Estimation of Functional Aerobic Capacity Using the Sit-to-Stand Test in Older Adults with Heart Failure with Preserved Ejection Fraction
Abstract
:1. Introduction
2. Methods and Methods
2.1. Design and Participants
2.2. Primary Outcomes
2.3. Secondary Outcomes
2.4. Statistical Method
2.5. Ethical Issues
3. Results
3.1. Patients’ Characteristics
3.2. Correlations and Multiple Regression
4. Discussion
4.1. Implications for Clinical Practice
4.2. Future Research
4.3. Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Mean (SD) | Min–Max | |
---|---|---|
Age (years) | 80.74 (5.89) | 70.0–96.0 |
LVEF (%) | 60.62 (4.32) | 50.0–75.0 |
Comorbidities (n) | 8.43 (1.90) | 4.0–14.0 |
Height (m) | 1.61 (0.08) | 1.43–1.84 |
Weight (kg) | 76.54 (15.02) | 52.0–116.50 |
BMI (kg/m2) | 29.59 (5.88) | 19.81–51.78 |
Polypharmacy (n) | 10.21 (3.13) | 3.0–19.0 |
Blood biomarkers | ||
Hb (g/dL) | 13.90 (11.12) | 6.40–108.0 |
MCV (fL) | 95.65 (19.03) | 72–247 |
Leukocyte count (×109/L) | 8.16 (4.83) | 2.41–45.20 |
Blood platelets (×109/L) | 220.81 (70.83) | 8–415 |
Glucose (mg/dL) | 101.97 (28.51) | 61–195 |
Creatinine (mg/dL) | 1.35 (0.82) | 0.51–6.33 |
GF (mL/min/1.73 m2) | 50.96 (20.36) | 8–90 |
Na+ (mEq/L) | 139.83 (3.40) | 124–148 |
K+ (mEq/L) | 4.62 (0.48) | 3.5–6.2 |
Cl− (mEq/L) | 101.39 (4.14) | 89–111 |
Glycosylated hemoglobin (%) | 6.36 (1.13) | 4.8–10.4 |
Ferritin (ng/mL) | 124.46 (139.18) | 10–738 |
Transferrin saturation (%) | 21.68 (24.92) | 1–214 |
Total cholesterol (mg/dL) | 160.30 (41.48) | 98–317 |
LDL (mg/dL) | 86.14 (29.46) | 36–167 |
HDL (mg/dL) | 46.62 (14.17) | 28–90 |
NT-proBNP (pg/mL) | 2228.72 (3486.43) | 42–19118 |
Vitamin D (ng/mL) | 23.67 (10.42) | 7–50 |
Vitamin B12 (pg/mL) | 495.12 (641.18) | 103–4668 |
ALT (U/L) | 22.08 (13.42) | 8–94 |
CA-125 antigen (U/mL) | 43.57 (73.41) | 0–525 |
Folic acid (ng/mL) | 8.04 (2.60) | 3–16 |
Thyrotropin (µIU/mL) | 2.40 (1.80) | 0.1–12 |
Albumin (g/dL) | 3.97 (3.85) | 2.30–36 |
Bilirubin (mg/dL) | 0.61 (0.31) | 0.1–1.8 |
Urinary biomarkers | ||
Urine creatinine (mg/dL) | 76.55 (34.00) | 24.00–158.53 |
Drugs | ||
ACE inhibitors | 16 (21.05%) | |
ARB | 47 (61.84%) | |
Beta-blockers | 55 (72.36%) | |
Ivabradine | 4 (5.26%) | |
Ca-antagonists | 21 (27.63%) | |
Loop diuretics | 65 (85.53%) | |
Mineralocorticoid receptor antagonist | 24 (31.58%) | |
Thiazide | 10 (13.15%) | |
Nitrates | 21 (27.63%) | |
Acarboxyprothrombin | 14 (18.42%) | |
Factor Xa inhibitors | 32 (42.10%) | |
Acetylsalicylic acid | 25 (32.89%) | |
Hypoglycemic agents | 37 (48.68%) | |
Metformin | 18 (23.68%) | |
SGT2I | 9 (11.84%) | |
GLP1 | 2 (2.63%) | |
DPP4 | 20 (26.31%) | |
Insulin | 21 (27.63%) | |
Comorbidities | ||
Arterial hypertension | 74 (97.40%) | |
DM | 44 (57.90%) | |
Dyslipidemias | 66 (86.80%) | |
Atrial fibrillation | 45 (59.20%) | |
COPD | 22 (28.90%) | |
Stroke | 11 (14.50%) | |
CRI | 49 (64.50%) | |
OSA | 16 (21.10%) | |
Cognitive impairment | 9 (11.80%) | |
Anemia | 37 (48.70%) | |
PAD | 4 (5.30%) | |
Depression | 25 (32.90%) | |
Cancer disease | 12 (15.80%) | |
LVH | 40 (52.60%) | |
LVD | 71 (93.40%) | |
LAD | 37 (48.70%) | |
Heart valve disease | 50 (65.80%) | |
Aortic valve disease | 25 (32.90%) | |
Mitral valve disease | 35 (46.10%) | |
Tricuspid valve disease | 17 (22.40%) | |
Pulmonary hypertension | 13 (17.10%) | |
BMI | ||
Normal weight | 16 (21.05%) | |
Overweight | 32 (42.10%) | |
Obesity | 28 (36.84%) | |
Gender | ||
female | 44 (57.89%) | |
male | 32 (42.10%) | |
NYHA | ||
II | 52 (68.42%) | |
III | 24 (31.58%) | |
History of smoking | ||
No | 49 (64.47%) | |
Yes | 27 (35.53%) | |
Number of falls in the last year | ||
0 | 35 (46.05%) | |
1 | 20 (26.31%) | |
2 | 9 (11.84%) | |
3 | 7 (9.21%) | |
>3 | 5 (6.57%) | |
Marital status | ||
Single | 6 (7.89%) | |
Married | 32 (42.10%) | |
Divorced | 1 (1.31%) | |
Widower | 37 (48.68%) | |
Academic degree/studies level | ||
Not knowing how to read or write | 11 (14.47%) | |
Literacy | 34 (44.73%) | |
Primary studies | 14 (18.42%) | |
Secondary studies | 6 (7.89%) | |
Higher education | 11 (14.47%) |
References
- Groenewegen, A.; Rutten, F.H.; Mosterd, A.; Hoes, A.W. Epidemiology of heart failure. Eur. J. Heart Fail. 2020, 22, 1342–1356. [Google Scholar] [CrossRef] [PubMed]
- Abajobir, A.A.; Abate, K.H.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abdulkader, R.S.; Abdulle, A.M.; Abebo, T.A.; Abera, S.F.; Aboyans, V.; et al. Global, Regional, and National Disability-Adjusted Life-Years (DALYs) for 333 Diseases and Injuries and Healthy Life Expectancy (HALE) for 195 Countries and Territories, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1260–1344. [Google Scholar] [CrossRef] [Green Version]
- Abajobir, A.A.; Abbafati, C.; Abbas, K.M.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Adetokunboh, O.; Afshin, A.; Agrawal, A.; Ahmadi, A.; et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: A systematic analysis for the global burden of disease study 2016. Lancet 2017, 390, 1151–1210. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the heart failure Society of America, heart failure association of the European Society of cardiology, Japanese heart failure Society and writing Committee of the universal definition of heart failure: Endorsed by the Canadian heart failure Society, heart failure association of India, cardiac Society of Australia and New Zealand, and Chinese heart failure association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Shah, A.M.; Borlaug, B.A. Heart failure with preserved ejection fraction in perspective. Circ. Res. 2019, 124, 1598–1617. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Brubaker, P.H.; John, J.M.; Stewart, K.P.; Morgan, T.M.; Kitzman, D.W. Determinants of exercise intolerance in elderly heart failure patients with preserved ejection fraction. J. Am. Coll. Cardiol. 2011, 58, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Nayor, M.; Houstis, N.E.; Namasivayam, M.; Rouvina, J.; Hardin, C.; Shah, R.V.; Ho, J.E.; Malhotra, R.; Lewis, G.D. Impaired exercise tolerance in heart failure with preserved ejection fraction: Quantification of multiorgan system reserve capacity. JACC Heart Fail. 2020, 8, 605–617. [Google Scholar] [CrossRef]
- Salzano, A.; De Luca, M.; Zubair Israr, M.; Crisci, G.; Eltayeb, M.; Debiec, R.; Ranieri, B.; D’Assante, R.; Rega, S.; D’Agostino, A.; et al. Exercise intolerance in heart failure with preserved ejection fraction. Heart Fail. Clin. 2021, 17, 397–413. [Google Scholar] [CrossRef]
- Myers, J.; Manish, P.; Froelicher, V.; Do, D.; Partington, S.; Edwin, J.A. Exercise capacity and mortality among men referred for exercise testing. N. Engl. J. Med. 2002, 346, 793–801. [Google Scholar] [CrossRef]
- Bhella, P.S.; Prasad, A.; Heinicke, K.; Hastings, J.L.; Arbab-Zadeh, A.; Adams-Huet, B.; Pacini, E.L.; Shibata, S.; Palmer, M.D.; Newcomer, B.R.; et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2011, 13, 1296–1304. [Google Scholar] [CrossRef] [PubMed]
- Kitzman, D.W.; Nicklas, B.; Kraus, W.E.; Lyles, M.F.; Eggebeen, J.; Morgan, T.M.; Haykowsky, M. Skeletal muscle abnormalities and exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Maurer, M.S.; Schulze, P.C. Exercise intolerance in Heart Failure with a Preserved Ejection Fraction (HFPEF): Shifting focus from the heart to peripheral skeletal muscle. J. Am. Coll Cardiol. 2012, 60, 129–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bekfani, T.; Bekhite Elsaied, M.; Derlien, S.; Nisser, J.; Westermann, M.; Nietzsche, S.; Hamadanchi, A.; Fröb, E.; Westphal, J.; Haase, D.; et al. Skeletal muscle function, structure, and metabolism in patients with heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. Circ. Heart Fail. 2020, 13, 767–779. [Google Scholar] [CrossRef]
- Fülster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschöpe, C.; Doehner, W.; Anker, S.D.; Von Haehling, S.; dos Santos, M.R.; Saitoh, M.; et al. Muscle wasting in patients with chronic heart failure: Results from the studies investigating co-morbidities aggravating heart failure (SICA-HF). Eur. Heart J. 2013, 34, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Bekfani, T.; Pellicori, P.; Morris, D.A.; Ebner, N.; Valentova, M.; Steinbeck, L.; Wachter, R.; Elsner, S.; Sliziuk, V.; Schefold, J.C.; et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 2016, 222, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.; Rich, M.W.; Fleg, J.L.; Zile, M.R.; Young, J.B.; Kitzman, D.W.; Love, T.E.; Aronow, W.S.; Adams, K.F.; Gheorghiade, M. Effects of digoxin on morbidity and mortality in diastolic heart failure: The ancillary digitalis investigation group trial. Circulation 2006, 114, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Massie, B.M.; Carson, P.E.; McMurray, J.J.; Komajda, M.; McKelvie, R.; Zile, M.R.; Anderson, S.; Donovan, M.; Iverson, E.; Staiger, C.; et al. Irbesartan in patients with heart failure and preserved ejection fraction. N. Engl. J. Med. 2008, 359, 2456–2567. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.V.; Michelson, E.L.; Olofsson, B.; Östergren, J. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: The CHARM-preserved trial. Lancet 2003, 362, 777–781. [Google Scholar] [CrossRef]
- Francis, D.P.; Shamim, W.; Davies, L.C.; Piepoli, M.F.; Ponikowski, P.; Anker, S.D.; Coats, A.J.S. Cardiopulmonary exercise testing for prognosis in chronic heart failure: Continuous and independent prognostic value from VE/VCO2 slope and peak VO2. Eur. Heart J. 2000, 21, 154–161. [Google Scholar] [CrossRef]
- Mezzani, A.; Agostoni, P.; Cohen-Solal, A.; Corrà, U.; Jegier, A.; Kouidi, E.; Mazic, S.; Meurin, P.; Piepoli, M.; Simon, A.; et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: A report from the exercise physiology section of the european association for cardiovascular prevention and rehabilitation. Eur. J. Prev. Cardiol. 2009, 16, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Deka, P.; Pozehl, B.J.; Pathak, D.; Williams, M.; Norman, J.F.; Alonso, W.W.; Jaarsma, T. Predicting maximal oxygen uptake from the 6 min walk test in patients with heart failure. ESC Heart Fail. 2021, 8, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Pollentier, B.; Irons, S.L.; Benedetto, C.M.; DiBenedetto, A.-M.; Loton, D.; Seyler, R.D.; Tych, M.; Newton, R.A. Examination of the Six minute walk test to determine functional capacity in people with chronic heart failure: A systematic review. Cardiopulm. Phys. Ther. J. 2010, 21, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Rasekaba, T.; Lee, A.L.; Naughton, M.T.; Williams, T.J.; Holland, A.E. The six-minute walk test: A useful metric for the cardiopulmonary patient. Intern. Med. J. 2009, 39, 495–501. [Google Scholar] [CrossRef]
- Rostagno, C.; Gensini, G.F. Six Minute Walk Test: A Simple and useful test to evaluate functional capacity in patients with heart failure. Intern. Emerg. Med. 2008, 3, 205–212. [Google Scholar] [CrossRef]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Kotsia, A.; Michalis, L.K.; Naka, K.K. 6-minute walking test: A useful tool in the management of heart failure patients. Ther. Adv. Cardiovasc. Dis. 2019, 13, 1753944719870084. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Wonggom, P.; Tongpeth, J.; Clark, R.A. Six-minute walk test for assessing physical functional capacity in chronic heart failure. Curr. Heart Fail. Rep. 2017, 14, 158–166. [Google Scholar] [CrossRef]
- Fuentes-Abolafio, I.J.; Stubbs, B.; Pérez-Belmonte, L.M.; Bernal-López, M.R.; Gómez-Huelgas, R.; Cuesta-Vargas, A.I. Physical functional performance and prognosis in patients with heart failure: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2020, 20, 512. [Google Scholar] [CrossRef]
- Zielińska, D.; Bellwon, J.; Rynkiewicz, A.; Elkady, M.A. Prognostic value of the six-minute walk test in heart failure patients undergoing cardiac surgery: A literature review. Rehabil Res. Pract. 2013, 2013, 965494. [Google Scholar] [CrossRef]
- Maldonado-Martín, S.; Brubaker, P.H.; Kaminsky, L.A.; Moore, J.B.; Stewart, K.P.; Kitzman, D.W. The relationship of 6-min walk to VO2 peak and VT in older heart failure patients. Med. Sci. Sports Exerc. 2006, 38, 1047–1053. [Google Scholar] [CrossRef]
- Adedoyin, R.A.; Adeyanju, S.A.; Balogun, M.O.; Adebayo, R.A.; Akintomide, A.O.; Akinwusi, P.O. Prediction of functional capacity during six-minute walk among patients with chronic heart failure. Niger. J. Clin. Pract. 2010, 13, 379–381. [Google Scholar] [PubMed]
- Cahalin, L.P.; Mathier, M.A.; Semigran, M.J.; Dec, G.W.; DiSalvo, T.G. The six-minute walk test predicts peak oxygen uptake and survival in patients with advanced heart failure. Chest 1996, 110, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crapo, R.O.; Casaburi, R.; Coates, A.L.; Enright, P.L.; Macintyre, N.R.; Mckay, R.T.; Johnson, D.; Wanger, J.S.; Jorge Zeballos, R.; Vera Bittner, C.M. ATS Statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef]
- Enright, P.L.; McBurnie, M.A.; Bittner, V.; Tracy, R.P.; McNamara, R.; Arnold, A.; Newman, A.B. Cardiovascular health study the 6-min walk test: A quick measure of functional status in elderly adults. Chest 2003, 123, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Yee, X.S.; Ng, Y.S.; Allen, J.C.; Latib, A.; Tay, E.L.; Abu Bakar, H.M.; Ho, C.Y.J.; Koh, W.C.C.; Kwek, H.H.T.; Tay, L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur. Rev. Aging Phys. Act. 2021, 18, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Martone, A.M.; Salini, S.; Zazzara, M.B.; Candeloro, M.; Coelho-Junior, H.J.; Tosato, M.; Picca, A.; Marzetti, E. Normative values of muscle strength across ages in a ‘real world’ population: Results from the longevity check-up 7+ project. J. Cachexia. Sarcopenia Muscle 2020, 11, 1562–1569. [Google Scholar] [CrossRef]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R.; et al. Assessment of muscle function and physical performance in daily clinical practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W. Five-repetition sit-to-stand test: Usefulness for older patients in a home-care setting. Percept. Mot. Skills 2011, 112, 803–806. [Google Scholar] [CrossRef]
- Radtke, T.; Puhan, M.A.; Hebestreit, H.; Kriemler, S. The 1-min sit-to-stand test-a simple functional capacity test in cystic fibrosis? J. Cyst. Fibros. 2016, 15, 223–226. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, P.H.S.; Veloso, L.R.d.S.; Lima, M.M.O.; Vieira, C.F.D.; Alves, F.L.; Lacerda, A.C.R.; Lima, V.P.; Rodrigues, V.G.B.; Maciel, E.H.B.; Costa, H.S. The reliability and validity of the 30-seconds sit-to-stand test and its capacity for assessment of the functional status of hemodialysis patients. J. Bodyw. Mov. Ther. 2021, 27, 157–164. [Google Scholar] [CrossRef]
- Reychler, G.; Boucard, E.; Peran, L.; Pichon, R.; Le Ber-Moy, C.; Ouksel, H.; Liistro, G.; Chambellan, A.; Beaumont, M. One minute sit-to-stand test is an alternative to 6MWT to measure functional exercise performance in COPD patients. Clin. Respir. J. 2018, 12, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Skills 2006, 103, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Puthoff, M.L.; Saskowski, D. Reliability and responsiveness of gait speed, five times sit to stand, and hand grip strength for patients in cardiac rehabilitation. Cardiopulm. Phys. Ther. J. 2013, 24, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernabeu-Mora, R.; Medina-Mirapeix, F.; Llamazares-Herrán, E.; de Oliveira-Sousa, S.L.; Sánchez-Martinez, M.P.; Escolar-Reina, P.; de Oliveira-Sousa, S.L.; Sánchez-Martinez, M.P. The accuracy with which the 5 times sit-to-stand test, versus gait speed, can identify poor exercise tolerance in patients with COPD: A cross-sectional study. Medicine 2016, 95, e4740. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.X.; Li, X.L.; Yin, Y.; Li, R.L.; Qiao, X.; Li, W.; Ma, H.F.; Ma, W.H.; Han, Y.F.; et al. A comparative study of the five-repetition sit-to-stand test and the 30-second sit-to-stand test to assess exercise tolerance in COPD Patients. Int. J. COPD 2018, 13, 2833–2839. [Google Scholar] [CrossRef] [Green Version]
- Association, W.M. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gotzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.E.M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Ann. Intern. Med. 2007, 147, W163–W194. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.V.J. The Strengthening the reporting of observational studies in epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Morimoto, Y.; Kawano, H.; Miyanaga, K.; Yano, Y.; Fukushima, T.; Kozu, R.; Eishi, K.; Maemura, K. Association of lower extremity function with nutritional status and number of drugs in patients with chronic heart failure. J. Int. Med. Res. 2020, 48, 0300060520964374. [Google Scholar] [CrossRef]
- Pepera, G.; Ingle, L.; Sandercock, G.R. Predictors of the 6-minute walk test in patients with chronic heart failure. Br. J. Card. Nurs. 2015, 10, 454–549. [Google Scholar] [CrossRef]
- Sharma, K.; Kass, D.A. Heart failure with preserved ejection fraction: Mechanisms, clinical features, and therapies. Circ.Res. 2014, 115, 79–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitchett, M.A. Predictability of VO2 max from submaximal cycle ergometer and bench stepping tests. Br. J. Sport. Med. 1985, 19, 85–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eston, R.; Lambrick, D.; Sheppard, K.; Parfitt, G. Prediction of maximal oxygen uptake in sedentary males from a perceptually regulated, sub-maximal graded exercise test. J. Sports Sci. 2008, 26, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Martín, S.; Brubaker, P.H.; Eggebeen, J.; Stewart, K.P.; Kitzman, D.W. Association between 6-minute walk test distance and objective variables of functional capacity after exercise training in elderly heart failure patients with preserved ejection fraction: A randomized exercise trial. Arch. Phys. Med. Rehabil. 2017, 98, 600–603. [Google Scholar] [CrossRef]
- Schmid, S.; Armand, S.; Pataky, Z.; Golay, A.; Allet, L. The relationship between different body mass index categories and chair rise performance in adult women. J. Appl. Biomech. 2013, 29, 705–711. [Google Scholar] [CrossRef]
- Larsson, U.E.; Reynisdottir, S. The six-minute walk test in outpatients with obesity: Reproducibility and known group validity. Physiother. Res. Int. 2008, 11, 93–103. [Google Scholar] [CrossRef]
- Makni, E.; Elloumi, A.; Ben Brahim, M.; Moalla, W.; Tabka, Z.; Chamari, K.; Elloumi, M. Six-minute walk distance equation in children and adolescents with obesity. Acta Paediatr. Int. J. Paediatr. 2020, 109, 2729–2737. [Google Scholar] [CrossRef]
- Horwich, T.B.; Leifer, E.S.; Brawner, C.A.; Fitz-Gerald, M.B.; Fonarow, G.C. The relationship between body mass index and cardiopulmonary exercise testing in chronic systolic heart failure. Am. Heart J. 2009, 158, S31–S36. [Google Scholar] [CrossRef] [Green Version]
- Mondal, H.; Mishra, S.P. Effect of BMI, body fat percentage and fat free mass on maximal oxygen consumption in healthy young adults. J. Clin. Diagn. Res. 2017, 11, CC17–CC20. [Google Scholar] [CrossRef]
- Larsen, C.M.; Ball, C.A.; Hebl, V.B.; Ong, K.C.; Siontis, K.C.; Olson, T.P.; Ackerman, M.J.; Ommen, S.R.; Allison, T.G.; Geske, J.B. Effect of body mass index on exercise capacity in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 2018, 121, 100–106. [Google Scholar] [CrossRef]
- Abizanda, P.; Romero, L.; Sánchez-Jurado, P.M.; Atienzar-Núñez, P.; Esquinas-Requena, J.L.; García-Nogueras, I. Association between functional assessment instruments and frailty in older adults: The FRADEA study. J. Frailty Aging 2012, 1, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Reider, N.; Gaul, C. Fall risk screening in the elderly: A comparison of the minimal chair height standing ability test and 5-repetition sit-to-stand Test. Arch. Gerontol. Geriatr. 2016, 65, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Marques, D.L.; Neiva, H.P.; Pires, I.M.; Zdravevski, E.; Mihajlov, M.; Garcia, N.M.; Ruiz-Cárdenas, J.D.; Marinho, D.A.; Marques, M.C. An experimental study on the validity and reliability of a smartphone application to acquire temporal variables during the single sit-to-stand test with older adults. Sensors 2021, 21, 2050. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Rikhi, A.; Obokata, M.; Shah, S.J.; Lewis, G.D.; AbouEzzedine, O.F.; Dunlay, S.; McNulty, S.; Chakraborty, H.; Stevenson, L.W.; et al. Quality of life in heart failure with preserved ejection fraction: Importance of obesity, functional capacity, and physical inactivity. Eur. J. Heart Fail. 2020, 22, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
HR0 | OS0 | HR1 | OS1 | Borg0 | Borg1 | Test Completion | |||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Min–Max | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | N (%) | |
5-STS (s) | 15.92 (5.80) | 8.46–34.01 | 78 (45–120) | 96 (79–99) | 86.50 (51–142) | 96 (84–99) | 76 (100%) | ||
6MWT (m) | 244.67 (97.03) | 45–540 | 78 (48–105) | 96 (86–99) | 96.50 (56–145) | 95 (80–99) | 0 (0–0) | 6 (0–10) | 44 (57.90%) |
Estimated VO2 peak (mL/kg/min) | 11.32 (2.91) | 5.33–20.18 |
Estimated VO2 Peak | |
---|---|
5-STS | −0.555 ** |
R | R2 | Adjusted R2 | SE | F | p | |
---|---|---|---|---|---|---|
Estimated VO2 peak | 0.635 | 0.404 | 0.370 | 2.31 | 12.02 | <0.001 |
Normal weight | ||||||
Estimated VO2 peak | 0.837 | 0.700 | 0.625 | 2.01 | 9.33 | 0.002 |
Overweight/obesity | ||||||
Estimated V02 peak | 0.561 | 0.314 | 0.278 | 2.28 | 8.56 | <0.001 |
Dependent Outcome | Predictor Variables | Non-Standardized Coefficients | Typified Coefficients | t | p | 95% Confidence Interval (95%CI) | |
---|---|---|---|---|---|---|---|
B | SE | Beta | |||||
Estimated VO2peak | (Constant) | 25.767 | 4.746 | 5.429 | 0.000 | (16.304, 35.231) | |
5-STS | −0.266 | 0.047 | −0.530 | −5.695 | 0.000 | (−0.359, −0.173) | |
Sex | −1.012 | 0.553 | −0.173 | −1.830 | 0.071 | (−2.115, 0.091) | |
Age | −0.080 | 0.049 | −0.161 | −1.622 | 0.109 | (−0.178, 0.018) | |
BMI | −0.108 | 0.050 | −0.218 | −2.174 | 0.033 | (−0.207, −0.009) | |
Estimated VO2peak Normal weight | (Constant) | 26.939 | 7.118 | 3.784 | 0.003 | (11.429, 42.448) | |
5-STS | −1.047 | 0.232 | −0.775 | −4.517 | 0.001 | (−1.552, −0.542) | |
Sex | −0.898 | 1.117 | −0.142 | −0.804 | 0.437 | (−3.332, 1.536) | |
Age | 0.004 | 0.086 | 0.008 | 0.047 | 0.964 | (−0.184, 0.192) | |
Estimated VO2peak Overweight/obesity | (Constant) | 17.395 | 4.417 | 3.938 | 0.000 | (8.546, 26.243) | |
5-STS | −0.228 | 0.048 | −0.529 | −4.703 | 0.000 | (−0.325, −0.131) | |
Sex | −0.965 | 0.602 | −0.178 | −1.602 | 0.115 | (−2.171, 0.242) | |
Age | −0.026 | 0.052 | −0.057 | −0.507 | 0.614 | (−0.130, 0.078) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Abolafio, I.J.; Escriche-Escuder, A.; Bernal-López, M.R.; Gómez-Huelgas, R.; Ricci, M.; Trinidad-Fernández, M.; Roldán-Jiménez, C.; Arjona-Caballero, J.M.; Cuesta-Vargas, A.I.; Pérez-Belmonte, L.M. Estimation of Functional Aerobic Capacity Using the Sit-to-Stand Test in Older Adults with Heart Failure with Preserved Ejection Fraction. J. Clin. Med. 2022, 11, 2692. https://doi.org/10.3390/jcm11102692
Fuentes-Abolafio IJ, Escriche-Escuder A, Bernal-López MR, Gómez-Huelgas R, Ricci M, Trinidad-Fernández M, Roldán-Jiménez C, Arjona-Caballero JM, Cuesta-Vargas AI, Pérez-Belmonte LM. Estimation of Functional Aerobic Capacity Using the Sit-to-Stand Test in Older Adults with Heart Failure with Preserved Ejection Fraction. Journal of Clinical Medicine. 2022; 11(10):2692. https://doi.org/10.3390/jcm11102692
Chicago/Turabian StyleFuentes-Abolafio, Iván José, Adrian Escriche-Escuder, María Rosa Bernal-López, Ricardo Gómez-Huelgas, Michele Ricci, Manuel Trinidad-Fernández, Cristina Roldán-Jiménez, José María Arjona-Caballero, Antonio Ignacio Cuesta-Vargas, and Luis Miguel Pérez-Belmonte. 2022. "Estimation of Functional Aerobic Capacity Using the Sit-to-Stand Test in Older Adults with Heart Failure with Preserved Ejection Fraction" Journal of Clinical Medicine 11, no. 10: 2692. https://doi.org/10.3390/jcm11102692
APA StyleFuentes-Abolafio, I. J., Escriche-Escuder, A., Bernal-López, M. R., Gómez-Huelgas, R., Ricci, M., Trinidad-Fernández, M., Roldán-Jiménez, C., Arjona-Caballero, J. M., Cuesta-Vargas, A. I., & Pérez-Belmonte, L. M. (2022). Estimation of Functional Aerobic Capacity Using the Sit-to-Stand Test in Older Adults with Heart Failure with Preserved Ejection Fraction. Journal of Clinical Medicine, 11(10), 2692. https://doi.org/10.3390/jcm11102692