The Association between Serum Testosterone and Hyperuricemia in Males
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Ethics Approval and Informed Consent
2.3. Assays of Lipids and Fasting Blood Glucose
2.4. Serum Urate Levels
2.5. Definition of Low Testosterone
2.6. Outcome Measurement
2.7. Statistical Analysis
3. Results
3.1. Association between the Serum Total Testosterone Level and the Serum Urate Level in Study Participants
3.2. Risk Factors for Developing Hyperuricemia ≥ 7 mg/dL
3.3. Risk Factors for Developing Hyperuricemia ≥ 9 mg/dL
3.4. Risk of Developing Hyperuricemia According to the Total Serun Cholesterol Level after Adjusting for Chronic Diseases
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Campion, E.W.; Glynn, R.J.; DeLabry, L.O. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am. J. Med. 1987, 82, 421–426. [Google Scholar] [CrossRef]
- Annemans, L.; Spaepen, E.; Gaskin, M.; Bonnemaire, M.; Malier, V.; Gilbert, T.; Nuki, G. Gout in the UK and Germany: Prevalence, comorbidities and management in general practice 2000-2005. Ann. Rheum. Dis. 2008, 67, 960–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Zheng, R.D.; Xu, S.H.; Fan, Y.F.; Sun, H.P.; Liu, C. Association between Sex Hormone and Blood Uric Acid in Male Patients with Type 2 Diabetes. Int. J. Endocrinol. 2017, 2017, 4375253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.Y.; Pan, W.H.; Yeh, W.T.; Tsai, K.S. Hyperuricemia and gout in Taiwan: Results from the Nutritional and Health Survey in Taiwan (1993-96). J. Rheumatol. 2001, 28, 1640–1646. [Google Scholar] [PubMed]
- Choi, H.K.; Curhan, G. Soft drinks, fructose consumption, and the risk of gout in men: Prospective cohort study. BMJ 2008, 336, 309–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.K.; De Vera, M.A.; Krishnan, E. Gout and the risk of type 2 diabetes among men with a high cardiovascular risk profile. Rheumatology 2008, 47, 1567–1570. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Chuang, S.Y.; Chen, H.J.; Yeh, W.T.; Pan, W.H. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: A Chinese cohort study. Arthritis Rheum. 2009, 61, 225–232. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Chen, J.H.; Yeh, W.T.; Wu, C.C.; Pan, W.H. Hyperuricemia and increased risk of ischemic heart disease in a large Chinese cohort. Int. J. Cardiol. 2012, 154, 316–321. [Google Scholar] [CrossRef]
- Culleton, B.F.; Larson, M.G.; Kannel, W.B.; Levy, D. Serum uric acid and risk for cardiovascular disease and death: The Framingham Heart Study. Ann. Intern. Med. 1999, 131, 7–13. [Google Scholar] [CrossRef]
- Darmawan, J.; Valkenburg, H.A.; Muirden, K.D.; Wigley, R.D. The epidemiology of gout and hyperuricemia in a rural population of Java. J. Rheumatol. 1992, 19, 1595–1599. [Google Scholar]
- Feldman, H.A.; Longcope, C.; Derby, C.A.; Johannes, C.B.; Araujo, A.B.; Coviello, A.D.; Bremner, W.J.; McKinlay, J.B. Age trends in the level of serum testosterone and other hormones in middle-aged men: Longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 2002, 87, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Dirken-Heukensfeldt, K.J.; Teunissen, T.A.; van de Lisdonk, H.; Lagro-Janssen, A.L. Clinical features of women with gout arthritis. A systematic review. Clin. Rheumatol. 2010, 29, 575–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimopoulou, C.; Goulis, D.G.; Corona, G.; Maggi, M. The complex association between metabolic syndrome and male hypogonadism. Metabolism 2018, 86, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.L.; Prior, J.A.; Belcher, J.; Hay, C.A.; Mallen, C.D.; Roddy, E. Gender-specific risk factors for gout: A systematic review of cohort studies. Adv. Rheumatol. 2019, 59, 24. [Google Scholar] [CrossRef]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Baltimore Longitudinal Study of Aging. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore Longitudinal Study of Aging. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef]
- Gambineri, A.; Pelusi, C.; Pasquali, R. Testosterone levels in obese male patients with obstructive sleep apnea syndrome: Relation to oxygen desaturation, body weight, fat distribution and the metabolic parameters. J. Endocrinol. Investig. 2003, 26, 493–498. [Google Scholar] [CrossRef]
- Fukai, S.; Akishita, M.; Miyao, M.; Ishida, K.; Toba, K.; Ouchi, Y. Age-related changes in plasma androgen levels and their association with cardiovascular risk factors in male Japanese office workers. Geriatr. Gerontol. Int. 2010, 10, 32–39. [Google Scholar] [CrossRef]
- Hak, A.E.; Curhan, G.C.; Grodstein, F.; Choi, H.K. Menopause, postmenopausal hormone use and risk of incident gout. Ann. Rheum. Dis. 2010, 69, 1305–1309. [Google Scholar] [CrossRef] [Green Version]
- FitzGerald, J.D.; Dalbeth, N.; Mikuls, T.; Brignardello-Petersen, R.; Guyatt, G.; Abeles, A.M.; Gelber, A.C.; Harrold, L.R.; Khanna, D.; King, C.; et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020, 72, 744–760. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Cao, Y.; Yin, Y.; Han, X.; Di, H.; Chu, X.; Zeng, X. Exploration of the association between serum uric acid and testosterone in adult males: NHANES 2011-2016. Transl. Androl. Urol. 2021, 10, 272–282. [Google Scholar] [CrossRef]
- Harrold, L.R.; Yood, R.A.; Mikuls, T.R.; Andrade, S.E.; Davis, J.; Fuller, J.; Chan, K.A.; Roblin, D.; Raebel, M.A.; Von Worley, A.; et al. Sex differences in gout epidemiology: Evaluation and treatment. Ann. Rheum. Dis. 2006, 65, 1368–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Gilowski, W.; Okopien, B. The effect of testosterone on cardiometabolic risk factors in atorvastatin-treated men with late-onset hypogonadism. Pharmacol. Rep. 2016, 68, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, R.; Gilowski, W.; Okopien, B. The effect of testosterone on cardiovascular risk factors in men with type 2 diabetes and late-onset hypogonadism treated with metformin or glimepiride. Pharmacol. Rep. 2016, 68, 75–79. [Google Scholar] [CrossRef]
- Kurahashi, H.; Watanabe, M.; Sugimoto, M.; Ariyoshi, Y.; Mahmood, S.; Araki, M.; Ishii, K.; Nasu, Y.; Nagai, A.; Kumon, H. Testosterone replacement elevates the serum uric acid levels in patients with female to male gender identity disorder. Endocr. J. 2013, 60, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Marinello, E.; Riario-Sforza, G.; Marcolongo, R. Plasma follicle-stimulating hormone, luteinizing hormone, and sex hormones in patients with gout. Arthritis Rheum. 1985, 28, 127–131. [Google Scholar] [CrossRef]
- Li, Y.; Stamler, J.; Xiao, Z.; Folsom, A.; Tao, S.; Zhang, H. Serum uric acid and its correlates in Chinese adult populations, urban and rural, of Beijing. The PRC-USA Collaborative Study in Cardiovascular and Cardiopulmonary Epidemiology. Int. J. Epidemiol. 1997, 26, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Lin, K.C.; Lin, H.Y.; Chou, P. Community based epidemiological study on hyperuricemia and gout in Kin-Hu, Kinmen. J. Rheumatol. 2000, 27, 1045–1050. [Google Scholar]
- Perez-Ruiz, F.; Aniel-Quiroga, M.A.; Herrero-Beites, A.M.; Chinchilla, S.P.; Erauskin, G.G.; Merriman, T. Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients. Rheumatol. Int. 2015, 35, 1519–1524. [Google Scholar] [CrossRef]
- Pitteloud, N.; Mootha, V.K.; Dwyer, A.A.; Hardin, M.; Lee, H.; Eriksson, K.F.; Tripathy, D.; Yialamas, M.; Groop, L.; Elahi, D.; et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 2005, 28, 1636–1642. [Google Scholar] [CrossRef] [Green Version]
- Pui, K.; Waddell, C.; Dalbeth, N. Early onset of hyperuricaemia and gout following treatment for female to male gender reassignment. Rheumatology 2008, 47, 1840–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roddy, E.; Doherty, M. Epidemiology of gout. Arthritis Res. Ther. 2010, 12, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, P.M.; Kelly, D.M.; Jones, T.H. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat. Rev. Endocrinol. 2013, 9, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Tomer, Y.; Carel, R.; Weinberger, A. Serum 17-beta-estradiol and testosterone levels in asymptomatic hyperuricaemic men. Clin. Rheumatol. 1994, 13, 219–223. [Google Scholar] [CrossRef]
- Wan, H.; Zhang, K.; Wang, Y.; Chen, Y.; Zhang, W.; Xia, F.; Zhang, Y.; Wang, N.; Lu, Y. The Associations Between Gonadal Hormones and Serum Uric Acid Levels in Men and Postmenopausal Women With Diabetes. Front. Endocrinol. 2020, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A. Racial and gender disparities among patients with gout. Curr. Rheumatol. Rep. 2013, 15, 307. [Google Scholar] [CrossRef] [Green Version]
- Travison, T.G.; Vesper, H.W.; Orwoll, E.; Wu, F.; Kaufman, J.M.; Wang, Y.; Lapauw, B.; Fiers, T.; Matsumoto, A.M.; Bhasin, S. Harmonized Reference Ranges for Circulating Testosterone Levels in Men of Four Cohort Studies in the United States and Europe. J. Clin. Endocrinol. Metab. 2017, 102, 1161–1173. [Google Scholar] [CrossRef]
- Lam, T.; Poljak, A.; McLean, M.; Bahl, N.; Ho, K.K.Y.; Birzniece, V. Testosterone prevents protein loss via the hepatic urea cycle in human. Eur. J. Endocrinol. 2017, 176, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Allsop, J.; Watts, R.W. Purine phosphoribosyltransferase (EC 2.4.2.7 and 2.4.2.8) and purine de novo synthesis activity in rat testicular tissue at different stages of development, and their correlation with the circulating levels of gonadotrophins and testosterone, and with structural changes. Differentiation 1986, 32, 144–147. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Xie, R.; Dai, W.; Gao, C.; Shen, P.; Huang, X.; Zhang, F.; Yang, X.; Ji, G. Association of Serum Uric Acid with Body Mass Index: A Cross-Sectional Study from Jiangsu Province, China. Iran. J. Public Health 2014, 43, 1503–1509. [Google Scholar]
- Wu, F.C.; Tajar, A.; Pye, S.R.; Silman, A.J.; Finn, J.D.; O’Neill, T.W.; Bartfai, G.; Casanueva, F.; Forti, G.; Giwercman, A.; et al. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: The European Male Aging Study. J. Clin. Endocrinol. Metab. 2008, 93, 2737–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, D.M.; Jones, T.H. Testosterone: A metabolic hormone in health and disease. J. Endocrinol. 2013, 217, R25–R45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turker, P.F.; Hoca, M.; Ozduran, G.; Akcil Ok, M.; Demir Celebi, M. The correlation of uric acid levels with biochemical parameters and dietary factors in individuals with asymptomatic hyperuricemia and gouty arthritis. Nucleosides Nucleotides Nucleic Acids 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
SU | p | SU | p | |||
---|---|---|---|---|---|---|
<7 mg/dL | ≥7 mg/dL | <9 mg/dL | ≥9 mg/dL | |||
n (%) | 1215 (64) | 684 (36) | 1804 (95) | 95 (5) | ||
Age, year | 46.25 ± 11.22 | 44.57 ± 11.22 | 0.002 ** | 45.77 ± 11.26 | 43.26 ± 10.84 | 0.034 ** |
BMI, kg/m2 | 24.33 ± 3.33 | 25.98 ± 3.77 | <0.001 *** | 24.77 ± 3.45 | 27.88 ± 4.60 | <0.001 *** |
Chol, mg/dL | 197.16 ± 35.67 | 203.65 ± 35.45 | <0.001 *** | 199.07 ± 35.64 | 207.64 ± 36.45 | 0.022 * |
HDL, mg/dL | 52.23 ± 11.45 | 50.41 ± 10.80 | 0.001 ** | 51.64 ± 11.22 | 50.43 ± 11.81 | 0.310 |
LDL, mg/dL | 121.14 ± 31.54 | 125.72 ± 33.44 | 0.003 ** | 122.51 ± 32.28 | 127.80 ± 32.48 | 0.120 |
TG, mg/dL | 126.44 ± 102.66 | 164.84 ± 115.44 | <0.001 *** | 137.94 ± 108.39 | 184.56 ± 111.31 | <0.001 *** |
Creatinine, mg/dL | 1.08 ± 0.16 | 1.12 ± 0.14 | <0.001 *** | 1.09 ± 0.15 | 1.18 ± 0.16 | <0.001 *** |
EGFR, mL/min/1.73 m2 | 80.63 ± 12.02 | 78.22 ± 13.07 | <0.001 *** | 80.06 ± 12.37 | 74.12 ± 12.76 | <0.001 *** |
SBP, mmHg | 119.65 ± 14.80 | 123.65 ± 15.83 | <0.001 *** | 120.77 ± 15.24 | 127.41 ± 15.05 | <0.001 *** |
DBP, mmHg | 76.67 ± 9.92 | 79.61 ± 10.84 | <0.001 *** | 77.51 ± 10.30 | 81.91 ± 10.69 | <0.001 *** |
FBG, mg/dL | 105.55 ± 19.59 | 105.74 ± 17.46 | 0.832 | 105.71 ± 19.20 | 103.87 ± 10.09 | 0.355 |
HbA1C, % | 5.33 ± 0.77 | 5.33 ± 0.68 | 0.978 | 5.33 ± 0.75 | 5.32 ± 0.47 | 0.940 |
Hgb, g/dL | 15.18 ± 1.04 | 15.29 ± 1.06 | 0.028 * | 15.21 ± 1.05 | 15.31 ± 1.09 | 0.348 |
Serum testosterone, ng/mL | 5.33 ± 2.05 | 4.70 ± 2.08 | <0.001 *** | 5.15 ± 2.10 | 4.25 ± 1.43 | <0.001 *** |
Baseline SU, mg/dL | 5.98 ± 1.05 | 7.70 ± 1.15 | <0.001 *** | 6.48 ± 1.25 | 8.85 ± 1.41 | <0.001 *** |
SU, mg/dL | 5.74 ± 0.83 | 7.97 ± 0.88 | <0.001 *** | 6.37 ± 1.18 | 9.69 ± 0.66 | <0.001 *** |
Comorbidities a | ||||||
Hypertension, n (%) | 145 (12.6) | 139 (21.3) | <0.001 *** | 260 (15.2) | 24 (26.7) | 0.003 ** |
Diabetes, n (%) | 90 (7.4) | 40 (5.8) | 0.196 | 127 (7.0) | 3 (3.2) | 0.144 |
Hyperlipidemia, n (%) | 689 (56.7) | 498 (72.8) | <0.001 *** | 1114 (61.8) | 73 (76.8) | 0.003 ** |
SU ≥ 7 mg/dL | SU ≥ 9 mg/dL | |||
---|---|---|---|---|
HR | 95% CI | HR | 95% CI | |
Serum testosterone | ||||
≥400 ng/mL | Ref. | Ref. | ||
<400 ng/mL | 1.203 * | 1.024–1.414 | 2.024 ** | 1.316–3.112 |
Comorbidities | ||||
Hypertension | 1.398 ** | 1.154–1.694 | 1.934 ** | 1.197–3.124 |
Hyperlipidemia | 1.433 *** | 1.202–1.708 | 1.488 | 0.911–2.430 |
Diabetes | 0.840 | 0.600–1.175 | 0.446 | 0.139–1.435 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-K.; Hung, K.-C.; Liao, C.-C.; Pan, L.-F.; Hung, C.-L.; Yang, D.-H. The Association between Serum Testosterone and Hyperuricemia in Males. J. Clin. Med. 2022, 11, 2743. https://doi.org/10.3390/jcm11102743
Tsai M-K, Hung K-C, Liao C-C, Pan L-F, Hung C-L, Yang D-H. The Association between Serum Testosterone and Hyperuricemia in Males. Journal of Clinical Medicine. 2022; 11(10):2743. https://doi.org/10.3390/jcm11102743
Chicago/Turabian StyleTsai, Meng-Ko, Kuang-Chen Hung, Chun-Cheng Liao, Lung-Fa Pan, Chia-Lien Hung, and Deng-Ho Yang. 2022. "The Association between Serum Testosterone and Hyperuricemia in Males" Journal of Clinical Medicine 11, no. 10: 2743. https://doi.org/10.3390/jcm11102743
APA StyleTsai, M. -K., Hung, K. -C., Liao, C. -C., Pan, L. -F., Hung, C. -L., & Yang, D. -H. (2022). The Association between Serum Testosterone and Hyperuricemia in Males. Journal of Clinical Medicine, 11(10), 2743. https://doi.org/10.3390/jcm11102743