Overview of the Development and Use of Akt Inhibitors in Prostate Cancer
Abstract
:1. Introduction
2. PI3K-Akt-mTor Pathway Physiology and Drug Development
3. PI3K-Akt-mTor Pathway in Prostate Cancer
4. Akt Inhibitors in Prostate Cancer
5. Ongoing Trials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arcaro, A.; Guerreiro, A.S. The phosphoinositide 3-kinase pathway in human cancer: Genetic alterations and therapeutic implications. Curr. Genom. 2007, 8, 271–306. [Google Scholar] [CrossRef] [PubMed]
- Carnero, A. The PKB/AKT pathway in cancer. Curr. Pharm. Des. 2010, 16, 34–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altomare, D.A.; Testa, J.R. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005, 24, 7455–7464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, G.; Ouyang, G.; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J. Cell. Mol. Med. 2005, 9, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; German, P.; Bai, S.; Barnes, S.; Guo, W.; Qi, X.; Lou, H.; Liang, J.; Jonasch, E.; Mills, G.B.; et al. The PI3K/AKT Pathway and Renal Cell Carcinoma. J. Genet. Genom. 2015, 42, 343–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgescu, M.M. PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer 2010, 1, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- West, K.A.; Castillo, S.S.; Dennis, P.A. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist. Updat. 2002, 5, 234–248. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Netto, G.J.; Rudek, M.A.; Halabi, S.; Wood, D.P.; Creel, P.A.; Mundy, K.; Davis, S.L.; Wang, T.; Albadine, R.; et al. A pharmacodynamic study of rapamycin in men with intermediate- to high-risk localized prostate cancer. Clin. Cancer Res. 2010, 16, 3057–3066. [Google Scholar] [CrossRef] [Green Version]
- Kruczek, K.; Ratterman, M.; Tolzien, K.; Sulo, S.; Lestingi, T.M.; Nabhan, C. A phase II study evaluating the toxicity and efficacy of single-agent temsirolimus in chemotherapy-naïve castration-resistant prostate cancer. Br. J. Cancer 2013, 109, 1711–1716. [Google Scholar] [CrossRef] [Green Version]
- George, D.J.; Halabi, S.; Healy, P.; Jonasch, D.; Anand, M.; Rasmussen, J.; Wood, S.Y.; Spritzer, C.; Madden, J.F.; Armstrong, A.J. Phase 2 clinical trial of TORC1 inhibition with everolimus in men with metastatic castration-resistant prostate cancer. Urol. Oncol. 2020, 38, 79.e15–79.e22. [Google Scholar] [CrossRef]
- Kumar, C.C.; Madison, V. AKT crystal structure and AKT-specific inhibitors. Oncogene 2005, 24, 7493–7501. [Google Scholar] [CrossRef] [Green Version]
- Rodon, J.; Dienstmann, R.; Serra, V.; Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat. Rev. Clin. Oncol. 2013, 10, 143–153. [Google Scholar] [CrossRef]
- Liao, Y.; Grobholz, R.; Abel, U.; Trojan, L.; Michel, M.S.; Angel, P.; Mayer, D. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int. J. Cancer 2003, 107, 676–680. [Google Scholar] [CrossRef]
- Bitting, R.L.; Armstrong, A.J. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr. Relat. Cancer 2013, 20, R83–R99. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.; Van Allen, E.M.; Wu, Y.M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.M.; Montgomery, B.; Taplin, M.E.; Pritchard, C.C.; Attard, G.; et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ittmann, M.M.; Ayala, G.; Tsai, M.J.; Amato, R.J.; Wheeler, T.M.; Miles, B.J.; Kadmon, D.; Thompson, T.C. The emerging role of the PI3-K-Akt pathway in prostate cancer progression. Prostate Cancer Prostatic Dis. 2005, 8, 108–118. [Google Scholar] [CrossRef] [Green Version]
- McMenamin, M.E.; Soung, P.; Perera, S.; Kaplan, I.; Loda, M.; Sellers, W.R. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999, 59, 4291–4296. [Google Scholar]
- Shukla, S.; Maclennan, G.T.; Hartman, D.J.; Fu, P.; Resnick, M.I.; Gupta, S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int. J. Cancer 2007, 121, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.M.; Koreckij, T.D.; Corey, E. Targeted therapy for advanced prostate cancer: Inhibition of the PI3K/Akt/mTOR pathway. Curr. Cancer Drug Targets 2009, 9, 237–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milella, M.; Falcone, I.; Conciatori, F.; Cesta Incani, U.; Del Curatolo, A.; Inzerilli, N.; Nuzzo, C.M.; Vaccaro, V.; Vari, S.; Cognetti, F.; et al. PTEN: Multiple Functions in Human Malignant Tumors. Front. Oncol. 2015, 5, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, B.S.; Chapinski, C.; Wongvipat, J.; Hieronymus, H.; Chen, Y.; Chandarlapaty, S.; Arora, V.K.; Le, C.; Koutcher, J.; Scher, H.; et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011, 19, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Reid, A.H.; Attard, G.; Ambroisine, L.; Fisher, G.; Kovacs, G.; Brewer, D.; Clark, J.; Flohr, P.; Edwards, S.; Berney, D.M.; et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer 2010, 102, 678–684. [Google Scholar] [CrossRef] [Green Version]
- Lotan, T.L.; Gurel, B.; Sutcliffe, S.; Esopi, D.; Liu, W.; Xu, J.; Hicks, J.L.; Park, B.H.; Humphreys, E.; Partin, A.W.; et al. PTEN protein loss by immunostaining: Analytic validation and prognostic indicator for a high risk surgical cohort of prostate cancer patients. Clin. Cancer Res. 2011, 17, 6563–6573. [Google Scholar] [CrossRef] [Green Version]
- Sangale, Z.; Prass, C.; Carlson, A.; Tikishvili, E.; Degrado, J.; Lanchbury, J.; Stone, S. A robust immunohistochemical assay for detecting PTEN expression in human tumors. Appl. Immunohistochem. Mol. Morphol. 2011, 19, 173–183. [Google Scholar] [CrossRef]
- Lotan, T.L.; Wei, W.; Ludkovski, O.; Morais, C.L.; Guedes, L.B.; Jamaspishvili, T.; Lopez, K.; Hawley, S.T.; Feng, Z.; Fazli, L.; et al. Analytic validation of a clinical-grade PTEN immunohistochemistry assay in prostate cancer by comparison with PTEN FISH. Mod. Pathol. 2016, 29, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Josephs, D.H.; Sarker, D. Pharmacodynamic Biomarker Development for PI3K Pathway Therapeutics. Transl. Oncogenom. 2016, 7 (Suppl. 1), 33–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulholland, D.J.; Tran, L.M.; Li, Y.; Cai, H.; Morim, A.; Wang, S.; Plaisier, S.; Garraway, I.P.; Huang, J.; Graeber, T.G.; et al. Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth. Cancer Cell 2011, 19, 792–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Xie, S.; Jamaluddin, S.; Altuwaijri, S.; Ni, J.; Kim, E.; Chen, Y.-T.; Hu, Y.-C.; Wang, L.; Chuang, K.-H.; et al. Induction of androgen receptor expression by phosphatidylinositol 3-kinase/Akt downstream substrate, FOXO3a, and their roles in apoptosis of LNCaP prostate cancer cells. J. Biol. Chem. 2005, 280, 33558–33565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manin, M.; Baron, S.; Goossens, K.; Beaudoin, C.; Jean, C.; Veyssiere, G.; Verhoeven, G.; Morel, L. Androgen receptor expression is regulated by the phosphoinositide 3-kinase/Akt pathway in normal and tumoral epithelial cells. Biochem. J. 2002, 366, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Chen, S.Y.; Ross, K.N.; Balk, S.P. Androgens induce prostate cancer cell proliferation through mammalian target of rapamycin activation and post-transcriptional increases in cyclin D proteins. Cancer Res. 2006, 66, 7783–7792. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Johnson, D.; Luong, R.; Sun, Z. Crosstalking between androgen and PI3K/AKT signaling pathways in prostate cancer cells. J. Biol. Chem. 2015, 290, 2759–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bono, J.S.; De Giorgi, U.; Rodrigues, D.N.; Massard, C.; Bracarda, S.; Font, A.; Arija, J.A.A.; Shih, K.C.; Radavoi, G.D.; Xu, N.; et al. Randomized Phase II Study Evaluating Akt Blockade with Ipatasertib, in Combination with Abiraterone, in Patients with Metastatic Prostate Cancer with and without PTEN Loss. Clin. Cancer Res. 2019, 25, 928–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, C.; Bracarda, S.; Sternberg, C.N.; Chi, K.N.; Olmos, D.; Sandhu, S.; Massard, C.; Matsubara, N.; Alekseev, B.; Parnis, F.; et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2021, 398, 131–142. [Google Scholar] [CrossRef]
- Kolinsky, M.; Rescigno, P.; Bianchini, D.; Zafeiriou, Z.; Mehra, N.; Mateo, J.; Michalarea, V.; Riisnaes, R.; Crespo, M.; Figueiredo, I.; et al. A phase I dose-escalation study of enzalutamide in combination with the AKT inhibitor AZD5363 (capivasertib) in patients with metastatic castration-resistant prostate cancer. Ann. Oncol. 2020, 31, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Crabb, S.J.; Griffiths, G.; Marwood, E.; Dunkley, D.; Downs, N.; Martin, K.; Light, M.; Northey, J.; Wilding, S.; Whitehead, A.; et al. Pan-AKT Inhibitor Capivasertib with Docetaxel and Prednisolone in Metastatic Castration-Resistant Prostate Cancer: A Randomized, Placebo-Controlled Phase II Trial (ProCAID). J. Clin. Oncol. 2021, 39, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov (accessed on 15 November 2021).
IPATASERTIB | CAPIVASERTIB | |
---|---|---|
Clinical trial | IPATential | ProCAID |
Phase | III | II |
Number of patients enrolled | 1101 | 150 |
Primary endpoint | rPFS | cPFS |
Stage of the disease | mCRPC | mCRPC |
Association to AKTi | Abiraterone + Prednisolone | Docetaxel + Prednisolone |
Control | Placebo | Placebo |
Primary outcome’s HR | 0.77 (95% CI, 0.61–0.98); p = 0.034 | 0.92 (80% CI, 0.73–1.16); p = 0.32 |
Grade ≥ 3 adverse events | 70% | 62% |
AEs leading to treatment discontinuation | 21% | 23% |
Drug | Phase | NCT Number | Conditions | Investigator | Regimen | Status | Title of the Study | Primary Outcome |
---|---|---|---|---|---|---|---|---|
Capivasertib | III | NCT04493853 | De novo metastatic hormone-sensitive prostate cancer with PTEN deficiency | AstraZeneca | Capivasertib + Abiraterone | Recruiting | A double-blind, randomised, placebo-controlled study assessing the efficacy and safety of Capivasertib + Abiraterone versus placebo+abiraterone as a treatment for patients with denovo metastatic hormone-sensitive prostate cancer characterised by PTEN deficiency. | Radiographic progression-free survival (rPFS). |
Capivasertib (AZD5363) | I | NCT04087174 | Metastatic castration-resistant prostate cancer | AstraZeneca Parexel | Cabivasertibe + Enzalutamide or Abiraterone | Completed | Open-label, multi-centre study to assess the safety, tolerability, and pharmacokinetics of Capivasertib (AZD5363) in combination with novel agents in patients with metastatic castration resistant prostate cancer. | Number of patients with dose-limiting toxicity and number of patients with adverse events. |
MK2206 | I | NCT01480154 | Solid neoplasm, melanoma, prostate and kidney cancers | Jyoti Malhotra (Rutgers Cancer Institute of New Jersey) | Akt inhibitor MK2206 + Hydroxychloroquine | Active, not recruiting | Akt inhibitor MK2206 and hydroxychloroquine in treating patients with Advanced solid tumours, melanoma, prostate or kidney cancer. | To define the maximum tolerated dose of MK-2206 and hydroxychloroquine when used in combination. |
Ipatasertib (GDC-0068) | Ib/II | NCT01485861 | Castration-resistant prostate cancer previously treated with Docetaxel | Genentech, Inc. | Ipatasertibe or Apitolisilib + Abiraterone | Active, not recruiting | Ipatasertib (GDC-0068) or Apitolisib (GDC-0980) with Abiraterone Acetate versus Abiraterone Acetate in patients with castration-resistant prostate cancer previously treated with Docetaxel-based chemotherapy. | Recommended phase II dose of Ipatasertib, percentage of radiographic progression and progression free survival with or without PTEN loss. |
Ipatasertib | Ib | NCT04404140 | Metastatic castration-resistant prostate cancer | Hoffmann-La Roche | Ipatasertib + Atezolizumab + Docetaxel | Recruiting | A multicentre study evaluating the safety, efficacy and pharmacokinetics of Ipatasertib In combination with Atezolizumab and Docetaxel in metastatic castration-resistant prostate cancer. | Percentage of patients with adverse events, confirmed PSA response, overall response rate. |
Ipatasertib | I | NCT04737109 | Breast, ovarian and prostate cancers | Hoffmann-La Roche | Ipatasertib + Rucaparib | Active, not recruiting | A multicentre study evaluating the safety and efficacy of Ipatasertib in combination with Rucaparib in patients with advanced breast, ovarian, or prostate cancer. | Percentage of patients with adverse events, maximum-dose tolerated of the Ipatersertib and Rucaparib combination, percentage of patients with PSA response |
Ipatasertib | I | NCT03673787 | Solid tumour, glioblastoma, metastatic prostate cancer | Juanita Lopez (National Health Service, UK) | Ipatasertib + Atezolizumab | Recruiting | Ipatasertib in combination with Atezolizumab in patients with advanced solid tumours with PI3K pathway hyperactivation. | To determine the maximum tolerated dose in Phase I. Number and type of treatment-related adverse events of the two drugs combination. |
Ipatasertib | I/II | NCT04737109 | Localised high-risk prostate cancer | David VanderWeele (Northwestern University) | Ipatasertib + Darolutamide | Recruiting | Neoadjuvant androgen deprivation, Darolutamide, and Ipatasertib in men with localised, high-risk prostate cancer. | Pathological Complete Response Rate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasmi, A.; Roubaud, G.; Dariane, C.; Barret, E.; Beauval, J.-B.; Brureau, L.; Créhange, G.; Fiard, G.; Fromont, G.; Gauthé, M.; et al. Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. J. Clin. Med. 2022, 11, 160. https://doi.org/10.3390/jcm11010160
Gasmi A, Roubaud G, Dariane C, Barret E, Beauval J-B, Brureau L, Créhange G, Fiard G, Fromont G, Gauthé M, et al. Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. Journal of Clinical Medicine. 2022; 11(1):160. https://doi.org/10.3390/jcm11010160
Chicago/Turabian StyleGasmi, Anis, Guilhem Roubaud, Charles Dariane, Eric Barret, Jean-Baptiste Beauval, Laurent Brureau, Gilles Créhange, Gaëlle Fiard, Gaëlle Fromont, Mathieu Gauthé, and et al. 2022. "Overview of the Development and Use of Akt Inhibitors in Prostate Cancer" Journal of Clinical Medicine 11, no. 1: 160. https://doi.org/10.3390/jcm11010160
APA StyleGasmi, A., Roubaud, G., Dariane, C., Barret, E., Beauval, J. -B., Brureau, L., Créhange, G., Fiard, G., Fromont, G., Gauthé, M., Ruffion, A., Renard-Penna, R., Sargos, P., Rouprêt, M., Ploussard, G., & Mathieu, R. (2022). Overview of the Development and Use of Akt Inhibitors in Prostate Cancer. Journal of Clinical Medicine, 11(1), 160. https://doi.org/10.3390/jcm11010160