Bruton’s Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives
Abstract
:1. Introduction
2. The Role of Bruton’s Tyrosine Kinase in the Immune System
3. Characteristics of BTK Inhibitors
3.1. Irreversible BTK Inhibitors
3.1.1. Ibrutinib
3.1.2. Acalabrutinib
3.1.3. Zanubrutinib
3.1.4. Spebrutinib
3.1.5. Evobrutinib
3.1.6. Remibrutinib
3.1.7. Tirabrutinib
3.1.8. Elsubrutinib
3.1.9. Tolebrutinib
3.1.10. Branebrutinib
3.1.11. Orelabrutinib
3.1.12. Poseltinib
3.1.13. SHR1459
3.1.14. TAS5315
3.1.15. AC0058
3.2. Reversible BTK Inhibitors
3.2.1. Fenebrutinib
3.2.2. Nemtabrutinib
3.2.3. Pirtobrutinib
3.2.4. Rilzabrutinib
3.2.5. PRN473
3.2.6. BMS-986142
3.2.7. TAS5315
3.2.8. GDC-0834
3.2.9. CGI-1746
3.2.10. BIIB068
3.2.11. RN-486
4. Autoimmune Hemolytic Anemia
5. Immune Thrombocytopenia
6. Rheumatoid Arthritis
7. Systemic Lupus Erythematosus
8. Sjogren’s Disease
9. Systemic Sclerosis
10. Multiple Sclerosis
11. Pemphigus Vulgaris
12. Allergic Diseases
12.1. Atopic Dermatitis
12.2. Asthma
13. Other Immunological Diseases
13.1. Chronic Spontaneous Urticaria
13.2. IgG4-Related Disease
13.3. Graft Versus Host Disease
14. Safety Profile
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruton, O.C. Agammaglobulinemia. Pediatrics 1952, 9, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Conley, M.E.; Brown, P.; Pickard, A.R.; Buckley, R.H.; Miller, D.S.; Raskind, W.H.; Singer, J.W.; Fialkow, P.J. Expression of the gene defect in X-linked agammaglobulinemia. N. Engl. J. Med. 1986, 315, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Vetrie, D.; Vořechovský, I.; Sideras, P.; Holland, J.; Davies, A.; Flinter, F.; Hammarström, L.; Kinnon, C.; Levinsky, R.; Bobrow, M.; et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993, 361, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Satterthwaite, A.B.; Witte, O.N. The role of Bruton’s Tyrosine Kinase in B-cell development and function: A genetic perspective. Immunol. Rev. 2000, 175, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Brullo, C.; Villa, C.; Tasso, B.; Russo, E.; Spallarossa, A. Btk inhibitors: A medicinal chemistry and drug delivery perspective. Int. J. Mol. Sci. 2021, 22, 7641. [Google Scholar] [CrossRef]
- Robak, T.; Witkowska, M.; Smolewski, P. The role of Bruton’s kinase inhibitors in chronic lymphocytic leukemia: Current status and future directions. Cancers 2022, 14, 771. [Google Scholar] [CrossRef]
- Corneth, O.B.J.; Wolterink, R.G.J.K.; Hendriks, R.W. BTK signaling in B cell differentiation and autoimmunity. B Cell Recept. Signal. 2016, 393, 67–105. [Google Scholar]
- Zarrin, A.A.; Bao, K.; Lupardus, P.; Vucic, D. Kinase inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 2021, 20, 39–63. [Google Scholar] [CrossRef]
- Ringheim, G.E.; Wampole, M.; Oberoi, K. Bruton’s Tyrosine Kinase (BTK) inhibitors and autoimmune diseases: Making sense of BTK inhibitor specificity profiles and recent clinical trial successes and failures. Front. Immunol. 2021, 12, 662223. [Google Scholar] [CrossRef]
- McDonald, C.; Xanthopoulos, C.; Kostareli, E. The role of Bruton’s Tyrosine Kinase in the immune system and disease. Immunology 2021, 164, 722–736. [Google Scholar] [CrossRef]
- Liubchenko, G.; Appleberry, H.C.; Striebich, C.C.; Franklin, K.E.; Derber, L.A.; Holers, V.M.; Lyubchenko, T. Rheumatoid arthritis is associated with signaling alterations in naturally occurring autoreactive B-lymphocytes. J. Autoimmun. 2013, 40, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, S.; Tanaka, Y. B-cell subsets, signaling and their roles in secretion of autoantibodies. Lupus 2016, 25, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Zain, R.; Vihinen, M. Structure-function relationships of covalent and non-covalent BTK inhibitors. Front. Immunol. 2021, 12, 2675. [Google Scholar] [CrossRef] [PubMed]
- Robak, P.; Robak, T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin. Investig. Drugs 2017, 26, 1249–1265. [Google Scholar] [CrossRef] [PubMed]
- Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, M.A.; et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl. Acad. Sci. USA 2010, 107, 13075–13080. [Google Scholar] [CrossRef] [Green Version]
- de Bruin, G.; Demont, D.; de Zwart, E.; Verkaik, S.; Hoogenboom, N.; van de Kar, B.; van Lith, B.; Emmelot-van Hoek, M.; Gulrajani, M.; Demont, D.; et al. Potency and selectivity of BTK inhibitors in clinical development for B-cell malignancies. Blood 2018, 132, 1871. [Google Scholar]
- Wolska-Washer, A.; Robak, T. Acalabrutinib: A Bruton tyrosine kinase inhibitor for the treatment of chronic lymphocytic leukemia. Expert Rev. Hematol. 2022, 15, 183–194. [Google Scholar] [CrossRef]
- Tasso, B.; Spallarossa, A.; Russo, E.; Brullo, C. The development of BTK inhibitors: A five-year update. Molecules 2021, 26, 7411. [Google Scholar] [CrossRef]
- McMullen, J.R.; Boey, E.J.; Ooi, J.Y.; Seymour, J.F.; Keating, M.J.; Tam, C.S. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood 2014, 124, 3829–3830. [Google Scholar] [CrossRef] [Green Version]
- Barf, T.; Covey, T.; Izumi, R.; Van De Kar, B.; Gulrajani, M.; Van Lith, B.; Van Hoek, M.; De Zwart, E.; Mittag, D.; Demont, D.; et al. Acalabrutinib (ACP-196): A covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. J. Pharmacol. Exp. Ther. 2017, 363, 240–252. [Google Scholar] [CrossRef]
- von Hundelshausen, P.; Siess, W. Bleeding by Bruton Tyrosine Kinase-inhibitors: Dependency on drug type and disease. Cancers 2021, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.J.; Kim, E.S.; Eaby, B.; Garey, J.; West, D.P.; Lacouture, M.E. Epidermal growth factor receptor inhibitor-associated cutaneous toxicities: An evolving paradigm in clinical management. Oncologist 2007, 12, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Alsadhan, A.; Cheung, J.; Gulrajani, M.; Gaglione, E.M.; Nierman, P.; Hamdy, A.; Izumi, R.; Bibikova, E.; Patel, P.; Sun, C.; et al. Pharmacodynamic analysis of BTK inhibition in patients with chronic lymphocytic leukemia treated with acalabrutinib. Clin. Cancer Res. 2020, 26, 2800–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: Results of the first randomized phase III trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Hu, N.; Yu, D.; Zhou, C.; Shi, G.; Zhang, B.; Wei, M.; Liu, J.; Luo, L.; et al. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s Tyrosine Kinase. J. Med. Chem. 2019, 62, 7923–7940. [Google Scholar] [CrossRef]
- Hillmen, P.; Eichhorst, B.; Brown, J.R.; Lamanna, N.; O’Brien, S.; Tam, C.S.; Qiu, L.; Kazmierczak, M.; Zhou, K.; Šimkovič, M.; et al. First interim analysis of alpine study: Results of a phase 3 randomized study of zanubrutinibvs ibrutinib in patients with relapsed/refractory chroniclymphocytic leukemia/small lymphocytic lymphoma. In Proceedings of the 2021 European Hematology Association Virtual Congress, Online, 9–17 June 2021. [Google Scholar]
- Evans, E.K.; Tester, R.; Aslanian, S.; Karp, R.; Sheets, M.; Labenski, M.T.; Witowski, S.R.; Lounsbury, H.; Chaturvedi, P.; Mazdiyasni, H.; et al. Inhibition of BTK with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J. Pharmacol. Exp. Ther. 2013, 346, 219–228. [Google Scholar] [CrossRef] [Green Version]
- Schafer, P.H.; Kivitz, A.J.; Ma, J.; Korish, S.; Sutherland, D.; Li, L.; Azaryan, A.; Kosek, J.; Adams, M.; Capone, L.; et al. Spebrutinib (CC-292) affects markers of B cell activation, chemotaxis, and osteoclasts in patients with rheumatoid arthritis: Results from a mechanistic study. Rheumatol. Ther. 2020, 7, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Haselmayer, P.; Camps, M.; Liu-Bujalski, L.; Nguyen, N.; Morandi, F.; Head, J.; O’Mahony, A.; Zimmerli, S.C.; Bruns, L.; Bender, A.T.; et al. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J. Immunol. 2019, 202, 2888–2906. [Google Scholar] [CrossRef] [Green Version]
- Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler. J. 2018, 24, 96–120. [Google Scholar] [CrossRef] [Green Version]
- Angst, D.; Gessier, F.; Janser, P.; Vulpetti, A.; Wälchli, R.; Beerli, C.; Littlewood-Evans, A.; Dawson, J.; Nuesslein-Hildesheim, B.; Wieczorek, G.; et al. Discovery of LOU064 (Remibrutinib), a potent and highly selective covalent inhibitor of Bruton’s Ty-rosine Kinase. J. Med. Chem. 2020, 63, 5102–5118. [Google Scholar] [CrossRef]
- Duan, R.; Goldmann, L.; Brandl, R.; Spannagl, M.; Weber, C.; Siess, W.; von Hundelshausen, P. Effects of the BTK-Inhibitors remibrutinib (LOU064) and rilzabrutinib (PRN1008) with varying BTK selectivity over Tec on platelet aggregation and in vitro bleeding time. Front. Cardiovasc. Med. 2021, 8, 1195. [Google Scholar] [CrossRef] [PubMed]
- Kaul, M.; End, P.; Cabanski, M.; Schuhler, C.; Jakab, A.; Kistowska, M.; Kinhikar, A.; Maiolica, A.; Sinn, A.; Fuhr, R.; et al. Remibrutinib (LOU064): A selective potent oral BTK inhibitor with promising clinical safety and pharmacodynamics in a randomized phase I trial. Clin. Transl. Sci. 2021, 14, 1756–1768. [Google Scholar] [CrossRef] [PubMed]
- Liclican, A.; Serafini, L.; Xing, W.; Czerwieniec, G.; Steiner, B.; Wang, T.; Brendza, K.M.; Lutz, J.D.; Keegan, K.S.; Ray, A.S.; et al. Bio-chemical characterization of tirabrutinib and other irreversible inhibitors of Bruton’s Tyrosine Kinase reveals differences in on- and off-target inhibition. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129531. [Google Scholar] [CrossRef] [PubMed]
- Munakata, W.; Tobinai, K. Tirabrutinib hydrochloride for B-cell lymphomas. Drugs Today 2021, 57, 277–289. [Google Scholar] [CrossRef]
- Ariza, Y.; Murata, M.; Ueda, Y.; Yoshizawa, T. Bruton’s Tyrosine Kinase (BTK) inhibitor tirabrutinib suppresses osteoclastic bone resorption. Bone Rep. 2019, 10, 100201. [Google Scholar] [CrossRef]
- Dhillon, S. Tirabrutinib: First approval. Drugs 2020, 80, 835–840. [Google Scholar] [CrossRef]
- Goess, C.; Harris, C.M.; Murdock, S.; McCarthy, R.W.; Sampson, E.; Twomey, R.; Mathieu, S.; Mario, R.; Perham, M.; Goedken, E.R.; et al. ABBV-105, a selective and irreversible inhibitor of Bruton’s Tyrosine Kinase, is efficacious in multiple preclinical models of inflammation. Mod. Rheumatol. 2019, 29, 510–522. [Google Scholar] [CrossRef]
- Leproult, E.; Barluenga, S.; Moras, D.; Wurtz, J.-M.; Winssinger, N. Cysteine mapping in conformationally distinct kinase nu-cleotide binding sites: Application to the design of selective covalent inhibitors. J. Med. Chem. 2011, 54, 1347–1355. [Google Scholar] [CrossRef]
- Owens, T.D.; Smith, P.F.; Redfern, A.; Xing, Y.; Shu, J.; Karr, D.E.; Hartmann, S.; Francesco, M.R.; Langrish, C.L.; Nunn, P.A.; et al. Phase 1 clinical trial evaluating safety, exposure and pharmacodynamics of BTK inhibitor tolebrutinib (PRN2246, SAR442168). Clin. Transl. Sci. 2022, 15, 442–450. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, R.; Liang, R.; Gao, Y.; Liu, R.; Chen, X.; Wang, Z.; Yu, L.; Shakib, Z.; Cui, J. Orelabrutinib, a potent and selective Bruton’s Tyrosine Kinase inhibitor with superior safety profile and excellent PK/PD properties. Cancer Res. 2020, 80, CT132. [Google Scholar]
- Watterson, S.H.; Liu, Q.; Beaudoin Bertrand, M.; Batt, D.G.; Li, L.; Pattoli, M.A.; Skala, S.; Cheng, L.; Obermeier, M.T.; Moore, R.; et al. Discovery of branebrutinib (BMS-986195): A strategy for identifying a highly potent and selective covalent inhibitor providing rapid in vivo inactivation of Bruton’s Tyrosine Kinase (BTK). J. Med. Chem. 2019, 62, 3228–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catlett, I.M.; Nowak, M.; Kundu, S.; Zheng, N.; Liu, A.; He, B.; Girgis, I.G.; Grasela, D.M. Safety, pharmacokinetics and pharma-codynamics of branebrutinib (BMS-986195), a covalent, irreversible inhibitor of Bruton’s tyrosine kinase: Randomised phase I, placebo-controlled trial in healthy participants. Br. J. Clin. Pharmacol. 2020, 86, 1849–1859. [Google Scholar] [CrossRef]
- Park, J.K.; Byun, J.Y.; Park, J.A.; Kim, Y.Y.; Lee, Y.J.; Oh, J.I.; Jang, S.Y.; Kim, Y.H.; Song, Y.W.; Son, J.; et al. HM71224, a novel Bruton’s Tyrosine Kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: A potential drug for rheumatoid arthritis. Arthritis Res. Ther. 2016, 18, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.Y.; Park, K.T.; Jang, S.Y.; Lee, K.H.; Byun, J.Y.; Suh, K.H.; Lee, Y.M.; Kim, Y.H.; Hwang, K.W. HM71224, a selective Bruton’s Tyrosine Kinase inhibitor, attenuates the development of murine lupus. Arthritis Res. Ther. 2017, 19, 211. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.Y.; Koh, Y.T.; Jang, S.Y.; Witcher, J.W.; Chan, J.R.; Pustilnik, A.; Daniels, M.J.; Kim, Y.H.; Suh, K.H.; Linnik, M.D.; et al. Target modulation and pharmacokinetics/pharmacodynamics translation of the BTK inhibitor poseltinib for model-informed phase II dose selection. Sci. Rep. 2021, 11, 18671. [Google Scholar] [CrossRef]
- Normant, E.; Gorelik, L.; Shmeis, R.; Le, H.; Nisch, R.; Miskin, H.P.; Sportelli, P.; Weiss, M.S. TG-1701 a novel, orally available, and covalently-bound BTK inhibitor. HemaSphere 2018, 2, 215080. [Google Scholar]
- Ribeiro, M.L.; Reyes-Garau, D.; Vinyoles, M.; Pelejà, N.P.; Santos, J.C.; Armengol, M.; Fernández-Serrano, M.; Mor, A.S.; Bech-Serra, J.J.; Blecua, P.; et al. Antitumor activity of the novel BTK inhibitor TG-1701 is associated with disruption of Ikaros signaling in patients with B-cell non–Hodgkin lymphoma. Clin. Cancer Res. 2021, 27, 6591–6601. [Google Scholar] [CrossRef]
- Hosoi, F.; Iguchi, S.; Yoshiga, Y.; Kaneko, R.; Nakachi, Y.; Akasaka, D.; Yonekura, K.; Iwasawa, Y.; Sasaki, E.; Utsugi, T. TAS5315, a novel Bruton’s Tyrosine Kinase (BTK) inhibitor, demonstrates potent efficacy in mouse collagen-induced arthritis model. Ann. Rheumatol. Dis. 2015, 74, OP0075. [Google Scholar] [CrossRef]
- Noma, N.; Hosoi, F.; Iguchi, S.; Kaneko, R.; Yoshiga, Y.; Arima, Y.; Tanaka, K.; Saito, A.; Utsugi, T.; Ikizawa, K. SAT0056 TAS5315, a novel Bruton’s Tyrosine Kinase inhibitor, demonstrates potent efficacy against bone destruction in an animal model for rheumatoid arthritis. Ann. Rheumatol. Dis. 2019, 78, 1092. [Google Scholar]
- Pan, Z.; Scheerens, H.; Li, S.-J.; Schultz, B.E.; Sprengeler, P.A.; Burrill, L.C.; Mendonca, R.V.; Sweeney, M.D.; Scott, K.C.K.; Grothaus, P.G.; et al. Discovery of selective irreversible inhibitors for Bruton’s Tyrosine Kinase. ChemMedChem 2007, 2, 58–61. [Google Scholar] [CrossRef]
- Aguilar, C. Ibrutinib-related bleeding: Pathogenesis, clinical implications and management. Blood Coagul. Fibrinolysis 2018, 29, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Scheible, H.; Dyroff, M.; Seithel-Keuth, A.; Harrison-Moench, E.; Mammasse, N.; Port, A.; Bachmann, A.; Dong, J.; van Lier, J.J.; Tracewell, W.; et al. Evobrutinib, a covalent Bruton’s Tyrosine Kinase inhibitor: Mass balance, elimination route, and metabolism in healthy participants. Clin. Transl. Sci. 2021, 14, 2420–2430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gong, H.; Meng, F. Recent advances in BTK inhibitors for the treatment of inflammatory and autoimmune diseases. Molecules 2021, 26, 4907. [Google Scholar] [CrossRef]
- Becker, A.; Martin, E.C.; Mitchell, D.Y.; Grenningloh, R.; Bender, A.T.; Laurent, J.; Mackenzie, H.; Johne, A. Safety, tolerability, pharmacokinetics, target occupancy, and concentration—QT analysis of the novel BTK inhibitor evobrutinib in healthy volunteers. Clin. Transl. Sci. 2020, 13, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Orelabrutinib: First approval. Drugs 2021, 81, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Lewis, K.L.; Cheah, C.Y. Non-covalent BTK inhibitors-the new BTKids on the block for B-bell malignancies. J. Pers. Med. 2021, 11, 764. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.; Liu, Y.; Wang, C.; Xu, Z.; Zhang, Y.; Liu, Y.; Zhao, G.; Ling, Y. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur. J. Med. Chem. 2022, 229, 114009. [Google Scholar] [CrossRef]
- Crawford, J.J.; Johnson, A.R.; Misner, D.L.; Belmont, L.D.; Castanedo, G.; Choy, R.; Coraggio, M.; Dong, L.; Eigenbrot, C.; Erickson, R.; et al. Discovery of GDC-0853: A potent, selective, and noncovalent Bruton’s Tyrosine Kinase inhibitor in early clinical development. J. Med. Chem. 2018, 61, 2227–2245. [Google Scholar] [CrossRef] [Green Version]
- Herman, A.E.; Chinn, L.W.; Kotwal, S.G.; Murray, E.R.; Zhao, R.; Florero, M.; Lin, A.; Moein, A.; Wang, R.; Bremer, M.; et al. Safety, pharmacokinetics, and pharmacodynamics in healthy volunteers treated with GDC-0853, a selective reversible Bruton’s Tyrosine Kinase inhibitor. Clin. Pharmacol. Ther. 2018, 103, 1020–1028. [Google Scholar] [CrossRef]
- Cohen, S.; Tuckwell, K.; Katsumoto, T.R.; Zhao, R.; Galanter, J.; Lee, C.K.; Rae, J.; Toth, B.; Ramamoorthi, N.; Hackney, J.A.; et al. Fenebrutinib versus placebo or adalimumab in rheumatoid arthritis: A randomized, double-blind, phase II trial (ANDES study). Arthritis Rheumatol. 2020, 72, 1435–1446. [Google Scholar] [CrossRef]
- Isenberg, D.; Furie, R.; Jones, N.S.; Guibord, P.; Galanter, J.; Lee, C.; McGregor, A.; Toth, B.; Rae, J.; Hwang, O.; et al. Efficacy, safety, and pharmacodynamic effects of the Bruton’s Tyrosine Kinase inhibitor fenebrutinib (GDC-0853) in systemic lupus erythematosus: Results of a phase II, randomized, double-blind, placebo-controlled trial. Arthritis Rheumatol. 2021, 73, 1835–1846. [Google Scholar] [CrossRef] [PubMed]
- Neys, S.F.H.; Rip, J.; Hendriks, R.W.; Corneth, O.B.J. Bruton’s Tyrosine Kinase inhibition as an emerging therapy in systemic autoimmune disease. Drugs 2021, 81, 1605–1626. [Google Scholar] [CrossRef] [PubMed]
- Metz, M.; Sussman, G.; Gagnon, R.; Staubach, P.; Tanus, T.; Yang, W.H.; Lim, J.J.; Clarke, H.J.; Galanter, J.; Chinn, L.W.; et al. Fenebrutinib in H1 antihistamine-refractory chronic spontaneous urticaria: A randomized phase 2 trial. Nat. Med. 2021, 27, 1961–1969. [Google Scholar] [CrossRef] [PubMed]
- Langrish, C.L.; Bradshaw, J.M.; Francesco, M.R.; Owens, T.D.; Xing, Y.; Shu, J.; LaStant, J.; Bisconte, A.; Outerbridge, C.; White, S.D.; et al. Preclinical efficacy and anti-inflammatory mechanisms of action of the Bruton Tyrosine Kinase inhibitor Rilzabrutinib for immune-mediated disease. J. Immunol. 2021, 206, 1454–1468. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.F.; Krishnarajah, J.; Nunn, P.A.; Hill, R.J.; Karr, D.; Tam, D.; Masjedizadeh, M.; Funk, J.O.; Gourlay, S.G. A phase I trial of PRN1008, a novel reversible covalent inhibitor of Bruton’s Tyrosine Kinase, in healthy volunteers. Br. J. Clin. Pharmacol. 2017, 83, 2367–2376. [Google Scholar] [CrossRef]
- Murrell, D.; Patsatsi, A.; Stavropoulos, P.; Baum, S.; Zeeli, T.; Kern, J.; Roussaki-Schulze, A.; Sinclair, R.; Bassukas, I.; Thomas, D.; et al. Proof of concept for the clinical effects of oral rilzabrutinib, the first Bruton tyrosine kinase inhibitor for pemphigus vulgaris: The phase II BELIEVE study. Br. J. Dermatol. 2021, 185, 745–755. [Google Scholar] [CrossRef]
- Kuter, D.J.; Boccia, R.V.; Lee, E.-J.; Efraim, M.; Tzvetkov, N.; Mayer, J.; Trněný, M.; Kostal, M.; Hajek, R.; McDonald, V.; et al. Phase I/II, open-label, adaptive study of oral Bruton Tyrosine Kinase inhibitor PRN1008 in patients with relapsed/refractory primary or secondary immune thrombocytopenia. Blood 2019, 134, 87. [Google Scholar] [CrossRef]
- Shirley, M. Bruton tyrosine kinase inhibitors in B-cell malignancies: Their use and differential features. Target Oncol. 2022, 17, 69–84. [Google Scholar] [CrossRef]
- Reiff, S.D.; Mantel, R.; Smith, L.L.; Greene, J.; Muhowski, E.M.; Fabian, C.A.; Goettl, V.M.; Tran, M.; Harrington, B.K.; Rogers, K.A.; et al. The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and Richter transformation. Cancer Discov. 2018, 8, 1300–1315. [Google Scholar] [CrossRef]
- Xing, Y.; Chu, K.A.; Wadhwa, J.; Chen, W.; Zhu, J.; Bradshaw, J.M.; Shu, J.; Foulke, M.C.; Loewenstein, N.; Nunn, P.; et al. Preclinical mechanisms of topical PRN473, a Bruton Tyrosine Kinase inhibitor, in immune-mediated skin disease models. ImmunoHorizons 2021, 5, 581–589. [Google Scholar] [CrossRef]
- Goodale, E.C.; Varjonen, K.E.; Outerbridge, C.A.; Bizikova, P.; Borjesson, D.; Murrell, D.F.; Bisconte, A.; Francesco, M.; Hill, R.J.; Masjedizadeh, M.; et al. Efficacy of a Bruton’s Tyrosine Kinase inhibitor (PRN-473) in the treatment of canine pemphigus foliaceus. Vet. Dermatol. 2020, 31, 291. [Google Scholar] [CrossRef] [PubMed]
- Gillooly, K.M.; Pulicicchio, C.; Pattoli, M.A.; Cheng, L.; Skala, S.; Heimrich, E.M.; McIntyre, K.W.; Taylor, T.L.; Kukral, D.W.; Dudhgaonkar, S.; et al. Bruton’s Tyrosine Kinase inhibitor BMS986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. PLoS ONE 2017, 12, e0181782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michot, J.-M.; Ribrag, V. Pirtobrutinib shows evidence to inaugurate a third generation of BTK inhibitors. Lancet 2021, 397, 855–857. [Google Scholar] [CrossRef]
- Kumagai, Y.; Tanaka, Y.; Murata, M.; Takeuchi, T. A phase 1, single and multiple ascending dose study of TAS5315—A novel highly selective inhibitor of Bruton’s Tyrosine Kinase in healthy male volunteers. Ann. Rheumatol. Dis. 2019, 78, 750. [Google Scholar]
- Yoshiga, Y.; Hosoi, F.; Iguchi, S.; Kaneko, R.; Nakachi, Y.; Akasaka, D.; Tanaka, K.; Yonekura, K.; Utsugi, T.; Sasaki, E.; et al. TAS5315, a novel Bruton’s Tyrosine Kinase inhibitor, ameliorates inflammation and bone erosion in murine model for rheumatoid arthritis. Arthritis Rheumatol. 2017, 69, 1320. [Google Scholar]
- Young, W.B.; Barbosa, J.; Blomgren, P.; Bremer, M.C.; Crawford, J.J.; Dambach, D.; Gallion, S.; Hymowitz, S.G.; Kropf, J.E.; Lee, S.H.; et al. Potent and selective Bruton’s Tyrosine Kinase inhibitors: Discovery of GDC-0834. Bioorg. Med. Chem. Lett. 2015, 25, 1333–1337. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Di Paolo, J.; Barbosa, J.; Rong, H.; Reif, K.; Wong, H. Antiarthritis effect of a novel Bruton’s Tyrosine Kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: Relationships between inhibition of BTK phosphorylation and efficacy. J. Pharmacol. Exp. Ther. 2011, 338, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Di Paolo, J.A.; Huang, T.; Balazs, M.; Barbosa, J.; Barck, K.H.; Bravo, B.J.; Carano, R.A.; Darrow, J.; Davies, D.R.; DeForge, L.E.; et al. Specific BTK inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat. Chem. Biol. 2011, 7, 41–50. [Google Scholar] [CrossRef]
- Akinleye, A.; Chen, Y.; Mukhi, N.; Song, Y.; Liu, D. Ibrutinib and novel BTK inhibitors in clinical development. J. Hematol. Oncol. 2013, 6, 59. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Bohnert, T.; Otipoby, K.L.; Tien, E.; Arefayene, M.; Bai, J.; Bajrami, B.; Bame, E.; Chan, T.R.; Humora, M.; et al. Discovery of BIIB068: A selective, potent, reversible Bruton’s Tyrosine Kinase inhibitor as an orally efficacious agent for autoimmune diseases. J. Med. Chem. 2020, 63, 12526–12541. [Google Scholar] [CrossRef]
- Xu, D.; Kim, Y.; Postelnek, J.; Vu, M.D.; Hu, D.-Q.; Liao, C.; Bradshaw, M.; Hsu, J.; Zhang, J.; Pashine, A.; et al. RN486, a selective Bruton’s Tyrosine Kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J. Pharmacol. Exp. Ther. 2012, 341, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartkamp, L.M.; Fine, J.S.; van Es, I.E.; Tang, M.W.; Smith, M.; Woods, J.; Narula, S.; DeMartino, J.; Tak, P.P.; Reedquist, K.A. BTK inhibition suppresses agonist-induced human macrophage activation and inflammatory gene expression in RA synovial tissue explants. Ann. Rheumatol. Dis. 2015, 74, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Mina-Osorio, P.; LaStant, J.; Keirstead, N.; Whittard, T.; Ayala, J.; Stefanova, S.; Garrido, R.; Dimaano, N.; Hilton, H.; Giron, M.; et al. Suppression of glomerulonephritis in lupus-prone NZB × NZW mice by RN486, a selective inhibitor of Bruton’s Tyrosine Kinase. Arthritis Rheumatol. 2013, 65, 2380–2391. [Google Scholar] [CrossRef] [PubMed]
- Autore, F.; Pasquale, R.; Innocenti, I.; Fresa, A.; Sora, F.; Laurenti, L. Autoimmune hemolytic anemia in chronic lymphocytic leukemia: A comprehensive review. Cancers 2021, 13, 5804. [Google Scholar] [CrossRef] [PubMed]
- Hill, Q.A.; Stamps, R.; Massey, E.; Grainger, J.; Provan, D.; Hill, A.; Haematology, T.B.S.F. The diagnosis and management of primary autoimmune haemolytic anaemia. Br. J. Haematol. 2017, 176, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Noto, A.; Cassin, R.; Mattiello, V.; Reda, G. The role of novel agents in treating CLL-associated autoimmune hemolytic anemia. J. Clin. Med. 2021, 10, 2064. [Google Scholar] [CrossRef] [PubMed]
- Montillo, M.; O’Brien, S.; Tedeschi, A.; Byrd, J.C.; Dearden, C.; Gill, D.; Brown, J.R.; Barrientos, J.C.; Mulligan, S.P.; Furman, R.R.; et al. Ibrutinib in previously treated chronic lymphocytic leukemia patients with autoimmune cytopenias in the RESONATE study. Blood Cancer J. 2017, 7, e524. [Google Scholar] [CrossRef]
- Rogers, K.A.; Ruppert, A.S.; Bingman, A.; Andritsos, L.A.; Awan, F.T.; Blum, K.A.; Flynn, J.M.; Jaglowski, S.M.; Lozanski, G.; Maddocks, K.J.; et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia 2016, 30, 346–350. [Google Scholar] [CrossRef]
- Manda, S.; Dunbar, N.; Marx-Wood, C.R.; Danilov, A.V. Ibrutinib is an effective treatment of autoimmune haemolytic anaemia in chronic lymphocytic leukaemia. Br. J. Haematol. 2015, 170, 734–736. [Google Scholar] [CrossRef] [Green Version]
- Galinier, A.; Delwail, V.; Puyade, M. Ibrutinib is effective in the treatment of autoimmune haemolytic anaemia in mantle cell lymphoma. Case Rep. Oncol. 2017, 10, 127–129. [Google Scholar] [CrossRef]
- Molica, S.; Polliack, A. Autoimmune Hemolytic Anemia (AIHA) associated with chronic lymphocytic leukemia in the current era of targeted therapy. Leuk. Res. 2016, 50, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Rider, T.G.; Grace, R.J.; Newman, J.A. Autoimmune haemolytic anaemia occurring during ibrutinib therapy for chronic lympho-cytic leukaemia. Br. J. Haematol. 2016, 173, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Miyakoshi, S.; Nanba, A.; Uchiyama, T.; Kawamoto, K.; Aoki, S. A case of chronic lymphocytic leukemia complicated by autoimmune hemolytic anemia due to ibrutinib treatment. J. Clin. Exp. Hematop. 2018, 58, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hampel, P.J.; Larson, M.C.; Kabat, B.; Call, T.G.; Ding, W.; Kenderian, S.S.; Bowen, D.; Boysen, J.; Schwager, S.M.; Leis, J.F.; et al. Autoimmune cytopenias in patients with chronic lymphocytic leukaemia treated with ibrutinib in routine clinical practice at an academic medical centre. Br. J. Haematol. 2018, 183, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalink, M.; Berentsen, S.; Castillo, J.J.; Treon, S.P.; Cruijsen, M.; Fattizzo, B.; Cassin, R.; Fotiou, D.; Kastritis, E.; De Haas, M.; et al. Effect of ibrutinib treatment on hemolytic anemia and acrocyanosis in cold agglutinin disease/cold agglutinin syndrome. Blood 2021, 138, 2002–2005. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Wierda, W.G.; Schuh, A.; Devereux, S.; Chaves, J.M.; Brown, J.R.; Hillmen, P.; Martin, P.; Awan, F.T.; Stephens, D.M.; et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: Updated phase 2 results. Blood 2020, 135, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Witkowska, M.; Robak, T. Autoimmune thrombocytopenia: Current treatment options in adults with a focus on novel drugs. Eur. J. Haematol. 2019, 103, 531–541. [Google Scholar] [CrossRef]
- Dobie, G.; Kuriri, F.A.; Omar, M.M.A.; Alanazi, F.; Gazwani, A.M.; Tang, C.P.S.; Sze, D.M.; Handunnetti, S.M.; Tam, C.; Jackson, D.E. Ibrutinib, but not zanubrutinib, induces platelet receptor shedding of GPIb-IX-V complex and integrin αIIbβ3 in mice and humans. Blood Adv. 2019, 3, 4298–4311. [Google Scholar] [CrossRef] [Green Version]
- Langrish, C.L.; Bradshaw, J.M.; Owens, T.D.; Campbell, R.L.; Francesco, M.R.; Karr, D.E.; Murray, S.; Quesenberry, R.; Smith, P.; Taylor, M.; et al. PRN1008, a reversible covalent BTK inhibitor in clinical development for immune thrombocytopenic purpura. Blood 2017, 130, 1052. [Google Scholar]
- Kuter, J.; Efraim, M.; Mayer, J.; McDonald, V.; Bird, R.; Regenbogen, T.; Garg, M.; Kaplan, Z.; Bandman, O.; Burns, R.; et al. Oral rilzabrutinib, a Bruton tyrosine kinase inhibitor, showed clinically active and durable platelet responses and was well-tolerated in patients with heavily pretreated immune thrombocytopenia. Blood 2020, 136, 13–14. [Google Scholar] [CrossRef]
- Kuter, D.J.; Bussel, J.B.; Cooper, N.; Gernsheimer, T.; Lambert, M.P.; Liebman, H.; Tarantino, M.D.; Bandman, O.; Arora, P.; Neale, A.; et al. LUNA3 phase III multicenter, double-blind, randomized, placebo-controlled trial of the oral BTK inhibitor rilzabrutinib in adults and adolescents with persistent or chronic immune thrombocytopenia. Blood 2021, 138, 1010. [Google Scholar] [CrossRef]
- You, T.; Wang, L.; Ni, X.; Hou, Y.; Liu, X.; Hou, M. Orelabrutinib, a selective Bruton’s Tyrosine Kinase (BTK) inhibitor in the treatment of primary immune thrombocytopenia (ITP). Blood 2021, 138, 3172. [Google Scholar] [CrossRef]
- Arneson, L.C.; Carroll, K.J.; Ruderman, E.M. Bruton’s Tyrosine Kinase inhibition for the treatment of rheumatoid arthritis. ImmunoTargets Ther. 2021, 10, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-T.; Ding, H.-H.; Lin, Z.-M.; Wang, Q.; Chen, L.; Liu, S.-S.; Yang, X.-Q.; Zhu, F.-H.; Huang, Y.-T.; Cao, S.-Q.; et al. A novel tricyclic BTK inhibitor suppresses B cell responses and osteoclastic bone erosion in rheumatoid arthritis. Acta Pharmacol. Sin. 2021, 42, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.J.; Smith, P.; Krishnarajah, J.; Bradshaw, J.M.; Masjedizadeh, M.; Bisconte, A.; Karr, D.; Owens, T.D.; Brameld, K.; Funk, J.; et al. Discovery of PRN1008, a novel, reversible covalent BTK Inhibitor in clinical development for rheumatoid arthritis. Arthritis Rheumatol. 2015, 67, 11. [Google Scholar]
- Blaess, J.; Walther, J.; Petitdemange, A.; Gottenberg, J.-E.; Sibilia, J.; Arnaud, L.; Felten, R. Immunosuppressive agents for rheumatoid arthritis: A systematic review of clinical trials and their current development stage. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20959971. [Google Scholar] [CrossRef]
- Abdelhameed, A.S.; Attwa, M.W.; Al-Shaklia, N.S.; Kadi, A. A highly sensitive LC-MS/MS method to determine novel Bruton’s Tyrosine Kinase inhibitor spebrutinib: Application to metabolic stability evaluation. R. Soc. Open Sci. 2019, 6, 190434. [Google Scholar] [CrossRef] [Green Version]
- Genovese, M.C.; Spindler, A.; Sagawa, A.; Park, W.; Dudek, A.; Kivitz, A.; Chao, J.; Chan, L.S.M.; Witcher, J.; Barchuk, W.; et al. Safety and efficacy of poseltinib, Bruton’s Tyrosine Kinase inhibitor, in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled, 2-part phase II study. J. Rheumatol. 2021, 48, 969–976. [Google Scholar] [CrossRef]
- Ali, M.; Firoz, C.K.; Jabir, N.R.; Rehan, M.; Khan, M.S.; Tabrez, S. An insight on the pathogenesis and treatment of systemic lupus erythematosus. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 110–123. [Google Scholar] [CrossRef]
- Chalmers, S.A.; Glynn, E.; Garcia, S.J.; Panzenbeck, M.; Pelletier, J.; Dimock, J.; Seccareccia, E.; Bosanac, T.; Khalil, S.; Harcken, C.; et al. BTK inhibition ameliorates kidney disease in spontaneous lupus nephritis. Clin. Immunol. 2018, 197, 205–218. [Google Scholar] [CrossRef]
- Katewa, A.; Wang, Y.; Hackney, J.A.; Huang, T.; Suto, E.; Ramamoorthi, N.; Austin, C.D.; Bremer, M.; Chen, J.Z.; Crawford, J.J.; et al. BTK-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell–associated damage in IFNα-driven lupus nephritis. JCI Insight 2017, 2, e90111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, S.A.; Wen, J.; Doerner, J.; Stock, A.; Cuda, C.M.; Makinde, H.M.; Perlman, H.; Bosanac, T.; Webb, D.; Nabozny, G.; et al. Highly selective inhibition of Bruton’s Tyrosine Kinase attenuates skin and brain disease in murine lupus. Arthritis Res. Ther. 2018, 20, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, A.T.; Pereira, A.; Fu, K.; Samy, E.; Wu, Y.; Liu-Bujalski, L.; Caldwell, R.; Chen, Y.-Y.; Tian, H.; Morandi, F.; et al. BTK inhibition treats TLR7/IFN driven murine lupus. Clin. Immunol. 2016, 164, 65–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kil, L.P.; de Bruijn, M.J.W.; van Nimwegen, M.; Corneth, O.B.J.; van Hamburg, J.P.; Dingjan, G.M.; Thaiss, F.; Rimmelzwaan, G.F.; Elewaut, D.; Delsing, D.; et al. BTK levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 2012, 119, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Corneth, O.B.J.; Verstappen, G.M.P.; Paulissen, S.M.J.; de Bruijn, M.J.W.; Rip, J.; Lukkes, M.; van Hamburg, J.P.; Lubberts, E.; Bootsma, H.; Kroese, F.G.M.; et al. Enhanced Bruton’s Tyrosine Kinase activity in peripheral blood B lymphocytes from patients with autoimmune disease. Arthritis Rheumatol. 2017, 69, 1313–1324. [Google Scholar] [CrossRef]
- Einhaus, J.; Pecher, A.C.; Asteriti, E.; Schmid, H.; Secker, K.A.; Duerr-Stoerzer, S.; Keppeler, H.; Klein, R.; Schneidawind, C.; Henes, J.; et al. Inhibition of effector B cells by ibrutinib in systemic sclerosis. Arthritis Res. Ther. 2020, 22, 66. [Google Scholar] [CrossRef] [Green Version]
- García-Merino, A. Bruton’s Tyrosine Kinase inhibitors: A new generation of promising agents for multiple sclerosis therapy. Cells 2021, 10, 2560. [Google Scholar] [CrossRef]
- Li, R.; Tang, H.; Burns, J.C.; Hopkins, B.T.; Le Coz, C.; Zhang, B.; de Barcelos, I.P.; Romberg, N.; Goldstein, A.C.; Banwell, B.L.; et al. BTK inhibition limits B-cell–T-cell interaction through modulation of B-cell metabolism: Implications for multiple sclerosis therapy. Acta Neuropathol. 2022, 143, 505–521. [Google Scholar] [CrossRef]
- Steinmaurer, A.; Wimmer, I.; Berger, T.; Rommer, P.S.; Sellner, J. Bruton’s Tyrosine Kinase inhibition in the treatment of preclinical models and multiple sclerosis. Curr. Pharm. Des. 2022, 28, 437–444. [Google Scholar] [CrossRef]
- Correale, J. BTK inhibitors as potential therapies for multiple sclerosis. Lancet Neurol. 2021, 20, 689–691. [Google Scholar] [CrossRef]
- Dolgin, E. BTK blockers make headway in multiple sclerosis. Nat. Biotechnol. 2021, 39, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Torke, S.; Pretzsch, R.; Häusler, D.; Haselmayer, P.; Grenningloh, R.; Boschert, U.; Brück, W.; Weber, M.S. Inhibition of Bruton’s Tyrosine Kinase interferes with pathogenic B-cell development in inflammatory CNS demyelinating disease. Acta Neuropathol. 2020, 140, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Arnold, D.L.; Weber, M.S.; Staikov, I.; Piasecka-Stryczynska, K.; Willmer, J.; Martin, E.C.; Dangond, F.; Syed, S.; Wolinsky, J.S.; et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N. Engl. J. Med. 2019, 380, 2406–2417. [Google Scholar] [CrossRef] [PubMed]
- Reich, D.S.; Arnold, D.L.; Vermersch, P.; Bar-Or, A.; Fox, R.J.; Matta, A.; Turner, T.; Wallström, E.; Zhang, X.; Mareš, M.; et al. Safety and efficacy of tolebrutinib, an oral brain-penetrant BTK inhibitor, in relapsing multiple sclerosis: A phase 2b, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2021, 20, 729–738. [Google Scholar] [CrossRef]
- Arnold, D.; Elliott, C.; Montalban, X.; Martin, E.; Hyvert, Y.; Tomic, D. Effects of evobrutinib, a Bruton’s Tyrosine Kinase inhibitor, on slowly expanding lesions: An emerging imaging marker of chronic tissue loss in multiple sclerosis. Multipl. Scler. J. 2021, 27, 69. [Google Scholar]
- Patsatsi, A.; Murrell, D.F. Bruton Tyrosine Kinase inhibition and its role as an emerging treatment in Pemphigus. Front. Med. 2021, 8, 1314. [Google Scholar] [CrossRef]
- Goodale, E.C.; White, S.D.; Bizikova, P.; Borjesson, D.; Murrell, D.F.; Bisconte, A.; Francesco, M.; Hill, R.J.; Masjedizadeh, M.; Nunn, P.; et al. Open trial of Bruton’s Tyrosine Kinase inhibitor (PRN1008) in the treatment of canine pemphigus foliaceus. Vet. Dermatol. 2020, 31, 410-e110. [Google Scholar] [CrossRef]
- Dispenza, M.C.; Pongracic, J.A.; Singh, A.M.; Bochner, B.S. Short-term ibrutinib therapy suppresses skin test responses and eliminates IgE-mediated basophil activation in adults with peanut or tree nut allergy. J. Allergy Clin. Immunol. 2018, 141, 1914–1916.e7. [Google Scholar] [CrossRef] [Green Version]
- Dispenza, M.C. The use of Bruton’s Tyrosine Kinase inhibitors to Treat allergic disorders. Curr. Treat. Options Allergy 2021, 8, 261–273. [Google Scholar] [CrossRef]
- Chovatiya, R.; Silverberg, J. The heterogeneity of atopic dermatitis. J. Drugs Dermatol. 2022, 21, 172–176. [Google Scholar] [CrossRef]
- Nadeem, A.; Ahmad, S.F.; Al-Harbi, N.O.; Ibrahim, K.E.; Siddiqui, N.; Al-Harbi, M.M.; Attia, S.M.; Bakheet, S.A. Inhibition of Bruton’s Tyrosine Kinase and IL-2 inducible T-cell kinase suppresses both neutrophilic and eosinophilic airway inflammation in a cockroach allergen extract-induced mixed granulocytic mouse model of asthma using preventative and therapeutic strategy. Pharmacol. Res. 2019, 148, 104441. [Google Scholar] [CrossRef]
- Regan, J.A.; Cao, Y.; Dispenza, M.C.; Ma, S.; Gordon, L.I.; Petrich, A.M.; Bochner, B.S. Ibrutinib, a Bruton’s Tyrosine Kinase inhibitor used for treatment of lymphoproliferative disorders, eliminates both aeroallergen skin test and basophil activation test reactivity. J. Allergy Clin. Immunol. 2017, 140, 875–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestergaard, C.; Deleuran, M. Chronic spontaneous urticaria: Latest developments in aetiology, diagnosis and therapy. Ther. Adv. Chronic Dis. 2015, 6, 304–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, M. The Bruton’s Tyrosine Kinase inhibitor remibrutinib (LOU064) in chronic spontaneous urticaria: Top-line results of a phase 2b dose-finding study. In Proceedings of the 30th EADV’s Anniversary Congress, Online, 29 September–2 October 2021. [Google Scholar]
- Stone, J.H.; Zen, Y.; Deshpande, V. IgG4-related disease. N. Engl. J. Med. 2012, 366, 539–551. [Google Scholar] [CrossRef] [PubMed]
- Omar, D.; Chen, Y.; Cong, Y.; Dong, L. Glucocorticoids and steroid sparing medications monotherapies or in combination for IgG4-RD: A systematic review and network meta-analysis. Rheumatology 2020, 59, 718–726. [Google Scholar] [CrossRef]
- Yamamoto, M. B cell targeted therapy for immunoglobulin G4-related disease. Immunol. Med. 2021, 44, 216–222. [Google Scholar] [CrossRef]
- Braun, L.M.; Zeiser, R. Kinase inhibition as treatment for acute and chronic graft-versus-host disease. Front. Immunol. 2021, 12, 760199. [Google Scholar] [CrossRef]
- Schutt, S.D.; Fu, J.; Nguyen, H.; Bastian, D.; Heinrichs, J.; Wu, Y.; Liu, C.; McDonald, D.G.; Pidala, J.; Yu, X.-Z. Inhibition of BTK and ITK with ibrutinib is effective in the prevention of chronic graft-versus-host disease in mice. PLoS ONE 2015, 10, e0137641. [Google Scholar] [CrossRef] [Green Version]
- Miklos, D.; Cutler, C.S.; Arora, M.; Waller, E.K.; Jagasia, M.; Pusic, I.; Flowers, M.E.; Logan, A.C.; Nakamura, R.; Blazar, B.R.; et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood 2017, 130, 2243–2250. [Google Scholar] [CrossRef] [Green Version]
- Jaglowski, S.M.; Blazar, B.R. How ibrutinib, a B-cell malignancy drug, became an FDA-approved second-line therapy for steroid-resistant chronic GVHD. Blood Adv. 2018, 2, 2012–2019. [Google Scholar] [CrossRef]
- Lipsky, A.; Lamanna, N. Managing toxicities of Bruton tyrosine kinase inhibitors. Hematology 2020, 2020, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Pleyer, C.; Sun, C.; Desai, S.; Ahn, I.E.; Tian, X.; Nierman, P.; Soto, S.; Superata, J.; Valdez, J.; Lotter, J.; et al. Reconstitution of humoral immunity and decreased risk of infections in patients with chronic lymphocytic leukemia treated with Bruton Tyrosine Kinase inhibitors. Leuk. Lymphoma 2020, 61, 2375–2382. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Kuranda, K.; Quinn, W.; Chekaoui, A.; Ambrose, R.; Hasanpourghadi, M.; Novikov, M.; Newman, M.D.; Cole, M.C.; Zhou, X.; et al. The effect of rapamycin and ibrutinib on antibody responses to adeno-associated virus vector-mediated gene transfer. Hum. Gene Ther. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.S.; Nicholas, J.A.; Yeaman, M.R. Balancing potential benefits and risks of Bruton Tyrosine Kinase inhibitor therapies in multiple sclerosis during the COVID-19 pandemic. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1067. [Google Scholar] [CrossRef] [PubMed]
- Treon, S.P.; Castillo, J.J.; Skarbnik, A.P.; Soumerai, J.D.; Ghobrial, I.M.; Guerrera, M.L.; Meid, K.; Yang, G. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19 infected patients. Blood 2020, 135, 1912–1915. [Google Scholar] [CrossRef] [Green Version]
- Chong, E.A.; Roeker, L.E.; Shadman, M.; Davids, M.S.; Schuster, S.J.; Mato, A.R. BTK inhibitors in cancer patients with COVID-19: “The winner will be the one who controls that chaos” (Napoleon Bonaparte). Clin. Cancer Res. 2020, 26, 3514–3516. [Google Scholar] [CrossRef]
- Brunner, C.; Müller, B.; Wirth, T. Bruton’s Tyrosine Kinase is involved in innate and adaptive immunity. Histol. Histopathol. 2005, 20, 945–955. [Google Scholar] [PubMed]
- Parry, H.; McIlroy, G.; Bruton, R.; Ali, M.; Stephens, C.; Damery, S.; Otter, A.; McSkeane, T.; Rolfe, H.; Faustini, S.; et al. Antibody responses after first and second COVID-19 vaccination in patients with chronic lymphocytic leukaemia. Blood Cancer J. 2021, 11, 136. [Google Scholar] [CrossRef]
BTK Inhibitor [References] | Characteristics | Clinical Trials |
---|---|---|
Ibrutinib (PCYC-1102, Imbruvica, Pharmacyclics/Janssen) [19] | Covalent BTKi with off-target activity (EGFR, ErbB2, ITK and TEC), IC50 = 0.5 nM | AIHA (Ph 2—NCT03827603, NCT04398459); GVHD (Ph 1—NCT02195869, Ph 2—NCT04961801, Ph3—NCT02959944) |
Acalabrutinib (ACP-196, Calquence, Acerta Pharma, AstraZeneca) [20,21,22,23,24] | Covalent, highly selective, BTKi, IC50 = 5.1 nM | RA (Ph 2—NCT02387762), AIHA (Ph 2—NCT04657094), GVHD (Ph 2—NCT 04198922, NCT04716075). |
Zanubrutinib (BGB-3111, Brukinsa, BeiGene) [25,26] | Highly selective, covalent BTKi, lower off-target inhibitory activity on ITK, JAK3, and EGFR. C50 = 0.5 | ITP (Ph2—NCT05214391), AS (Ph 2—NCT05199909), IgG4-RD (Ph 2—NCT04602598), SLE (Ph2—NCT04643470). |
Spebrutinib (CC-292, AVL-292, Avila Therapeutics/Celgene) [27,28] | Covalent, highly selective BTKi, near-complete BTK occupancy for 8–24 h. IC50 < 0.5 nM | RA (Ph 2—NCT01975610). |
Evobrutinib (A18, M2951, Merck) [29,30] | Covalent, highly selective BTKi, both for BCR and Fc receptor signaling, IC50 = 9 nM | MS (Ph3—NCT04032171, NCT04032158, NCT04338022), RA (Ph2—NCT03233230), SLE (Ph2—NCT02975336) |
Remibrutinib (LOU064, Novartis) [31,32,33] | Covalentl BTKi and TEC inhibitor in vitro, inhibits BTK-dependent platelet activation, IC50 = 1.3 nM | CSU (Ph3—NCT05030311), SD (Ph2—SLOUiSSe, NCT04035668) |
Tirabrutinib (Velexbru®, ONO/GS-4059, Ono Pharmaceutical) [34,35,36,37] | Specific, covalent BTKi, IC50 = 2 nM | SD (Ph 2—NCT03100942), RA (Ph 1—NCT02626026). |
Elsubrutinib (ABBV-105, Abbvie) [38] | Covalent, selective BTKi, inhibits histamine release from IgE-stimulated basophils and IL-6 release from IgG-stimulated monocytes, IC50 = 0.18 µM | RA (Ph 2—NCT03682705); SLE (Ph 2—NCT03978520, NCT04451772). |
Tolebrutinib (SAR 442168, PRN 2246, Sanofi/Principia Biopharma) [39,40] | Covalent, BTKi with immunomodulatory activities, it can cross the blood–brain barrier, IC50 = 0.4–0.7 nM | MS (Ph 2—NCT04742400; Ph3—NCT04411641, PERSEUS, NCT04458051-, NCT04410991, GEMINI 1—NCT04410978, GEMINI 2, NCT04410991); MG (Ph 3—URSA NCT05132569) |
Orelabrutinib (ICP-022, Biogen/Innocare Pharma) [41] | Covalent, selective BTKi, IC50 = 1.6 nM | ITP (Ph 2—NCT05020288, NCT05124028), SLE (Ph 1/2—NCT04305197), MS (Ph 2—NCT04711148) |
Branebrutinib (BMS-986195, Bristol-Myers Squibb), [42,43] | Covalent BTKi, 5000-fold higher selectivity for BTK over 240 other kinases, IC50 = 0.1 nM | AD (Ph 2—NCT05014438), PS (Ph 2—NCT02931838), RA (Ph 1—NCT03245515, Ph 1—NCT03131973), SLE, SS (Ph 2—NCT04186871). |
Poseltinib (HM71224, LY3337641, Hanmi Pharmaceutical, Eli Lilly) [44,45,46] | Selective, non-covalent BTKi with potential anti-inflammatory activity, IC50 = 1.95 nM | RA (Ph 2—NCT02628028) |
SHR1459 (TG 1701, EBI-1459; Reistone Biopharma, Jiangsu Hengrui Medicine Co.) [47,48] | Covalent, selective BTKi, IC50 = 6.70 nM | NO (Ph 2—NCT04670770); MG (Ph 2—NCT05136456) |
TAS5315 (SAT0056, Taiho Pharmaceutical Co.), [49,50] | Covalent, highly selective BTKi with Cys481, IC50 < 0.15 nM. | RA (Ph 2—NCT03605251) |
AC0058 (ACEA Biosciences, Inc, Sorrento Therapeutics) [5] | Covalent BTKi, inhibits B-cell activation and inflammatory cytokine production in monocytes. | SLE (Ph 1—NCT03878303) |
BTK Inhibitor [References] | Characteristics | Clinical Trials |
---|---|---|
Fenebrutinib (GDC-0853; Roche/Chugai Pharmaceutical) [59,60,61,62,63,64] | Non-covalent BTKi, inhibits IgE-mediated histamine release from mast cells, IC50 = 0.91 | RA (Ph 2—NCT02983227); SLE (Ph 2—NCT02908100, NCT03407482) |
Rilzabrutinib (PRN1008; Principia Biopharma/Sanofi) [65,66,67,68] | Covalent BTKi, high affinity and selectivity for the BTK, prolonged, reversible target occupancy, anti-inflammatory effects, IC50 = 1.3 nM. | ITP (Ph 2—NCT03395210; Ph 3—LUNA 3, NCT04562766); AIHA (Ph2—NCT05002777); IgG4-RD (Ph 2—NCT04520451); PV (Ph2—NCT03762265); Asthma (Ph2—NCT05104892); CSU (Ph2—NCT05107115) and AD (Ph2—NCT05107115). |
Nemtabrutinib (MK1026, ARQ 531; ArQule, Inc.) [69,70] | Non-covalent BTKi, inhibits signaling downstream of PCLG2, activity on SRC, ERK and act. IC50 = 0.8 nM. | Asthma (Ph 2—NCT01370317) |
PRN473 (SAR 444727; Principia/Sanofi [71,72] | Covalent and noncovalent, BTKi, inhibits the activation of the β2-integrin c-1 and subsequently neutrophil recruitment into inflamed tissue; localized application to the skin; IC50 = 2.1–13.0 nM | AD (PPh 2—NCT04992546) |
BMS-986142 (Bristol-Myers Squibb) [63,73] | Covalent BTKi with reduced FcR-mediated cytokine production and BCR-induced cytokine production; IC50 = 0.5 nM | RA (Ph 2—NCT02638948) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robak, E.; Robak, T. Bruton’s Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. J. Clin. Med. 2022, 11, 2807. https://doi.org/10.3390/jcm11102807
Robak E, Robak T. Bruton’s Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. Journal of Clinical Medicine. 2022; 11(10):2807. https://doi.org/10.3390/jcm11102807
Chicago/Turabian StyleRobak, Ewa, and Tadeusz Robak. 2022. "Bruton’s Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives" Journal of Clinical Medicine 11, no. 10: 2807. https://doi.org/10.3390/jcm11102807
APA StyleRobak, E., & Robak, T. (2022). Bruton’s Kinase Inhibitors for the Treatment of Immunological Diseases: Current Status and Perspectives. Journal of Clinical Medicine, 11(10), 2807. https://doi.org/10.3390/jcm11102807