Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score
Abstract
:1. Introduction
2. Materials and Methods
2.1. Candidate Variables for Prediction Model
- Patient: age, year of diagnosis, body mass index (BMI), pre-operative co-morbidities (Charlson Co-morbidity Index (CCI)), Eastern Co-operative Oncology Group (ECOG) performance status (PS), and pre-operative albumin.
- Operative factors: timing of surgery (PDS or IDS), operative time (OT), surgical complexity score (SCS), bowel resection with stoma formation (yes/no), residual disease (RD), and estimated blood loss (EBL).
2.2. Feature Reduction and Selection
2.3. Model Development and Training
2.4. Multivariate Analysis
2.5. Model Performance
2.6. Development of the CCU Risk Calculator
- Surgical Complexity Score: 2–18;
- Albumin levels: 17–49;
- Estimated Blood Loss: 100–4000;
- Operative Time: 65–445;
- Bowel Resection: 0–1;
3. Results
3.1. Model Deployment
3.2. Association between CCU Admission and Length of Stay, Post-Operative Complications, and Hospital Re-Admission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- Giusti, I.; D’Ascenzo, S.; Dolo, V. Microvesicles as Potential Ovarian Cancer Biomarkers. BioMed Res. Int. 2013, 2013, 703048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelosi, P.; Ball, L.; Schultz, M.J. How to optimize critical care resources in surgical patients: Intensive care without physical borders. Curr. Opin. Crit. Care 2018, 24, 581–587. [Google Scholar] [CrossRef]
- Aletti, G.; Santillan, A.; Eisenhauer, E.L.; Hu, J.; Aletti, G.; Podratz, K.C.; Bristow, R.E.; Chi, D.S.; Cliby, W.A. A new frontier for quality of care in gynecologic oncology surgery: Multi-institutional assessment of short-term outcomes for ovarian cancer using a risk-adjusted model. Gynecol. Oncol. 2007, 107, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Davidovic-Grigoraki, M.; Thomakos, N.; Haidopoulos, D.; Vlahos, G.; Rodolakis, A. Do critical care units play a role in the management of gynaecological oncology patients? The contribution of gynaecologic oncologist in running critical care units. Eur. J. Cancer Care 2017, 26, e12438. [Google Scholar] [CrossRef]
- Pearse, R.M.; Moreno, R.P.; Bauer, P.; Pelosi, P.; Metnitz, P.; Spies, C.; Vallet, B.; Vincent, J.-L.; Hoeft, A.; Rhodes, A. Mortality after surgery in Europe: A 7 day cohort study. Lancet 2012, 380, 1059–1065. [Google Scholar] [CrossRef] [Green Version]
- Rowan, M.; Ryan, T.; Hegarty, F.; O’Hare, N. The use of artificial neural networks to stratify the length of stay of cardiac patients based on preoperative and initial postoperative factors. Artif. Intell. Med. 2007, 40, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; Gryparis, A.; DeJong, D.; Hutson, R.; Theophilou, G.; Leach, C. Predicting complete cytoreduction for advanced ovarian cancer patients using nearest-neighbor models. J. Ovarian Res. 2020, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Laios, A.; Katsenou, A.; Tan, Y.S.; Johnson, R.; Otify, M.; Kaufmann, A.; Munot, S.; Thangavelu, A.; Hutson, R.; Broadhead, T.; et al. Feature Selection is Critical for 2-Year Prognosis in Advanced Stage High Grade Serous Ovarian Cancer by Using Machine Learning. Cancer Control. 2021, 28, 10732748211044678. [Google Scholar] [CrossRef]
- Enshaei, A.; Robson, C.N.; Edmondson, R.J. Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer. Ann. Surg. Oncol. 2015, 22, 3970–3975. [Google Scholar] [CrossRef]
- Ghaffar, S.; Pearse, R.M.; Gillies, M.A. ICU admission after surgery: Who benefits? Curr. Opin. Crit. Care 2017, 23, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulou, C.; Concin, N.; Planchamp, F.; Morice, P.; Vergote, I.; Du Bois, A.; Querleu, D. Quality indicators for advanced ovarian cancer surgery from the European Society of Gynaecological Oncology (ESGO): 2020 update. Int. J. Gynecol. Cancer 2020, 30, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Newsham, A.C.; Johnston, C.; Hall, G.; Leahy, M.G.; Smith, A.B.; Vikram, A.; Donnelly, A.M.; Velikova, G.; Selby, P.J.; Fisher, S.E. Development of an advanced database for clinical trials integrated with an electronic patient record system. Comput. Biol. Med. 2011, 41, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Mutch, D.G.; Prat, J. 2014 FIGO staging for ovarian, fallopian tube and peritoneal cancer. Gynecol. Oncol. 2014, 133, 401–404. [Google Scholar] [CrossRef]
- Older, P.; Hall, A.; Hader, R. Cardiopulmonary Exercise Testing as a Screening Test for Perioperative Management of Major Surgery in the Elderly. Chest 1999, 116, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibanes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.N.; van der Meulen, J.H. Identifying co-morbidity in surgical patients using administrative data with the Royal College of Surgeons Charlson Score. BJS 2010, 97, 772–781. [Google Scholar] [CrossRef]
- Aletti, G.; Dowdy, S.C.; Podratz, K.C.; Cliby, W.A. Relationship among surgical complexity, short-term morbidity, and overall survival in primary surgery for advanced ovarian cancer. Am. J. Obstet. Gynecol. 2007, 197, 676-e1. [Google Scholar] [CrossRef]
- Richter, A.N.; Khoshgoftaar, T.M. A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif. Intell. Med. 2018, 90, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Dihge, L.; Ohlsson, M.; Edén, P.; Bendahl, P.O.; Rydén, L. Artificial neural network models to predict nodal status in clinically node-negative breast cancer. BMC Cancer 2019, 19, 610. [Google Scholar] [CrossRef]
- Hand, D.J. Statistical methods in diagnosis. Stat. Methods Med. Res. 1992, 1, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Hastie, T.; Tibshirani, R. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 2006, 8, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Phung, Q.-D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.L.; Dimitrova, N.; Ho, T.B.; et al. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View. J. Med. Internet Res. 2016, 18, e323. [Google Scholar] [CrossRef] [Green Version]
- Khuri, S.F. The NSQIP: A new frontier in surgery. Surgery 2005, 138, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Tseng, J.H.; Cowan, R.A.; Zhou, Q.; Iasonos, A.; Byrne, M.; Polcino, T.; Polen-De, C.; Gardner, G.J.; Sonoda, Y.; Zivanovic, O.; et al. Continuous improvement in primary debulking surgery for advanced ovarian cancer: Do increased complete gross resection rates independently lead to increased progression-free and overall survival? Gynecol. Oncol. 2018, 151, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Pepin, K.; Bregar, A.; Davis, M.; Melamed, A.; Hinchcliff, E.; Gockley, A.; Horowitz, N.; del Carmen, M.G. Intensive care admissions among ovarian cancer patients treated with primary debulking surgery and neoadjuvant chemotherapy-interval debulking surgery. Gynecol. Oncol. 2017, 147, 612–616. [Google Scholar] [CrossRef]
- Fournier, M.; Huchon, C.; Ngoa, C.; Bensaid, C.; Batsa, A.; Combeb, P.; Belda, M.L.F.; Berger, A.; Lecurua, F. Morbidity of rectosigmoid resection in cytoreductive surgery for ovarian cancer. Risk factor analysis. Eur. J. Surg. Oncol. 2018, 44, 750–753. [Google Scholar] [CrossRef]
- Pin, F.; Barreto, R.; Kitase, Y.; Mitra, S.; Erne, C.E.; Novinger, L.J.; Zimmers, T.A.; Couch, M.E.; Bonewald, L.F.; Bonetto, A. Growth of ovarian cancer xenografts causes loss of muscle and bone mass: A new model for the study of cancer cachexia. J. Cachex Sarcopenia Muscle 2018, 9, 685–700. [Google Scholar] [CrossRef] [Green Version]
- O’Shea, A.; McCool, K.; Harrison, R.; Sampene, E.; Connor, J.; Barroilhet, L. Neoadjuvant chemotherapy is associated with more anemia and perioperative blood transfusions than primary debulking surgery in women with advanced stage ovarian cancer. Gynecol. Oncol. 2018, 150, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Fagotti, A.; Ferrandina, M.G.; Vizzielli, G.; Fanfani, F.; Gallotta, V.; Chiantera, V.; Costantini, B.; Margariti, P.A.; Alletti, S.G.; Cosentino, F.; et al. Phase III randomised clinical trial comparing primary surgery versus neoadjuvant chemotherapy in advanced epithelial ovarian cancer with high tumour load (SCORPION trial): Final analysis of peri-operative outcome. Eur. J. Cancer 2016, 59, 22–33. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, B.; Xing, G.; Du, J.; Yang, B.; Yuan, Q.; Yang, Y. Neoadjuvant chemotherapy versus primary debulking surgery in advanced epithelial ovarian cancer: A meta-analysis of peri-operative outcome. PLoS ONE 2017, 12, e0186725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiSilvestro, P.; Colombo, N.; Harter, P.; González-Martín, A.; Ray-Coquard, I.; Coleman, R.L. Maintenance Treatment of Newly Diagnosed Advanced Ovarian Cancer: Time for a Paradigm Shift? Cancers 2021, 13, 5756. [Google Scholar] [CrossRef]
- Díaz-Montes, T.P.; Zahurak, M.L.; Bristow, R.E. Predictors of extended intensive care unit resource utilization following surgery for ovarian cancer. Gynecol. Oncol. 2007, 107, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.S.; Burriss, M.E.; Winger, D.G.; Edwards, R.P.; Courtney-Brooks, M.; Boisen, M.M. Unplanned postoperative intensive care unit admission for ovarian cancer cytoreduction is associated with significant decrease in overall survival. Gynecol. Oncol. 2018, 150, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Earle, C.C.; Park, E.R.; Lai, B.; Weeks, J.C.; Ayanian, J.Z.; Block, S. Identifying Potential Indicators of the Quality of End-of-Life Cancer Care From Administrative Data. J. Clin. Oncol. 2003, 21, 1133–1138. [Google Scholar] [CrossRef]
- Birkmeyer, J.D.; Dimick, J.B.; Birkmeyer, N.J. Measuring the quality of surgical care: Structure, process, or outcomes? J. Am. Coll. Surg. 2004, 198, 626–632. [Google Scholar] [CrossRef]
- Mujagic, E.; Marti, W.R.; Coslovsky, M.; Soysal, S.D.; Mechera, R.; Von Strauss, M.; Zeindler, J.; Saxer, F.; Mueller, A.; Fux, C.A.; et al. Associations of Hospital Length of Stay with Surgical Site Infections. World J. Surg. 2018, 42, 3888–3896. [Google Scholar] [CrossRef]
Variables (n = 291) | Levels | Frequency | Percentage |
---|---|---|---|
Age, year, SD (range) | N/A | 64.2 ± 10.5 (41–90) | N/A |
BMI, mean, SD (range) | N/A | 27 ± 5.8 (18.5–58) | N/A |
Pre-Treatment CA125, mean, SD (min-max) | N/A | 1777 ± 3125 (12–28,000) U | N/A |
Pre-Treatment Albumin, mean, SD (min-max) | N/A | 38.3 ± 3.8 (17–49) U | N/A |
Surgical Complexity Score (SCS) | Low (1–3) | 166 | 57% |
Moderate (4–7) | 108 | 37.1% | |
High (8–12) | 17 | 5.9% | |
Disease score (DS) | Pelvis | 17 | 5.8% |
Lower abdomen | 220 | 75.6% | |
Upper abdomen | 54 | 18.6% | |
Residual Disease (RD) | R0 | 190 | 65.3% |
R1 (<1 cm) | 78 | 26.8% | |
R2 (≥1 cm) | 23 | 7.9% | |
CCU admission | Yes | 56 | 19.2% |
No | 235 | 80.8% | |
Bowel resection with stoma | Yes | 21 | 7.2% |
No | 270 | 92.8% | |
ECOG Performance Status (PS) | 0 | 127 | 43.6% |
1 | 119 | 40.9% | |
2 | 38 | 13.1% | |
3 | 7 | 2.4% | |
Charlson Co-morbidity Index (CCI) | Low (0–2) | 146 | 50.2% |
High (≥3) | 145 | 49.8% | |
Timing of cytoreduction | PDS IDS | 69 222 | 23.7% 76.3% |
Operation time, mean SD (min-max) | N/A | 182 ± 75 (65–480) min | N/A |
Length of stay, mean, SD (min-max) | N/A | 9 ± 13 (3–172) days | N/A |
Clavien-Dindo complications (3a–5) | Yes | 16 | 5.5% |
Admission within 30 days | Yes | Data | Data |
Predictors | Model | Set | Accuracy | Sensitivity | Specificity | F-Score |
---|---|---|---|---|---|---|
All variables (n = 13) | KNN (K = 4) | Train | 0.94 | 0.78 | 0.97 | 0.86 |
CV LOO | 0.94 | 0.78 | 0.97 | 0.86 | ||
Test | 0.80 | 0.45 | 0.92 | 0.60 | ||
ANN | Train | 0.97 | 0.96 | 0.97 | 0.96 | |
CV LOO | 0.88 | 0.85 | 0.88 | 0.86 | ||
Test | 0.82 | 0.86 | 0.81 | 0.83 | ||
LDA | Train | 0.97 | 0.96 | 0.97 | 0.96 | |
Test | 0.90 | 0.93 | 0.89 | 0.91 | ||
QDA | Train | 0.97 | 1.00 | 0.97 | 0.98 | |
Test | 0.93 | 0.93 | 0.93 | 0.93 | ||
LR | Train | 0.96 | 0.85 | 0.98 | 0.91 | |
Test | 0.84 | 0.59 | 0.93 | 0.72 | ||
Selected * Variables (p < 0.05) | KNN (K = 6) | Train | 0.94 | 0.89 | 0.95 | 0.92 |
CV LOO | 0.94 | 0.89 | 0.95 | 0.92 | ||
Test | 0.86 | 0.69 | 0.92 | 0.79 | ||
ANN | Train | 0.90 | 0.89 | 0.90 | 0.99 | |
CV LOO | 0.89 | 0.89 | 0.89 | 0.89 | ||
Test | 0.76 | 0.79 | 0.74 | 0.76 | ||
LDA | Train | 0.97 | 0.96 | 0.97 | 0.96 | |
Test | 0.89 | 0.93 | 0.88 | 0.90 | ||
QDA | Train | 0.89 | 0.96 | 0.87 | 0.91 | |
Test | 0.75 | 0.97 | 0.68 | 0.80 | ||
LR | Train | 0.95 | 0.78 | 0.98 | 0.87 | |
Test | 0.82 | 0.55 | 0.92 | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laios, A.; De Oliveira Silva, R.V.; Dantas De Freitas, D.L.; Tan, Y.S.; Saalmink, G.; Zubayraeva, A.; Johnson, R.; Kaufmann, A.; Otify, M.; Hutson, R.; et al. Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score. J. Clin. Med. 2022, 11, 87. https://doi.org/10.3390/jcm11010087
Laios A, De Oliveira Silva RV, Dantas De Freitas DL, Tan YS, Saalmink G, Zubayraeva A, Johnson R, Kaufmann A, Otify M, Hutson R, et al. Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score. Journal of Clinical Medicine. 2022; 11(1):87. https://doi.org/10.3390/jcm11010087
Chicago/Turabian StyleLaios, Alexandros, Raissa Vanessa De Oliveira Silva, Daniel Lucas Dantas De Freitas, Yong Sheng Tan, Gwendolyn Saalmink, Albina Zubayraeva, Racheal Johnson, Angelika Kaufmann, Mohammed Otify, Richard Hutson, and et al. 2022. "Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score" Journal of Clinical Medicine 11, no. 1: 87. https://doi.org/10.3390/jcm11010087
APA StyleLaios, A., De Oliveira Silva, R. V., Dantas De Freitas, D. L., Tan, Y. S., Saalmink, G., Zubayraeva, A., Johnson, R., Kaufmann, A., Otify, M., Hutson, R., Thangavelu, A., Broadhead, T., Nugent, D., Theophilou, G., Gomes de Lima, K. M., & De Jong, D. (2022). Machine Learning-Based Risk Prediction of Critical Care Unit Admission for Advanced Stage High Grade Serous Ovarian Cancer Patients Undergoing Cytoreductive Surgery: The Leeds-Natal Score. Journal of Clinical Medicine, 11(1), 87. https://doi.org/10.3390/jcm11010087