Hemiarch Versus Arch Replacement in Acute Type A Aortic Dissection: Is the Occam’s Razor Principle Applicable?
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Addendum
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DeBakey, M.E.; Cooley, D.A.; Creech, O., Jr. Surgical considerations of dissecting aneurysms of the aorta. Ann. Surg. 1955, 142, 586–612. [Google Scholar] [CrossRef] [PubMed]
- DeBakey, M.E.; Henly, W.S.; Cooley, D.A.; Morris, G.C.; Crawford, E.S.; Beall, A.C., Jr. Surgical management of dissecting aneurysms of the aorta. J. Thorac. Cardiovasc. Surg. 1965, 69, 130–149. [Google Scholar] [CrossRef]
- Cooley, D.A. Surgical management of aortic dissection. Tex. Heart Inst. J. 1990, 17, 289–301. [Google Scholar]
- Westaby, S.; Saito, S.; Katsumata, T. Acute type A dissection: Conservative methods provide consistently low mortality. Ann. Thorac. Surg. 2002, 73, 707–713. [Google Scholar] [CrossRef]
- Li, B.; Ma, W.G.; Liu, Y.M.; Sun, L.Z. Is extended arch replacement justified for acute type A aortic dissection? Interact. Cardiovasc. Thorac. Surg. 2015, 20, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Moeller, E.; Nores, M.; Stamou, S.C. Repair of acute type-A aortic dissection in the present era: Outcomes and controversies. Aorta 2019, 7, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vendramin, I.; Lechiancole, A.; Piani, D.; Deroma, L.; Tullio, A.; Sponga, S.; Milano, A.D.; Onorati, F.; Bortolotti, U.; Livi, U. Type A acute aortic dissection with ≥40 mm aortic root: Results of conservative and replacement strategies at long-term follow-up. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1115–1122. [Google Scholar] [CrossRef]
- Vendramin, I.; Piani, D.; Lechiancole, A.; De Manna, N.D.; Sponga, S.; Puppato, M.; Muser, D.; Bortolotti, U.; Livi, U. Do Oral Anticoagulants Impact Outcomes and False Lumen Patency After Repair of Acute Type A Aortic Dissection? J. Thorac. Cardiovasc. Surg. 2021. [Google Scholar] [CrossRef]
- Fine, J.P.; Gray, R.J. A proportional hazards model for the subdistribution of a competing risk. J. Am. Stat. Assoc. 1999, 94, 496–509. [Google Scholar] [CrossRef]
- Gray, R.J. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann. Stat. 1988, 16, 1141–1154. [Google Scholar] [CrossRef]
- Hagan, P.G.; Nienaber, C.A.; Isselbacher, E.M.; Bruckman, D.; Karavite, D.J.; Russman, P.L.; Evangelista, A.; Fattori, R.; Suzuki, T.; Oh, J.K.; et al. The International registry of acute aortic dissection (IRAD): New insights into an old disease. JAMA 2000, 283, 897–903. [Google Scholar] [CrossRef]
- Roselli, E.E.; Loor, G.; He, J.; Rafael, A.E.; Rajeswaran, J.; Houghtaling, P.L.; Svensson, L.G.; Blackstone, E.H.; Lytle, B.W. Distal aortic interventions after repair of ascending dissection: The argument for a more aggressive approach. J. Thorac. Cardiovasc. Surg. 2015, 149, S117–S124. [Google Scholar] [CrossRef] [Green Version]
- Malvindi, P.G.; van Putte, B.P.; Sonker, U.; Heijemen, R.H.; Schepens, M.A.A.M.; Morshuis, W.J. Reoperation after acute type A aortic dissection repair: A series of 104 patients. Ann. Thoracic. Surg. 2013, 95, 922–928. [Google Scholar] [CrossRef]
- Leshnower, B.G.; Chen, E.P. When and how to replace the aortic root in type A aortic dissection. Ann. Cardio-Thorac. Surg. 2016, 5, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Nishi, H.; Mitsuno, M.; Tanaka, H.; Ryomoto, M.; Fukui, S.; Miyamoto, Y. Late reoperations after repair of acute type A aortic dissection. J. Card. Surg. 2010, 25, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Easo, J.; Weigang, E.; Hölzl, P.P.F.; Horst, M.; Hoffman, I.; Blettner, M.; Dapunt, O.E.; GERAADA Study Group. Influence of operative strategy for the aortic arch in DeBakey type I aortic dissection: Analysis of the German registry for acute aortic dissection. J. Thorac. Cardiovasc. Surg. 2012, 144, 617–623. [Google Scholar] [CrossRef] [Green Version]
- Di Eusanio, M.; Berretta, P.; Cefarelli, B.M.; Jacopo, A.; Murana, G.; Castrovinci, S.; Di Bartolomeo, R. Total arch replacement versus more conservative management in type A acute aortic dissection. Ann. Thorac. Surg. 2015, 100, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wagner, M.; Bernashid, E.; Keenan, J.; Wang, A.; Ranney, D.; Yerokun, B.; Gaca, J.G.; McCann, R.L.; Hughes, G.C. Outcomes of reoperation after acute type A aortic dissection: Implications for index repair strategy. J. Am. Heart Assoc. 2017, 6, e006376. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, A.; Cibin, G.; Antonello, M.; Battocchio, P.; Piazza, M.; Caraffa, R.; Dall’Antonia, A.; Grego, F.; Gerosa, G. Endovascular exclusion of the entire aortic arch with branched stent-grafts after surgery for acute type A aortic dissection. JTCVS Tech. 2020, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kazui, T. Editorial comment: Normothermic selective cerebral perfusion—How safe is it? Eur. J. Cardio-Thorac. Surg. 2007, 32, 268–269. [Google Scholar] [CrossRef]
- Etz, C.D.; Luehr, M.; Kari, F.A.; Lin, H.M.; Kleinman, G.; Zoli, S.; Plestis, K.A.; Griepp, R.B. Selective cerebral perfusion at 28 degrees C—Is the spinal cord safe? Eur. J. Cardio-Thorac. Surg. 2009, 36, 946–955. [Google Scholar] [CrossRef]
- Fernandes, P.; Mayer, R.; Adams, C.; Chu, M.W. Simultaneous individually controlled upper and lower body perfusion for valve-sparing root and total aortic arch replacement: A case study. J. Extra-Corpor. Technol. 2011, 43, 245–251. [Google Scholar]
- Moon, M.R.; Miller, D.G. Aortic arch replacement for dissection. Op. Tech. Thorac. Cardiovasc. Surg. 1999, 4, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Spielvogel, D.; Etz, C.D.; Silovitz, D.; Lansman, L.S.; Griepp, R.B. Aortic arch replacement with a trifurcated graft. Ann. Thorac. Surg. 2007, 83, S791–S795. [Google Scholar] [CrossRef] [PubMed]
- Ius, F.; Vendramin, I.; Mazzaro, E.; Piccoli, G.; Bassi, F.; Gasparini, D.; Livi, U. Transluminal stenting in type A acute aortic dissection: Does the Djumbodis system has any impact on false lumen evolution? Ann. Thorac. Surg. 2010, 90, 1450–1456. [Google Scholar] [CrossRef]
- Vendramin, I.; Piani, D.; Lechiancole, A.; Sponga, S.; Sponza, M.; Puppato, M.; Bortolotti, U.; Livi, U. Late complications with the use of the Djumbodis system in patients with type A acute aortic dissection. Interact. Cardiovasc. Thorac. Surg. 2020, 31, 704–707. [Google Scholar] [CrossRef] [PubMed]
- Borst, H.G.; Walterbusch, G.; Schaps, D. Extensive aortic replacement using ‘elephant trunk’ prosthesis. Thorac. Cardiovasc. Surg. 1983, 31, 37–40. [Google Scholar] [CrossRef]
- Roselli, E.E.; Isabella, M.A. Frozen elephant trunk procedure. Op. Tech. Thorac. Cardiovasc. Surg. 2013, 18, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.G.; Zhang, W.; Zhu, J.M.; Ziganshin, B.A.; Zhi, A.H.; Zheng, J.; Liu, Y.M.; Elefteriades, J.A.; Sun, L.Z. Long-term outcomes of frozen elephant trunk for tyupe A aortic dissection in patients with Marfan syndrome. J. Thorac. Cardiovasc. Surg. 2017, 154, 1175–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vendramin, I.; Lechiancole, A.; Frigatti, P.; Sponza, M.; Sponga, S.; Piani, D.; Bortolotti, U.; Livi, U. Aortic arch aneurysm and Kommerell’s diverticulum: Repair with a single-stage hybrid approach. J. Card. Surg. 2019, 34, 641–644. [Google Scholar] [CrossRef]
- Vendramin, I.; Frigatti, P.; Benedetti, G.; Lechiancole, A.; Sponga, S.; Bortolotti, U.; Livi, U. Management of a mobile intraluminal thrombus after a frozen elephant trunk in Horton arteritis. Ann. Thorac. Surg. 2020, 109, e463. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, W.M. The myth of Occam’s razor. Mind 1918, 27, 345–353. [Google Scholar] [CrossRef]
Group 1 (n = 163) | Group 2 (n = 75) | p Value | |
---|---|---|---|
Median age, years (min–max) | 69 (43–89) | 58 (28–78) | <0.001 |
Male sex, n. (%) | 106 (65) | 57 (77) | 0.057 |
Risk factors | |||
Dyslipidemia, n. (%) | 28 (17) | 10 (14) | 0.49 |
Obesity, n. (%) | 32 (20) | 20 (28) | 0.19 |
Diabetes, n. (%) | 11 (7) | 2 (3) | 0.21 |
Hypertension, n. (%) | 124 (77) | 58 (80) | 0.62 |
Chronic kidney damage, n. (%) | 7 (4) | 5 (7) | 0.42 |
Chronic AF, n. (%) | 20 (12) | 6 (8) | 0.35 |
Smoking habitus, n. (%) | 52 (32) | 23 (32) | 0.93 |
Chronic OAC, n (%) | 19 (12) | 7 (10) | 0.63 |
BAV, n. (%) | 11 (7) | 1 (1) | 0.11 |
Connective tissue disorder, n. (%) | 2 (1) | 2 (3) | 0.41 |
Previous cardiac surgery, n. (%) | 8 (5) | 3 (4) | 1 |
Clinical presentation | |||
Syncope, n. (%) | 30 (19) | 12 (17) | 0.74 |
Transient neurological deficit, n. (%) | 28 (18) | 19 (27) | 0.11 |
Coma, n. (%) | 1 (1) | 3 (4) | 0.09 |
Cardiac tamponade/shock, n. (%) | 61 (38) | 20 (28) | 0.15 |
Chest pain, n. (%) | 125 (79) | 59 (84) | 0.36 |
AR ≥ moderate, n. (%) | 41 (26) | 22 (34) | 0.23 |
Acute kidney failure, n. (%) | 16 (14) | 12 (19) | 0.45 |
Group 1 (n = 163) | Group 2 (n = 75) | p Value | |
---|---|---|---|
Arterial cannulation | <0.001 | ||
Right axillary, n. (%) | 83 (51) | 65 (88) | |
Femoral, n (%) | 73 (44) | 8 (11) | |
Other, n. (%) | 7 (4) | 1 (1) | |
Cerebral perfusion | <0.001 | ||
Retrograde | 29 (18) | 0 | |
Selective antegrade | 132 (82) | 75 (100) | |
Associated procedures | |||
AVR | 9 (1 Djumbodis) (6) | 1 (1) | 0.14 |
Bentall | 18 (5 CABG) (11) | 3 (1 CABG) (4) | 0.08 |
Tirone-David | 2 (1 Djumbodis) (1) | 5 (7) | 0.002 |
Yacoub | 2 (1) | - | - |
CABG | 5 (3) | - | - |
Arch surgery | |||
Classic ET, n. (%) | - | 36 (48) | |
Frozen ET, n. (%) | - | 15 (20) | |
TAR, n. (%) | 24 (32) | ||
Intraoperative data | |||
Median CPB time, minutes (min–max) | 185 (102–444) | 232 (152–612) | <0.001 |
Median ACC time, minutes (min–max) | 88 (40–330) | 148 (65–340) | <0.001 |
Median arrest time, minutes (min–max) | 38 (5–90) | 48 (13–228) | <0.001 |
Median core temperature, °C (min–max) | 25 (20–31) | 25 (22–28) | 0.51 |
Postoperative complications | |||
Chest re-exploration, n. (%) | 32 (20) | 8 (11) | 0.11 |
Splanchnic ischemia, n. (%) | 6 (4) | 3 (4) | 1 |
Atrial fibrillation, n. (%) | 63 (40) | 30 (43) | 0.67 |
Acute kidney injury, n. (%) | 65 (42) | 42 (40) | 0.013 |
Dialysis, n. (%) | 26 (17) | 18 (26) | 0.10 |
Permanent neurologic deficit, n. (%) | 16 (10) | 10 (14) | 0.36 |
Postoperative course | |||
Median ICU stay, days (min–max) | 5 (1–129) | 7 (2–57) | 0.005 |
Median hospital stay, days (min–max) | 17 (1–129) | 22 (10–61) | <0.001 |
30-day mortality, n. (%) | 19 (12) | 4 (5) | 0.16 |
Era 1 (2006–2013) | Era 2 (2014–2020) | |||||
---|---|---|---|---|---|---|
AA + Hemiarch n = 87 | AA + Arch n = 20 | p | AA + Hemiarch n = 76 | AA + Arch n = 55 | p | |
Intraoperative data | ||||||
Arterial cannulation | <0.001 | 52 (95) 3 (5) | 0.13 | |||
Right axillary, n. (%) | 21 (24) | 14 (70) | 62 (81) | |||
Femoral, n (%) | 64 (74) | 5 (25) | 9 (12) | |||
Other, n. (%) | 2 (2) | 1 (5) | 5 (7) | |||
Cerebral perfusion | 56 (100) | |||||
Retrograde | 75 (99) | 1 | ||||
Selective antegrade | 1 (1) | - | ||||
Arch surgery | - | 13 (65) | - | - | ||
Classic ET, n. (%) | 23 (42) | - | ||||
Frozen ET, n. (%) | 15 (27) | - | ||||
Median CPB time, minutes (min–max) | 210 (128–444) | 319 (191–428) | <0.001 | 160 (108–373) | 225 (170–612) | <0.001 |
Median ACC time, minutes (min–max) | 88 (40–330) | 188 (65–306) | 0.001 | 93 (45–220) | 149 (83–340) | <0.001 |
Median arrest time, minutes (min–max) | 42 (5–90) | 65 (13–228) | <0.001 | 36 (17–84) | 48 (19–130) | 0.04 |
Median core temperature, °C (min–max) | 24 (20–26) | 25 (22–25) | 0.74 | 26 (24–31) | 26 (24–28) | 0.06 |
Postoperative complications | ||||||
Chest re-entry, n. (%) | 19 (23) | 4 (22) | 1 | 13 (17) | 4 (8) | 0.12 |
Permanent neurologic deficit, n. (%) | 9 (11) | 2 (11) | 1 | 7 (9) | 8 (15) | 0.32 |
Splanchnic ischemia, n. (%) | 2 (2) | 0 | 1 | 4 (5) | 3 (6) | 1 |
Atrial fibrillation, n. (%) | 38 (46) | 7 (39) | 0.61 | 25 (33) | 23 (43) | 0.25 |
AKI, n. (%) | 35 (45) | 11 (61) | 0.21 | 30 (40) | 31 (59) | 0.04 |
Dialysis, n. (%) | 15 (18) | 6 (33) | 0.16 | 11 (15) | 12 (23) | 0.25 |
Median ICU stay, days (min–max) | 5 (1–34) | 7 (4–20) | 0.24 | 5 (1–129) | 7 (2–57) | 0.02 |
Median hospital stay, days (min–max) | 17 (1–51) | 23 (12–31) | 0.27 | 17 (6–129) | 19 (10–59) | <0.001 |
30-day mortality, n. (%) | 13 (15) | 3 (15) | 1 | 6 (8) | 1 (1) | 0.24 |
p Value | |
---|---|
Median age, years (min–max) | 55 (28–74) |
Male sex, n. (%) | 13 (87) |
Risk factors | |
Dyslipidemia, n. (%) | 2 (13) |
Obesity, n. (%) | 6 (40) |
Diabetes, n. (%) | 1 (7) |
Hypertension, n. (%) | 13 (87) |
Chronic kidney damage, n. (%) | 1 (7) |
Chronic AF, n. (%) | 0 |
Smoking habitus, n. (%) | 0 |
Chronic OAC, n (%) | 0 |
Bicuspid aortic valve, n. (%) | 1 (7) |
Connective tissue disorder, n. (%) | 1 (7) |
Previous cardiac surgery, n. (%) | 1 (7) |
Clinical presentation | |
Syncope, n. (%) | 2 (13) |
Transient neurological deficit, n. (%) | 7 (47) |
Coma, n. (%) | 1 (7) |
Cardiac tamponade/shock, n. (%) | 1 (7) |
Chest pain, n. (%) | 12 (80) |
AR ≥ moderate, n. (%) | 4 (33) |
Acute kidney failure, n. (%) | 3 (20) |
Arterial cannulation | |
Right axillary, n. (%) | 15 (100) |
Femoral, n (%) | - |
Other, n. (%) | - |
Cerebral perfusion | |
Retrograde | 0 |
Selective antegrade | 15 (100) |
Intraoperative data | |
Median CPB time, minutes (min–max) | 195 (168–476) |
Median ACC time, minutes (min–max) | 125 (96–258) |
Median arrest time, minutes (min–max) | 29 (19–60) |
Median core temperature, °C (min–max) | 27 (25–29) |
Postoperative complications | |
Chest re-exploration, n. (%) | 0 |
Splancnic ischemia, n. (%) | 0 |
Atrial fibrillation, n. (%) | 4 (27) |
Acute kidney injury, n. (%) | 5 (33) |
Dialysis, n. (%) | 0 |
Permanent neurologic deficit, n. (%) | 1 (7) |
Median ICU stay, days (min–max) | 5 (2–18) |
Median hospital stay, days (min–max) | 20 (10–37) |
30-day mortality, n. (%) | 0 |
Univariable | Multivariable | |||
---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | |
Age | 1.02 (0.99–1.06) | 0.23 | ||
Male gender | 1.45 (0.60–3.52) | 0.41 | ||
LVEF | 0.96 (0.90–1.04) | 0.37 | ||
Chronic renal failure | 1.08 (0.13–8.83) | 0.94 | ||
Previous cardiac surgery | 2.27 (0.46–11.22) | 0.32 | ||
Bicuspid aortic valve | 3.40 (0.85–13.58) | 0.08 | ||
Chronic AF | 2.87 (0.95–8.63) | 0.06 | ||
Arterial hypertension | 3.62 (1.44–9.06) | 0.006 | ||
Smoke | 1.074 (0.41–2.78) | 0.88 | ||
Obesity | 1.07 (0.37–3.08) | 0.90 | ||
Diabetes | 3.40 (0.86–13.47) | 0.08 | ||
Dyslipidemia | 0.24 (0.03–1.83) | 0.17 | ||
COPD | 2.91 (0.87–9.69) | 0.08 | ||
Tamponade/shock | 6.42 (2.43–17.03) | <0.001 | 7.30 (2.42–22.00) | <0.001 |
Syncope | 0.39 (0.08–1.74) | 0.22 | ||
Neurological damage | 1.79 (0.69–4.65) | 0.23 | ||
≥moderate aortic regurgitation | 2.50 (1.00–6.23) | 0.05 | ||
Aortic arch replacement | 2.34 (0.76–7.14) | 0.13 | 11.96 (1.60–30.56) | 0.02 |
CPB time | 1.02 (1.01–1.03) | 0.002 | ||
ACC time | 1.02 (1.01–1.03) | 0.002 | 1.04 (1.02–1.06) | <0.001 |
Circulatory arrest | 1.01 (1.00–1.02) | 0.03 | ||
Antegrade cerebral perfusion | 2.51 (0.57–11.17) | 0.22 | ||
Retrograde cerebral perfusion | 0.36 (0.08–1.62) | 0.18 |
Type | Group 1 (n = 163) | Group 2 (n = 75) | p Value |
---|---|---|---|
Proximal reintervention, n. (%) | 4 (2) | 1 (1) | 0.95 |
Distal reintervention, n. (%) | 9 (6) | - | - |
TEVAR, n. (%) | 5 (3) | 8 (11) | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vendramin, I.; Piani, D.; Lechiancole, A.; Sponga, S.; Di Nora, C.; Londero, F.; Muser, D.; Onorati, F.; Bortolotti, U.; Livi, U. Hemiarch Versus Arch Replacement in Acute Type A Aortic Dissection: Is the Occam’s Razor Principle Applicable? J. Clin. Med. 2022, 11, 114. https://doi.org/10.3390/jcm11010114
Vendramin I, Piani D, Lechiancole A, Sponga S, Di Nora C, Londero F, Muser D, Onorati F, Bortolotti U, Livi U. Hemiarch Versus Arch Replacement in Acute Type A Aortic Dissection: Is the Occam’s Razor Principle Applicable? Journal of Clinical Medicine. 2022; 11(1):114. https://doi.org/10.3390/jcm11010114
Chicago/Turabian StyleVendramin, Igor, Daniela Piani, Andrea Lechiancole, Sandro Sponga, Concetta Di Nora, Francesco Londero, Daniele Muser, Francesco Onorati, Uberto Bortolotti, and Ugolino Livi. 2022. "Hemiarch Versus Arch Replacement in Acute Type A Aortic Dissection: Is the Occam’s Razor Principle Applicable?" Journal of Clinical Medicine 11, no. 1: 114. https://doi.org/10.3390/jcm11010114
APA StyleVendramin, I., Piani, D., Lechiancole, A., Sponga, S., Di Nora, C., Londero, F., Muser, D., Onorati, F., Bortolotti, U., & Livi, U. (2022). Hemiarch Versus Arch Replacement in Acute Type A Aortic Dissection: Is the Occam’s Razor Principle Applicable? Journal of Clinical Medicine, 11(1), 114. https://doi.org/10.3390/jcm11010114