%) | 6 (5.2%) |
II | 75 (62.0%) | 84 (70.6%) * | 86 (74.1%) † | 91 (79.1%) † |
III | 46 (38.0%) | 30 (25.2%) * | 24 (20.7%) † | 18 (15.7%) † |
Vascular risk | 18.9 ± 12.4 | 12.9 ± 6.9 * | 10.3 ± 5.8 * | 8.5 ± 5.1 † |
Fatty liver index | 79.9 ± 22.1 | 70.2 ± 16.7 * | 68.8 ± 15.1 * | 63.0 ± 13.2 † |
Laboratory variables | ||||
Creatinine (mg/dL) | 0.93 ± 0.41 | 0.82 ± 0.44 | 0.85 ± 0.43 | 0.83 ± 0.43 |
EGFR (ml/min/1.73 m2) | 75.8 ± 16.2 | 71.3 ± 19.1 | 73.2 ± 18.1 | 76.9 ±18.7 |
Uric acid (mg/dL) | 6.4 ± 1.6 | 6.0 ± 2.0 | 6.0 ± 1.3 | 5.5 ± 1.2 * |
Hematocrit (%) | 30.0 ± 5.8 | 31.1 ± 5.9 | 32.2 ± 6.1 | 33.8 ± 7.0 * |
LDL cholesterol (mg/dL) | 84.5 ± 28.5 | 68.5 ± 21.4 † | 68.2 ± 21.0 † | 66.7 ± 20.1 † |
HDL cholesterol (mg/dL) | 37.0 ± 11.5 | 38.3 ± 10.4 | 40.4 ± 10.2 | 43.4 ± 11.2 * |
Total cholesterol (mg/dL) | 159.0 ± 33.2 | 145.0 ± 29.3 * | 144.1 ± 30.0 * | 129.3 ± 26.7 † |
Triglycerides (mg/dL) | 187.7 ± 49.9 | 183.0 ± 42.5 | 175.8 ± 38.3 * | 158.8 ± 31.5 † |
NT-proBNP (pg/mL) | 1175.5 ± 423.1 | 636.0 ± 452.3 † | 645.2 ± 432.1 † | 610.0 ± 398.2 † |
Urinary albumin/creatinine ratio (mg/g) | 59.8 ± 19.3 | 32.5 ± 10.0 † | 24.7 ± 9.7 † | 14.3 ± 6.2 † |
Safety variables a | ||||
Adverse drug reaction of interest | - | 8 (6.6%) | 12 (8.3%) | 15 (12.4%) |
Urinary tract infections | - | 3 | 5 | 7 |
Genital mycotic infections | - | 5 | 7 | 8 |
Discontinuation of canagliflozin | - | 2 (1.7%) | 5 (4.1%) | 6 (5.0%) |
Major complication a | ||||
3P-MACE | - | 0 | 3 (2.5%) | 4 (3.3%) |
Emergency department visit due to HF | 61 (50.4%) | 12 (10.1%) | 24 (20.7%) | 45 (39.1%) * |
Hospitalization | ||||
Due to HF | 48 (39.7%) | 11 (9.2%) | 17 (14.7%) | 31 (27.0%) * |
All-cause | 10 (8.3%) | 0 | 0 | 2 (1.7%) * |
Mortality | - | |||
Cardiovascular cause | - | 0 | 3 (2.5%) | 4 (3.3%) |
Non-cardiovascular cause | - | 0 | 0 | 1 (0.8%) |
HF hospitalization and cardiovascular mortality | - | 11 (9.2%) | 20 (17.2%) | 35 (30.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Belmonte, L.M.; Ricci, M.; Sanz-Cánovas, J.; Cobos-Palacios, L.; López-Carmona, M.D.; Ruiz-Moreno, M.I.; Millán-Gómez, M.; Bernal-López, M.R.; Jansen-Chaparro, S.; Gómez-Huelgas, R. De-Intensification of Antidiabetic Treatment Using Canagliflozin in Patients with Heart Failure and Type 2 Diabetes: Cana-Switch-HF Study. J. Clin. Med. 2021, 10, 2013. https://doi.org/10.3390/jcm10092013
Pérez-Belmonte LM, Ricci M, Sanz-Cánovas J, Cobos-Palacios L, López-Carmona MD, Ruiz-Moreno MI, Millán-Gómez M, Bernal-López MR, Jansen-Chaparro S, Gómez-Huelgas R. De-Intensification of Antidiabetic Treatment Using Canagliflozin in Patients with Heart Failure and Type 2 Diabetes: Cana-Switch-HF Study. Journal of Clinical Medicine. 2021; 10(9):2013. https://doi.org/10.3390/jcm10092013
Chicago/Turabian StylePérez-Belmonte, Luis M., Michele Ricci, Jaime Sanz-Cánovas, Lidia Cobos-Palacios, María D. López-Carmona, M. Isabel Ruiz-Moreno, Mercedes Millán-Gómez, M. Rosa Bernal-López, Sergio Jansen-Chaparro, and Ricardo Gómez-Huelgas. 2021. "De-Intensification of Antidiabetic Treatment Using Canagliflozin in Patients with Heart Failure and Type 2 Diabetes: Cana-Switch-HF Study" Journal of Clinical Medicine 10, no. 9: 2013. https://doi.org/10.3390/jcm10092013
APA StylePérez-Belmonte, L. M., Ricci, M., Sanz-Cánovas, J., Cobos-Palacios, L., López-Carmona, M. D., Ruiz-Moreno, M. I., Millán-Gómez, M., Bernal-López, M. R., Jansen-Chaparro, S., & Gómez-Huelgas, R. (2021). De-Intensification of Antidiabetic Treatment Using Canagliflozin in Patients with Heart Failure and Type 2 Diabetes: Cana-Switch-HF Study. Journal of Clinical Medicine, 10(9), 2013. https://doi.org/10.3390/jcm10092013