Factors Associated with the Development of Coagulopathy after Open Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
3. Patient Population
4. Data Collection
5. Definition of Coagulopathy
6. Statistical Analysis
7. Results
7.1. Subject Recruitment
7.2. Basic Characteristics of the Population
7.3. Comparison of Coagulopathy and No Coagulopathy Groups
7.4. Comparison of Receiving and Not Receiving TXA in the Coagulopathy Group
7.5. Outcomes Associated with Coagulopathy
8. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kinnunen, J.; Satopää, J.; Niemelä, M.; Putaala, J. Coagulopathy and its effect on treatment and mortality in patients with traumatic intracranial hemorrhage. Acta Neurochir. 2021, 163, 1391–1401. [Google Scholar] [CrossRef]
- Folkerson, L.E.; Sloan, D.; Davis, E.; Kitagawa, R.S.; Cotton, B.A.; Holcomb, J.B.; Tomasek, J.S.; Wade, C.E. Coagulopathy as a predictor of mortality after penetrating traumatic brain injury. Am. J. Emerg. Med. 2018, 36, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Talving, P.; Benfield, R.; Hadjizacharia, P.; Inaba, K.; Chan, L.S.; Demetriades, D. Coagulopathy in severe traumatic brain injury: A prospective study. J. Trauma Acute Care Surg. 2009, 66, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, G.; Okada, Y.; Ishii, W.; Ryoji, I.; Mamoru, M.; Takehiko, S.; Tarumi, Y.; Naoya, H. Association of skull fracture with in-hospital mortality in severe traumatic brain injury patients. Am. J. Emerg. Med. 2021, 46, 78–83. [Google Scholar] [CrossRef]
- Epstein, D.S.; Mitra, B.; O’Reilly, G.; Rosenfeld, J.V.; Cameron, P.A. Acute traumatic coagulopathy in the setting of isolated traumatic brain injury: A systematic review and meta-analysis. Injury 2014, 45, 819–824. [Google Scholar] [CrossRef]
- Maegele, M.; Schochl, H.; Menovsky, T.; Marechal, H.; Marklund, N.; Buki, A.; Stanworth, S. Coagulopathy and haemorrhagic progression in traumatic brain injury: Advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017, 16, 630–647. [Google Scholar] [CrossRef]
- Van Gent, J.A.N.; van Essen, T.A.; Bos, M.H.A.; Cannegieter, S.C.; van Dijck, J.; Peul, W.C. Coagulopathy after hemorrhagic traumatic brain injury, an observational study of the incidence and prognosis. Acta Neurochir. 2020, 162, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harhangi, B.S.; Kompanje, E.J.O.; Leebeek, F.W.G.; Maas, A.I.R. Coagulation disorders after traumatic brain injury. Acta Neurochir. 2008, 150, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Alexiou, G.A.; Lianos, G.; Fotakopoulos, G.; Michos, E.; Pachatouridis, D.; Voulgaris, S. Admission glucose and coagulopathy occurrence in patients with traumatic brain injury. Brain Inj. 2014, 28, 438–441. [Google Scholar] [CrossRef]
- Wada, T.; Shiraishi, A.; Gando, S.; Yamakawa, K.; Fujishima, S.; Saitoh, D.; Kushimoto, S.; Ogura, H.; Abe, T.; Mayumi, T.; et al. Pathophysiology of coagulopathy induced by traumatic brain injury is identical to that of disseminated intravascular coagulation with hyperfibrinolysis. Front. Med. 2021, 8, 767637. [Google Scholar] [CrossRef]
- Mansour, A.; Loggini, A.; Goldenberg, F.D.; Kramer, C.; Naidech, A.M.; Ammar, F.E.; Vasenina, V.; Castro, B.; Das, P.; Horowitz, P.M.; et al. Coagulopathy as a surrogate of severity of injury in penetrating brain injury. J. Neurotrauma 2021, 38, 1821–1826. [Google Scholar] [CrossRef]
- Zhao, J.L.; Lai, S.T.; Du, Z.Y.; Xu, J.; Sun, Y.R.; Yuan, Q.; Wu, X.; Li, Z.Q.; Hu, J.; Xie, R. Circulating neutrophil-to-lymphocyte ratio at admission predicts the long-term outcome in acute traumatic cervical spinal cord injury patients. BMC Musculoskelet. Disord. 2020, 21, 548. [Google Scholar] [CrossRef]
- Lattanzi, S.; Cagnetti, C.; Provinciali, L.; Silvestrini, M. Neutrophil-to-lymphocyte ratio predicts the outcome of acute intracerebral hemorrhage. Stroke 2016, 47, 1654–1657. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, L.; Jiang, T.T.; Xia, J.J.; Xu, F.; Shen, L.J.; Kang, W.H.; Ding, Y.; Mei, L.X.; Ju, X.F.; et al. Neutrophil-to-lymphocyte ratio is an independent predictor of 30-Day mortality of intracerebral hemorrhage patients: A validation cohort study. Neurotox. Res. 2018, 34, 347–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siwicka-Gieroba, D.; Malodobry, K.; Biernawska, J.; Robba, C.; Bohatyrewicz, R.; Rola, R.; Dabrowski, W. The neutrophil/lymphocyte count ratio predicts mortality in severe traumatic brain injury patients. J. Clin. Med. 2019, 8, 1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Wang, Y.; Zhou, Y.; Liu, M.; Li, S.; Bao, Y.; Jiang, W.; Tang, S.; Li, F.; Xue, H.; et al. A nomogram for predicting acute respiratory failure after cervical traumatic spinal cord injury based on admission clinical findings. Neurocrit. Care 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Altintas, O.; Altintas, M.O.; Tasal, A.; Kucukdagli, O.T.; Asil, T. The relationship of platelet-to-lymphocyte ratio with clinical outcome and final infarct core in acute ischemic stroke patients who have undergone endovascular therapy. Neurol. Res. 2016, 38, 759–765. [Google Scholar] [CrossRef]
- Chen, J.; Qu, X.; Li, Z.; Zhang, D.; Hou, L. Peak neutrophil-to-lymphocyte ratio correlates with clinical outcomes in patients with severe traumatic brain injury. Neurocrit. Care 2019, 30, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Helmy, A.; de Simoni, M.G.; Guilfoyle, M.R.; Carpenter, K.L.; Hutchinson, P.J. Cytokines and innate inflammation in the pathogenesis of human traumatic brain injury. Prog Neurobiol. 2011, 95, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.; Brailovsky, Y.; Fareed, J.; Hoppensteadt, D.; Iqbal, O.; Darki, A. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict all-cause mortality in acute pulmonary embolism. Clin. Appl. Thromb. Hemost. 2020, 26, 1146323366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, P.; Liu, Y.; Gong, Y.; Chen, G.; Zhang, X.; Wang, S.; Zhou, F.; Duan, R.; Chen, W.; Huang, T.; et al. The association of neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, and lymphocyte to monocyte ratio with post-thrombolysis early neurological outcomes in patients with acute ischemic stroke. J. Neuroinflamm. 2021, 18, 51. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Chang, Y.; Ahn, J.; Oh, S.; Koo, D.H.; Lee, Y.G.; Shin, H.; Ryu, S. Neutrophil-to-lymphocyte ratio and risk of lung cancer mortality in a low-risk population: A cohort study. Int. J. Cancer 2019, 145, 3267–3275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Shen, Y. Platelet-to-lymphocyte ratio as a new predictive index of neurological outcomes in patients with acute intracranial hemorrhage: A retrospective study. Med. Sci. Monit. 2018, 24, 4413–4420. [Google Scholar] [CrossRef]
- Idowu, O.E.; Oyeleke, S.O.; Vitowanu, J.M. Impact of inflammatory cell ratio, biomarkers, activated partial thromboplastin time and prothrombin time on chronic subdural haematoma severity and outcome. Eur. J. Trauma Emerg. Surg. 2021, 1–8. [Google Scholar] [CrossRef]
- Bradbury, J.L.; Thomas, S.G.; Sorg, N.R.; Mjaess, N.; Berquist, M.R.; Brenner, T.J.; Langford, J.H.; Marsee, M.K.; Moody, A.N.; Bunch, C.M.; et al. Viscoelastic testing and coagulopathy of traumatic brain injury. J. Clin. Med. 2021, 10, 5039. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Yu, J.; Wu, X.; Sun, Y.R.; Li, Z.Q.; Du, Z.Y.; Wu, X.H.; Hu, J. Prognostic value of coagulation tests for in-hospital mortality in patients with traumatic brain injury. Scand. J. Trauma Resusc. Emerg. Med. 2018, 26, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtz, P.; Rocha, E.E.M. Nutrition therapy, glucose control, and brain metabolism in traumatic brain injury: A multimodal monitoring approach. Front. Neurosci. 2020, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Hermanides, J.; Plummer, M.P.; Finnis, M.; Deane, A.M.; Coles, J.P.; Menon, D.K. Glycaemic control targets after traumatic brain injury: A systematic review and meta-analysis. Crit. Care 2018, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Sillesen, M.; Bambakidis, T.; Dekker, S.E.; Li, Y.; Alam, H.B. Fresh frozen plasma modulates brain gene expression in a swine model of traumatic brain injury and shock: A network analysis. J. Am. Coll. Surg. 2017, 224, 49–58. [Google Scholar] [CrossRef]
- Anglin, C.O.; Spence, J.S.; Warner, M.A.; Paliotta, C.; Harper, C.; Moore, C.; Sarode, R.; Madden, C.; Diaz-Arrastia, R. Effects of platelet and plasma transfusion on outcome in traumatic brain injury patients with moderate bleeding diatheses. J. Neurosurg. 2013, 118, 676–686. [Google Scholar] [CrossRef]
- Thorn, S.; Güting, H.; Mathes, T.; Schäfer, N.; Maegele, M. The effect of platelet transfusion in patients with traumatic brain injury and concomitant antiplatelet use: A systematic review and meta-analysis. Transfusion 2019, 59, 3536–3544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CRASH-3 Trial Collaborators. Effects of tranexamic acid on death, disability, vascular occlusive events and other morbidities in patients with acute traumatic brain injury (CRASH-3): A randomised, placebo-controlled trial. Lancet 2019, 394, 1713–1723. [Google Scholar] [CrossRef] [Green Version]
- Rowell, S.E.; Meier, E.N.; McKnight, B.; Kannas, D.; May, S.; Sheehan, K.; Bulger, E.M.; Idris, A.H.; Christenson, J.; Morrison, L.J.; et al. Effect of out-of-hospital tranexamic acid vs. placebo on 6-month functional neurologic outcomes in patients with moderate or severe traumatic brain injury. JAMA 2020, 324, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Lu, Y.; Yu, Y.; Yue, H.; Wang, J.; Chong, Y.; Cui, W. Effect of tranexamic acid on the prognosis of patients with traumatic brain injury undergoing craniotomy: Study protocol for a randomised controlled trial. BMJ Open 2021, 11, e49839. [Google Scholar] [CrossRef] [PubMed]
- Joseph, B.; Aziz, H.; Zangbar, B.; Kulvatunyou, N.; Pandit, V.; O’Keeffe, T.; Tang, A.; Wynne, J.; Friese, R.S.; Rhee, P. Acquired coagulopathy of traumatic brain injury defined by routine laboratory tests: Which laboratory values matter? J. Trauma Acute Care Surg. 2014, 76, 121–125. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (n = 132) | Coagulopathy (n = 46) | No Coagulopathy (n = 86) | p Value |
---|---|---|---|---|
Median age (IQR) yrs. | 44.5 (33.3–57) | 51.5 (34.3–69.0) | 44.0 (32.8–56.0) | 0.076 |
Male (%) | 113 (85.6) | 40 (87.0) | 73 (84.9) | 0.801 |
Mechanism of injury (%) | 0.404 | |||
Traffic accident | 40 (30.3) | 16 (34.8) | 24 (27.9) | |
Blow injury | 43 (32.6) | 11 (23.9) | 32 (37.2) | |
Fall | 20 (15.2) | 6 (13.0) | 14 (16.2) | |
Free fall | 23 (17.4) | 11 (23.9) | 12 (14.0) | |
Others | 6 (4.5) | 2 (4.4) | 4 (4.7) | |
Median GCS (IQR) | 10 (8–14) | 5.5 (4–9) | 13 (10–15) | <0.001 * |
Injury location (%) | 0.128 | |||
Vault-SF | 50 (37.9) | 12 (26.1) | 38 (44.2) | |
Base-SF | 21 (15.9) | 9 (19.6) | 12 (13.9) | |
Both-SF | 61 (46.2) | 25 (54.3) | 36 (41.9) | |
Venous sinus injury (%) | 19 (14.4) | 5(10.9) | 14 (16.3) | 0.449 |
Intracranial fragments (%) | 11 (8.3) | 3(6.5) | 8 (9.3) | 0.747 |
Intracranial hematoma (%) | 56 (42.4) | 30 (65.2) | 26 (30.2) | <0.001 * |
EDH (%) | 65 (49.2) | 18 (39.1) | 47 (54.7) | 0.089 |
SDH (%) | 50 (37.9) | 27 (58.7) | 23 (26.7) | <0.001 * |
SAH (%) | 73 (55.3) | 39 (84.8) | 34 (39.5) | <0.001 * |
Midline shift (%) | 34 (25.8) | 19 (41.3) | 15 (17.4) | 0.004 * |
Median Hb (IQR) | 131.5 (121–141.8) | 124.0 (118.8–136.0) | 136.5 (123.5–144.0) | 0.006 * |
Median NLR (IQR) | 15.2 (9.4–19.1) | 18.7 (15.8–21.6) | 11.9 (7.9–16.6) | <0.001 * |
Median PLR (IQR) | 160.2 (92.1–244.3) | 106.2 (65.0–161.0) | 193.0 (138.2–276.9) | <0.001 * |
Median PLT (IQR) | 203 (165–243) | 170.5 (145.3–205.3) | 216.5 (182.5–249.0) | <0.001 * |
Median INR (IQR) | 1.05 (0.99–1.13) | 1.14 (1.08–1.30) | 1.02 (0.97–1.08) | <0.001 * |
Median APTT (IQR) | 25.3 (23.1–29.8) | 30.5 (24.8–35.73) | 24.5 (23.0–26.8) | <0.001 * |
Admission Glucose(IQR) | 8.5 (6.5–10.6) | 11.3 (9.4–14.6) | 7.1 (6.1–8.8) | <0.001 * |
Receive TXA (%) | 22 (16.7) | 12 (26.1) | 10 (11.6) | 0.034 * |
Mean time from open TBI to the surgery (SD) | 7.5 (2.8) | 7.1 (2.8) | 7.7 (2.8) | 0.114 |
DC (%) | 37 (28.0) | 23 (50.0) | 14 (16.3) | <0.001 * |
Mean operative blood loss (SD) | 402 (408) | 649 (499) | 270 (272) | <0.001 * |
Mean duration of surgery (SD) | 147 (86) | 167 (98) | 137 (78) | 0.029 * |
Blood transfusion (%) | 60 (45.5) | 36 (78.3) | 24 (27.9) | <0.001 * |
Mean blood transfusion volume (SD) | 546 (804) | 1053 (1016) | 275 (488) | <0.001 * |
Mean ICU LOS (SD) | 4.0 (4.7) | 5.9 (6.1) | 3.0 (3.5) | 0.003 * |
Median GOS(IQR) | 3 (3–5) | 3 (1–5) | 5 (4–5) | <0.001 * |
Mortality (%) | 21 (15.9) | 17 (37.0) | 4 (4.7) | <0.001 * |
Variables | Standard Error | Odds Ratio | 95% CI | p Value |
---|---|---|---|---|
Median GCS (IQR) | 0.150 | 0.720 | 0.536–0.967 | 0.029 * |
Intracranial hematoma (%) | 0.849 | 0.828 | 0.157–4.371 | 0.824 |
SDH (%) | 0.898 | 3.175 | 0.546–18.461 | 0.198 |
SAH (%) | 1.178 | 0.227 | 0.023–2.283 | 0.208 |
Midline shift (%) | 0.912 | 0.528 | 0.088–3.156 | 0.484 |
Median Hb (IQR) | 0.020 | 0.977 | 0.941–1.015 | 0.236 |
Median NLR (IQR) | 0.134 | 1.653 | 1.272–2.149 | <0.001 * |
Median PLR (IQR) | 0.008 | 0.971 | 0.957–0.986 | <0.001 * |
Median PLT (IQR) | NA a | NA a | NA a | NA a |
Median INR (IQR) | NA a | NA a | NA a | NA a |
Median APTT (IQR) | NA a | NA a | NA a | NA a |
Admission Glucose (IQR) | 0.143 | 1.404 | 1.060–1.860 | 0.018 * |
Variables | All Patients (n = 46) | Receiving TXA (n = 12) | Not Receiving TXA (n = 34) | p Value |
---|---|---|---|---|
Median GCS (IQR) | 5.5 (4–9) | 7.5 (5–10) | 5 (4–9) | 0.186 |
DC (%) | 23 (50.0) | 7 (58.3) | 16 (47.1) | 0.502 |
Mean operative blood loss (SD) | 649 (499) | 733 (481) | 619 (509) | 0.217 |
Mean duration of surgery (SD) | 167 (98) | 162 (68) | 168 (108) | 0.910 |
Blood transfusion (%) | 36 (78.3) | 12 (100.0) | 24 (70.6) | 0.086 |
Mean blood transfusion volume (SD) | 1053 (1016) | 1438 (1235) | 917 (909) | 0.170 |
Mean ICU LOS (SD) | 5.9 (6.1) | 6.5 (4.5) | 5.7 (6.7) | 0.187 |
Median GOS (IQR) | 3 (1–5) | 4 (1–5) | 3 (1–4) | 0.639 |
Mortality (%) | 17 (37.0) | 4 (33.3) | 13 (38.2) | 0.765 |
All Patients | Coagulopathy | No Coagulopathy | p Value | |
---|---|---|---|---|
Favorable functional outcome (GOS score of 4–5) | 97 (73.5) | 21 (45.7) | 76 (88.4) | <0.001 |
Unfavorable functional outcome (GOS score of 1–3) | 35 (26.5) | 25 (54.3) | 10 (11.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Tian, J.; Chi, B.; Zhang, S.; Wei, L.; Wang, S. Factors Associated with the Development of Coagulopathy after Open Traumatic Brain Injury. J. Clin. Med. 2022, 11, 185. https://doi.org/10.3390/jcm11010185
Chen Y, Tian J, Chi B, Zhang S, Wei L, Wang S. Factors Associated with the Development of Coagulopathy after Open Traumatic Brain Injury. Journal of Clinical Medicine. 2022; 11(1):185. https://doi.org/10.3390/jcm11010185
Chicago/Turabian StyleChen, Yuhui, Jun Tian, Bin Chi, Shangming Zhang, Liangfeng Wei, and Shousen Wang. 2022. "Factors Associated with the Development of Coagulopathy after Open Traumatic Brain Injury" Journal of Clinical Medicine 11, no. 1: 185. https://doi.org/10.3390/jcm11010185
APA StyleChen, Y., Tian, J., Chi, B., Zhang, S., Wei, L., & Wang, S. (2022). Factors Associated with the Development of Coagulopathy after Open Traumatic Brain Injury. Journal of Clinical Medicine, 11(1), 185. https://doi.org/10.3390/jcm11010185