Male vs. Female Differences in Responding to Oxygen–Ozone Autohemotherapy (O2-O3-AHT) in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)
Abstract
:1. The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Challenge
2. Materials and Methods
2.1. Patient Recruitment
2.2. Inclusion and Exclusion Criteria
2.3. Sample Size
2.4. Patient Evaluation of Fatigue Symptomatology
2.5. Patients’ Treatment with Oxygen–Ozone Autohemotherapy (O2-O3-AHT)
2.6. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deumer, U.S.; Varesi, A.; Floris, V.; Savioli, G.; Mantovani, E.; López-Carrasco, P.; Rosati, G.M.; Prasad, S.; Ricevuti, G. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): An Overview. J. Clin. Med. 2021, 10, 4786. [Google Scholar] [CrossRef]
- Barhorst, E.E.; Boruch, A.E.; Cook, D.B.; Lindheimer, J.B. Pain-related post-exertional malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia: A systematic review and three-level meta-analysis. Pain Med. 2021, pnab308. [Google Scholar] [CrossRef]
- Noor, N.; Urits, I.; Degueure, A.; Rando, L.; Kata, V.; Cornett, E.M.; Kaye, A.D.; Imani, F.; Narimani-Zamanabadi, M.; Varrassi, G.; et al. A Comprehensive Update of the Current Understanding of Chronic Fatigue Syndrome. Anesth. Pain Med. 2021, 11, e113629. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.J.; Son, C.G. Prevalence of Chronic Fatigue Syndrome (CFS) in Korea and Japan: A Meta-Analysis. J. Clin. Med. 2021, 10, 3204. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, U.; Lleshi, A.; Berretta, M.; Spina, M.; Talamini, R.; Giacalone, A. Treatment of 741 Italian patients with chronic fatigue syndrome. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2847–2852. [Google Scholar] [PubMed]
- Tirelli, U.; Cirrito, C.; Pavanello, M.; Del Pup, L.; Lleshi, A.; Berretta, M. Oxygen-ozone therapy as support and palliative therapy in 50 cancer patients with fatigue—A short report. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8030–8033. [Google Scholar]
- Arpino, C.; Carrieri, M.P.; Valesini, G.; Pizzigallo, E.; Rovere, P.; Tirelli, U.; Conti, F.; Dialmi, P.; Barberio, A.; Rusconi, N.; et al. Idiopathic chronic fatigue and chronic fatigue syndrome: A comparison of two case-definitions. Ann. Ist. Super. Sanita 1999, 35, 435–441. [Google Scholar] [PubMed]
- Tirelli, U.; Chierichetti, F.; Tavio, M.; Simonelli, C.; Bianchin, G.; Zanco, P.; Ferlin, G. Brain positron emission tomography (PET) in chronic fatigue syndrome: Preliminary data. Am. J. Med. 1998, 105, 54S–58S. [Google Scholar] [CrossRef]
- Montoya, J.G.; Holmes, T.H.; Anderson, J.N.; Maecker, H.T.; Rosenberg-Hasson, Y.; Valencia, I.J.; Chu, L.; Younger, J.W.; Tato, C.M.; Davis, M.M. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc. Natl. Acad. Sci. USA 2017, 114, E7150–E7158. [Google Scholar] [CrossRef] [Green Version]
- Tirelli, U.; Marotta, G.; Improta, S.; Pinto, A. Immunological abnormalities in patients with chronic fatigue syndrome. Scand. J. Immunol. 1994, 40, 601–608. [Google Scholar] [CrossRef]
- Tirelli, V.; Pinto, A.; Marotta, G.; Crovato, M.; Quaia, M.; De Paoli, P.; Galligioni, E.; Santini, G. Clinical and immunologic study of 205 patients with chronic fatigue syndrome: A case series from Italy. Arch. Intern. Med. 1993, 153, 116–120. [Google Scholar] [CrossRef]
- Estévez-López, F.; Mudie, K.; Wang-Steverding, X.; Bakken, I.J.; Ivanovs, A.; Castro-Marrero, J.; Nacul, L.; Alegre, J.; Zalewski, P.; Słomko, J.; et al. Systematic Review of the Epidemiological Burden of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Across Europe: Current Evidence and EUROMENE Research Recommendations for Epidemiology. J. Clin. Med. 2020, 9, 1557. [Google Scholar] [CrossRef]
- Vincent, A.; Brimmer, D.J.; Whipple, M.O.; Jones, J.F.; Boneva, R.; Lahr, B.D.; Maloney, E.; St Sauver, J.L.; Reeves, W.C. Prevalence, incidence, and classification of chronic fatigue syndrome in Olmsted County, Minnesota, as estimated using the Rochester Epidemiology Project. Mayo Clin. Proc. 2012, 87, 1145–1152. [Google Scholar] [CrossRef]
- Lim, E.J.; Ahn, Y.C.; Jang, E.S.; Lee, S.W.; Lee, S.H.; Son, C.G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 2020, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Capelli, E.; Lorusso, L.; Ghitti, M.; Venturini, L.; Cusa, C.; Ricevuti, G. Chronic fatigue syndrome: Features of a population of patients from northern Italy. Int. J. Immunopathol. Pharmacol. 2015, 28, 53–59. [Google Scholar] [CrossRef]
- Spazzapan, S.; Bearz, A.; Tirelli, U. Fatigue in cancer patients receiving chemotherapy. An analysis of published studies. Ann. Oncol. 2004, 15, 1576. [Google Scholar] [PubMed]
- Solomon, L.; Reeves, W.C. Factors influencing the diagnosis of chronic fatigue syndrome. Arch. Intern. Med. 2004, 164, 2241–2245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenna, E.; Araja, D.; Pheby, D.F.H. Comparative Survey of People with ME/CFS in Italy, Latvia, and the UK: A Report on Behalf of the Socioeconomics Working Group of the European ME/CFS Research Network (EUROMENE). Medicina 2021, 57, 300. [Google Scholar] [CrossRef]
- Kennedy, G.; Abbot, N.C.; Spence, V.; Underwood, C.; Belch, J.J. The specificity of the CDC-1994 criteria for chronic fatigue syndrome: Comparison of health status in three groups of patients who fulfill the criteria. Ann. Epidemiol. 2004, 14, 95–100. [Google Scholar] [CrossRef]
- Kuratsune, H. Diagnosis and Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Nerve 2018, 70, 11–18. [Google Scholar]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Bruun Wyller, V.; Bjørneklett, A.; Brubakk, O.; Festvåg, L.; Follestad, I.; Malt, U.; Malterud, K.; Nyland, H.; Rambøl, H.; Stubhaug, B.; et al. Diagnosis and Treatment of Chronic Fatigue Syndrome/Myalgic Encephalopathy (CFS/ME); Report from Norwegian Knowledge Centre for the Health Services (NOKC) No. 09-2006; Knowledge Centre for the Health Services at The Norwegian Institute of Public Health (NIPH): Oslo, Norway, 2006.
- Chew-Graham, C.; Dowrick, C.; Wearden, A.; Richardson, V.; Peters, S. Making the diagnosis of Chronic Fatigue Syndrome/Myalgic Encephalitis in primary care: A qualitative study. BMC Fam. Pract. 2010, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Son, C.G. Differential diagnosis between “chronic fatigue” and “chronic fatigue syndrome”. Integr. Med. Res. 2019, 8, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, D.A., Jr. Differential diagnosis for chronic fatigue syndrome. Am. Fam. Physician 2003, 67, 252, author reply 252. [Google Scholar]
- Craig, T.; Kakumanu, S. Chronic fatigue syndrome: Evaluation and treatment. Am. Fam. Physician 2002, 65, 1083–1089. [Google Scholar] [PubMed]
- Tirelli, U.; Cirrito, C.; Pavanello, M. Ozone therapy is an effective therapy in chronic fatigue syndrome: Result of an Italian study in 65 patients. Ozon Ther. 2018, 3, 27–30. [Google Scholar] [CrossRef]
- Morelli, L.; Bramani, S.C.; Morelli, F.C. Oxygen-ozone therapy in meningoencephalitis and chronic fatigue syndrome. Treatment in the field of competitive sports: Case report. Ozone Ther. 2019, 4, 20–23. [Google Scholar] [CrossRef]
- Borrelli, E.; Bocci, V. A novel therapeutic option for Chronic Fatigue Syndrome and Fibromyalgia. Rivista Ital. Ossig-Ozonoterap. 2002, 1, 149–153. [Google Scholar]
- Viebahn-Haensler, R.; León Fernández, O.S. Ozone in Medicine. The Low-Dose Ozone Concept and Its Basic Biochemical Mechanisms of Action in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2021, 22, 7890. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Pivina, L.; Doşa, M.D.; Semenova, Y.; Maes, M. Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome. Mol. Neurobiol. 2020, 57, 4598–4607. [Google Scholar] [CrossRef]
- Chirumbolo, S.; Valdenassi, L.; Simonetti, V.; Bertossi, D.; Ricevuti, G.; Franzini, M.; Pandolfi, S. Insights on the mechanisms of action of ozone in the medical therapy against COVID-19. Int. Immunopharmacol. 2021, 96, 107777. [Google Scholar] [CrossRef]
- Paul, B.D.; Lemle, M.D.; Komaroff, A.L.; Snyder, S.H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl. Acad. Sci. USA 2021, 118, e2024358118. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Shaw, E.J. Diagnosis and management of chronic fatigue syndrome or myalgic encephalomyelitis (or encephalopathy): Summary of NICE guidance. BMJ 2007, 335, 446–448. [Google Scholar] [CrossRef] [Green Version]
- Neuberger, G.B. Measures of fatigue Arthritis and Rheumatisms. Arthr. Care Res. 2003, 48, S175–S183. [Google Scholar] [CrossRef]
- Tirelli, U.; Franzini, M.; Valdenassi, L.; Pisconti, S.; Taibi, R.; Torrisi, C.; Pandolfi, S.; Chirumbolo, S. Fatigue in post-acute sequelae of SARS-CoV2 (PASC) treated with oxygen-ozone autohemotherapy-Preliminary results on 100 patients. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5871–5875. [Google Scholar] [PubMed]
- Lvis, A.M.; Ekta, J.S. Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med. 2011, 2, 66–70. [Google Scholar]
- Anderson, G.; Maes, M. Mitochondria and immunity in chronic fatigue syndrome. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 103, 109976. [Google Scholar] [CrossRef]
- Maes, M.; Twisk, F.N.; Kubera, M.; Ringel, K. Evidence for inflammation and activation of cell-mediated immunity in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): Increased interleukin-1, tumor necrosis factor-α, PMN-elastase, lysozyme and neopterin. J. Affect. Disord. 2012, 136, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Twisk, F.N.; Ringel, K. Inflammatory and cell-mediated immune biomarkers in myalgic encephalomyelitis/chronic fatigue syndrome and depression: Inflammatory markers are higher in myalgic encephalomyelitis/chronic fatigue syndrome than in depression. Psychother. Psychosom. 2012, 81, 286–295. [Google Scholar] [CrossRef]
- Brenu, E.W.; Huth, T.K.; Hardcastle, S.L.; Fuller, K.; Kaur, M.; Johnston, S.; Ramos, S.B.; Staines, D.R.; Marshall-Gradisnik, S.M. Role of adaptive and innate immune cells in chronic fatigue syndrome/myalgic encephalomyelitis. Int. Immunol. 2014, 26, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Tu, L.; Liang, Y.H.; Liu, J.; Gong, Y.J.; Zhang, J.H.; Zhang, Y.H. Effects of ozone exposure on percentage of CD4(+)CD25(high)Foxp(3+) regulatory T cells and mRNA expression of Foxp3 in asthmatic rats. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 2013, 31, 693–696. [Google Scholar]
- Broderick, G.; Fuite, J.; Kreitz, A.; Vernon, S.D.; Klimas, N.; Fletcher, M.A. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav. Immun. 2010, 24, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Izadi, M.; Tahmasebi, S.; Pustokhina, I.; Yumashev, A.V.; Lakzaei, T.; Alvanegh, A.G.; Roshangar, L.; Dadashpour, M.; Yousefi, M.; Ahmadi, M. Changes in Th17 cells frequency and function after ozone therapy used to treat multiple sclerosis patients. Mult. Scler. Relat. Disord. 2020, 46, 102466. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Saito, Y.; Yoshida, Y.; Sekine, A.; Noguchi, N.; Niki, E. 4-Hydroxynonenal induces adaptive response and enhances PC12 cell tolerance primarily through induction of thioredoxin reductase 1 via activation of Nrf2. J. Biol. Chem. 2005, 280, 41921–41927. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Dong, H.; Li, Q.; Li, Y.; Hong, A. Thioredoxin induces Tregs to generate an immunotolerant tumor microenvironment in metastatic melanoma. Oncoimmunology 2015, 4, e1027471. [Google Scholar] [CrossRef] [Green Version]
- Meeus, M.; Van Eupen, I.; Hondequin, J.; De Hauwere, L.; Kos, D.; Nijs, J. Nitric oxide concentrations are normal and unrelated to activity level in chronic fatigue syndrome: A case-control study. In Vivo 2010, 24, 865–869. [Google Scholar]
- Robinson, M.; Gray, S.R.; Watson, M.S.; Kennedy, G.; Hill, A.; Belch, J.J.; Nimmo, M.A. Plasma IL-6, its soluble receptors and F2-isoprostanes at rest and during exercise in chronic fatigue syndrome. Scand. J. Med. Sci. Sports 2010, 20, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Milne, G.L.; Musiek, E.S.; Morrow, J.D. F2-isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers 2005, 10 (Suppl. S1), S10–S23. [Google Scholar] [CrossRef] [PubMed]
- Goodman, W.A.; Bedoyan, S.M.; Havran, H.L.; Richardson, B.; Cameron, M.J.; Pizarro, T.T. Impaired estrogen signaling underlies regulatory T cell loss-of-function in the chronically inflamed intestine. Proc. Natl. Acad. Sci. USA 2020, 117, 17166–17176. [Google Scholar] [CrossRef]
- Gräns, H.; Nilsson, M.; Dahlman-Wright, K.; Evengård, B. Reduced levels of oestrogen receptor beta mRNA in Swedish patients with chronic fatigue syndrome. J. Clin. Pathol. 2007, 60, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Warabi, E. Mechanism of Rapid Nuclear Factor-E2-Related Factor 2 (Nrf2) Activation via Membrane-Associated Estrogen Receptors: Roles of NADPH Oxidase 1, Neutral Sphingomyelinase 2 and Epidermal Growth Factor Receptor (EGFR). Antioxidants 2019, 8, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chirumbolo, S.; Valdenassi, L.; Franzini, M.; Pandolfi, S.; Ricevuti, G.; Tirelli, U. Male vs. Female Differences in Responding to Oxygen–Ozone Autohemotherapy (O2-O3-AHT) in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). J. Clin. Med. 2022, 11, 173. https://doi.org/10.3390/jcm11010173
Chirumbolo S, Valdenassi L, Franzini M, Pandolfi S, Ricevuti G, Tirelli U. Male vs. Female Differences in Responding to Oxygen–Ozone Autohemotherapy (O2-O3-AHT) in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Journal of Clinical Medicine. 2022; 11(1):173. https://doi.org/10.3390/jcm11010173
Chicago/Turabian StyleChirumbolo, Salvatore, Luigi Valdenassi, Marianno Franzini, Sergio Pandolfi, Giovanni Ricevuti, and Umberto Tirelli. 2022. "Male vs. Female Differences in Responding to Oxygen–Ozone Autohemotherapy (O2-O3-AHT) in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)" Journal of Clinical Medicine 11, no. 1: 173. https://doi.org/10.3390/jcm11010173
APA StyleChirumbolo, S., Valdenassi, L., Franzini, M., Pandolfi, S., Ricevuti, G., & Tirelli, U. (2022). Male vs. Female Differences in Responding to Oxygen–Ozone Autohemotherapy (O2-O3-AHT) in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Journal of Clinical Medicine, 11(1), 173. https://doi.org/10.3390/jcm11010173