Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description and Patient Selection Criteria
2.2. Photosensitizers and Other Chemicals
2.3. Physicochemical Studies
2.4. Administration and Activation of PSs In Vivo
3. Results and Discussion
3.1. Physicochemical Studies
3.2. Clinical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chavan, S.; Bray, F.; Lortet-Tieulent, J.; Goodman, M.; Jemal, A. International Variations in Bladder Cancer Incidence and Mortality. Eur. Urol. 2014, 66, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Burger, M.; Catto, J.; Dalbagni, G.; Grossman, H.B.; Herr, H.; Karakiewicz, P.; Kassouf, W.; Kiemeney, L.; La Vecchia, C.; Shariat, S.; et al. Epidemiology and Risk Factors of Urothelial Bladder Cancer. Eur. Urol. 2013, 63, 234–241. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Compérat, E.M.; Gontero, P.; Mostafid, A.H.; Palou, J.; van Rhijn, B.W.G.; Roupret, M.; Shariat, S.F.; Sylvester, R.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (TaT1 and Carcinoma In Situ)—2019 Update. Eur. Urol. 2019, 76, 639–657. [Google Scholar] [CrossRef]
- Filonenko, E.; Kaprin, A.; Alekseev, B.; Apolikhin, O.; Slovokhodov, E.; Ivanova-Radkevich, V.; Urlova, A. 5-Aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial). Photodiagnosis Photodyn. Ther. 2016, 16, 106–109. [Google Scholar] [CrossRef]
- Van Straten, D.; Mashayekhi, V.; De Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef]
- Bader, M.; Stepp, H.; Beyer, W.; Pongratz, T.; Sroka, R.; Kriegmair, M.; Zaak, D.; Welschof, M.; Tilki, D.; Stief, C.G.; et al. Photodynamic Therapy of Bladder Cancer—A Phase I Study Using Hexaminolevulinate (HAL). Urol. Oncol. Semin. Orig. Investig. 2013, 31, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.S.; Thong, P.S.P.; Olivo, M.; Chin, W.W.L.; Ramaswamy, B.; Kho, K.W.; Lim, P.L.; Lau, W.K.O. Chlorin e6-polyvinylpyrrolidone mediated photodynamic therapy—A potential bladder sparing option for high risk non-muscle invasive bladder cancer. Photodiagnosis Photodyn. Ther. 2010, 7, 213–220. [Google Scholar] [CrossRef]
- Lee, J.Y.; Diaz, R.R.; Cho, K.S.; Lim, M.S.; Chung, J.S.; Kim, W.T.; Ham, W.S.; Choi, Y.D. Efficacy and Safety of Photodynamic Therapy for Recurrent, High Grade Nonmuscle Invasive Bladder Cancer Refractory or Intolerant to Bacille Calmette-Guérin Immunotherapy. J. Urol. 2013, 190, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016, 33, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamblin, M.R. Potentiation of antimicrobial photodynamic inactivation by inorganic salts. Expert Rev. Anti-Infect. Ther. 2017, 15, 1059–1069. [Google Scholar] [CrossRef]
- Wainwright, M.; Maisch, T.; Nonell, S.; Plaetzer, K.; Almeida, A.; Tegos, G.P.; Hamblin, M.R. Photoantimicrobials—Are we afraid of the light? Lancet Infect. Dis. 2017, 17, e49–e55. [Google Scholar] [CrossRef]
- Biel, M.A. Photodynamic therapy of bacterial and fungal biofilm infections. In Photodynamic Therapy. Methods and Protocols; Gomer, C.J., Ed.; Springer: New York, NY, USA, 2010; pp. 175–194. [Google Scholar]
- Menezes, H.; Rodrigues, G.B.; Teixeira, S.D.P.; Massola, N.S.; Bachmann, L.; Wainwright, M.; Braga, G.U.L. In Vitro Photodynamic Inactivation of Plant-Pathogenic Fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium Photosensitizers. Appl. Environ. Microbiol. 2014, 80, 1623–1632. [Google Scholar] [CrossRef] [Green Version]
- Kustov, A.V.; Belykh, D.; Smirnova, N.L.; Venediktov, E.A.; Kudayarova, T.K.; Kruchin, S.; Khudyaeva, I.S.; Berezin, D. Synthesis and investigation of water-soluble chlorophyll pigments for antimicrobial photodynamic therapy. Dye. Pigment. 2018, 149, 553–559. [Google Scholar] [CrossRef]
- Kustov, A.V.; Kustova, T.V.; Belykh, D.; Khudyaeva, I.S.; Berezin, D. Synthesis and investigation of novel chlorin sensitizers containing the myristic acid residue for antimicrobial photodynamic therapy. Dye. Pigment. 2020, 173, 107948. [Google Scholar] [CrossRef]
- Yakavets, I.; Millard, M.; Zorin, V.; Lassalle, H.-P.; Bezdetnaya, L. Current state of the nanoscale delivery systems for temo-porfin-based photodynamic therapy: Advanced delivery strategies. J. Control. Release 2019, 304, 268–287. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; D’Aria, F.; Kustov, A.V.; Belykh, D.V.; Khudyaeva, I.S.; Starseva, O.M.; Berezin, D.B.; Pylina, Y.I.; Usacheva, T.; Amato, J.; et al. Selective binding of a bioactive porphyrin-based photosensitizer to the G-quadruplex from the KRAS oncogene promoter. Int. J. Biol. Macromol. 2020, 145, 244–251. [Google Scholar] [CrossRef]
- Algorri, J.F.; Ochoa, M.; Roldán-Varona, P.; Rodríguez-Cobo, L.; López-Higuera, J.M. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers 2021, 13, 4447. [Google Scholar] [CrossRef]
- Karimnia, V.; Slack, F.J.; Celli, J.P. Photodynamic Therapy for Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 4354. [Google Scholar] [CrossRef]
- Venediktov, E.A.; Krasnovskii, A.A. The efficacy of the generation of singlet molecular oxygen by porphyrins. J. Appl. Specrosc. 1982, 36, 152–154. [Google Scholar]
- Kustov, A.V.; Belykh, D.V.; Startseva, O.M.; Kruchin, S.O.; Venediktov, E.A.; Berezin, D.B. New Sensitizers Developed on a Methylpheophorbide a Platform for Photodynamic Therapy: Synthesis, Singlet Oxygen Generation and Modeling of Passive Membrane Transport. Pharm. Anal. Acta 2016, 7, 480. [Google Scholar] [CrossRef]
- Kobayashi, N. Spectroscopically and/or structurally intriguing phthalocyanines and related compounds. Part 1. Monomeric systems. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2019, 62, 4–46. [Google Scholar] [CrossRef]
- Kustov, A.V.; Berezin, D.B.; Strelnikov, A.I.; Lapochkina, N.P. Antitumor and Antimicrobial Photodynamic Therapy: Mechanisms, Targets, Clinical Laboratory Research. A Practical Guide; Gagua, A.K., Ed.; Largo: Moscow, Russia, 2020. (In Russian) [Google Scholar]
- Musil, Z.; Zimcik, P.; Miletin, M.; Kopecky, K.; Link, M.; Petrik, P.; Schwarz, J. Synthesis and singlet oxygen production of azaphthalocyanines bearing functional derivatives of carboxylic acid. J. Porphyr. Phthalocyanines 2006, 10, 122–131. [Google Scholar] [CrossRef]
- Bonacin, J.A.; Engelmann, F.M.; Severino, D.; Toma, H.E.; Baptista, M.S. Singlet oxygen quantum yields (φΔ) in water using beetroot extract and an array of LEDs. J. Braz. Chem. Soc. 2009, 16, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.A.; Van de Waterbeemd, H.; Walker, D.K.; Mannhold, R.; Kubinyi, H.; Timmerman, H. Pharmacokinetics and Metabolism on Drug Design. In Methods and Principles in Medicinal Chemistry; Mannhold, R., Kubinyi, H., Timmerman, H., Eds.; Wiley–VCH: Weinheim, Germany, 2001; pp. 1–141. [Google Scholar]
- Chin, W. Photosensitizing Effects Chlorin e6—Polyvinylpyrrolidone for Fluorescence Guided Photodynamic Therapy of Cancer. Ph.D. Thesis, Singapore National University, Singapore, 2009. [Google Scholar]
- Isakau, H.; Parkhats, M.; Knyukshto, V.; Dzhagarov, B.; Petrov, E.; Petrov, P. Toward understanding the high PDT efficacy of chlorin e6–polyvinylpyrrolidone formulations: Photophysical and molecular aspects of photosensitizer–polymer interaction in vitro. J. Photochem. Photobiol. B Biol. 2008, 92, 165–174. [Google Scholar] [CrossRef]
- Brandis, A.S.; Salomon, Y.; Schetz, A. Chlorophyll Sensitizers in Photodynamic Therapy. In Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Application; Grimm, B., Porra, R.J., Rüdiger, W., Scheer, H., Eds.; Springer: Berlin, Germany, 2006; pp. 461–483. [Google Scholar]
- Giovannetti, R. The use of spectrophotometry UV-Vis for the study of porphyrins. In Nanotechnology and Nanomaterials, Macro to Nano Spectroscopy; Uddin, J., Ed.; InTech: Rijeka, Croatia, 2012; pp. 87–108. [Google Scholar]
- Zorin, V.P.; Khlydeev, I.I.; Zorina, T.E. Distribution of porphyrin photosensitizers among cellular and protein blood elements. Biophysics 2000, 45, 305–311. [Google Scholar]
- Castano, A.P.; Demidova, T.N.; Hamblin, M.R. Mechanisms in photodynamic therapy: Part three—Photosensitizer pharmacokinetics, biodistribution, tumor localization and modes of tumor destruction. Photodiagnosis Photodyn. Ther. 2005, 2, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Kustov, A.V.; Zorin, V.P.; Zorina, T.E.; Belykh, D.V.; Khudyaeva, I.S.; Smirnova, N.L.; Kustova, T.V.; Berezin, D.B. Comparative Analysis of Biodistribution and Phototoxicity of Cationic, Anionic and Neutral Photosensitizers for Antitumor Photodynamic Therapy. In Proceedings of the VIII International Conference on Physical Chemistry of Crown Compounds, Porphyrins and Phthalocyanines, Tuapse, Russia, 20–24 September 2020; p. 66. [Google Scholar]
- Berger, A.P.; Steiner, H.; Stenzl, A.; Akkad, T.; Bartsch, G.; Holtl, L. Photodynamic therapy with intravesical instillation of 5-aminolevulinic acid for patients with recurrent superficial bladder cancer: A single-center study. Urology 2003, 61, 338–341. [Google Scholar] [CrossRef]
- Waidelich, R.; Beyer, W.; Knchel, R.; Stepp, H.; Baumgartner, R.; Schrder, J.; Hofstetter, A.; Kriegmair, M. Whole bladder photodynamic therapy with 5-aminolevulinic acid using a white light source. Urology 2003, 61, 332–337. [Google Scholar] [CrossRef]
- Shabunina, T.I.; Selivanov, S.P.; Udud, E.V.; Kladiev, A.A.; Barysheva, E.V.; Kovalik, T.A.; Isaeva, S.N. Comparative analysis of the therapeutic efficacy of prospidine and cisplatin in neoadjuvant intravesical chemotherapy for non-muscle invasive bladder cancer. Oncourology 2011, 4, 32–36. [Google Scholar] [CrossRef]
MCh 1 | DCh 1 | TCh 1 | MPh a 1 | Fotoran e6 | Fotoditazin | |
---|---|---|---|---|---|---|
ΦΔ | 0.65 ± 0.07 2 | 0.60 ± 0.06 | 0.53 ± 0.05 | 0.47 ± 0.05 | 0.56 ± 0.03 | 0.57 ± 0.02 |
P | 8.6 ± 0.2 | 1.04 ± 0.02 | 0.97 ± 0.03 | 210.1 ± 6 | 1.88 ± 0.09 | 2.03 ± 0.21 |
N | Initials | Age | Sex | TN | TG | PS/Route | Follow-Up (Months) | Disease-Free Interval (Months) | AE/Remarks |
---|---|---|---|---|---|---|---|---|---|
1 | PNF | 66 | M | 1 | G1 | Fotoran e6/ Intravenous | 16 | 16 | Mild hematuria |
2 | EAV | 79 | F | 1 | G2 | Fotoran e6/ Intravenous | 19 | 1 h after 8 months (CIS, G2) | Mild hematuria/Underwent an additional TURB treatment |
3 | VNS | 63 | F | 1 + 2(CI) | G2 | Fotoran e6/ Intravenous | 20 | 20 | Mild hematuria, dysuria, frequent voiding |
4 | DNV | 69 | M | 3 | G1 | Fotoran e6/ Intravenous | 21 | 21 | Mild hematuria, pain |
5 | KNN | 67 | M | 1 | G1 | Fotoran e6/ Intravesical | 24 | 24 | Mild hematuria |
6 | DLV | 74 | F | 1 + 1(CIS) | G1 | Fotoran e6/ Intravesical | 24 | 24 | Mild hematuria |
7 | ASV | 61 | M | 1 | G1 | Fotoran e6/ Intravenous | 24 | 24 | Dysuria |
8 | VMV | 48 | F | 1 | G2 | Fotoran e6/ Intravenous | 25 | 25 | Mild pain |
9 | LNA | 78 | F | 1 | G2 | Fotoran e6/ Intravenous | 26 | 26 | Dysuria, frequent voiding |
10 | KAS | 49 | M | 1 | G1 | Fotoran e6/ Intravenous | 27 | 27 | Dysuria, frequent voiding |
11 | KPV | 51 | M | 1 | G1 | Fotoditazin/ Intravesical | 33 | 33 | Dysuria, frequent voiding, low-grade fever for 1 day |
12 | LSV | 31 | F | 1 + 1(CIS) | G1 | Fotoditazin/ Intravesical | 35 | 35 | Mild hematuria, pain |
Authors | Year | Sample Size | PS | Light Dose/Route | Recurrence Rate | AE |
---|---|---|---|---|---|---|
Berger et al. [35] | 2003 | 31 | ALA | 30–50 J/cm2/intravesical | 48.4% (23.7 months) | Dysuria due to urinary tract infection, hematuria |
Waidelich et al. [36] | 2003 | 11 | ALA | 100 J/cm2 (incoherent white light)/intravesical | 54.5% (18 months) | No systemic side-effects reported |
Lee et al. [7] | 2010 | 5 | Fotolon | 10 J/cm2/intravenous 20 J/cm2/intravesical | 60% (29 months) | Dysuria, frequency, vesicoenteric fistula (one patient) |
Bader et al. [6] | 2013 | 17 | HAL | 25–100 J/cm2 (three treatments with incoherent white light)/intravesical | 88% (21 months) | Transient bladder irritability, infection, gross hematuria |
Lee et al. [8] | 2013 | 34 | Radachlorin | 15 J/cm2/intravenous | 9.1% (12 months) 39.9% (30 months) | Irritative bladder symptoms, infection, hematuria |
Filonenko et al. [4] | 2016 | 45 | ALA | 100 J/cm2 (tumor bed) 20 J/cm2 (all bladder)/intravesical | 22% (12 months) | No complications reported |
This work | 2021 | 12 | Fotoran e6/ Fotoditazin | 150 J/cm2 (tumor bed) 10–25 J/cm2 (all bladder)/ intravenous or intravesical | 8.3% (12 months) 8.3% 1 (24 months) | Mild hematuria, dysuria, frequent voiding, pain |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kustov, A.V.; Smirnova, N.L.; Privalov, O.A.; Moryganova, T.M.; Strelnikov, A.I.; Morshnev, P.K.; Koifman, O.I.; Lyubimtsev, A.V.; Kustova, T.V.; Berezin, D.B. Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers. J. Clin. Med. 2022, 11, 233. https://doi.org/10.3390/jcm11010233
Kustov AV, Smirnova NL, Privalov OA, Moryganova TM, Strelnikov AI, Morshnev PK, Koifman OI, Lyubimtsev AV, Kustova TV, Berezin DB. Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers. Journal of Clinical Medicine. 2022; 11(1):233. https://doi.org/10.3390/jcm11010233
Chicago/Turabian StyleKustov, Andrey V., Nataliya L. Smirnova, Oleg A. Privalov, Tatyana M. Moryganova, Alexander I. Strelnikov, Philipp K. Morshnev, Oscar I. Koifman, Alex V. Lyubimtsev, Tatyana V. Kustova, and Dmitry B. Berezin. 2022. "Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers" Journal of Clinical Medicine 11, no. 1: 233. https://doi.org/10.3390/jcm11010233
APA StyleKustov, A. V., Smirnova, N. L., Privalov, O. A., Moryganova, T. M., Strelnikov, A. I., Morshnev, P. K., Koifman, O. I., Lyubimtsev, A. V., Kustova, T. V., & Berezin, D. B. (2022). Transurethral Resection of Non-Muscle Invasive Bladder Tumors Combined with Fluorescence Diagnosis and Photodynamic Therapy with Chlorin e6-Type Photosensitizers. Journal of Clinical Medicine, 11(1), 233. https://doi.org/10.3390/jcm11010233